Por favor, use este identificador para citar o enlazar este ítem: http://repositoriousco.co:8080/jspui/handle/123456789/2698
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGonzales Esquivel, Luis Angel-
dc.date.accessioned2022-09-01T13:52:55Z-
dc.date.available2022-09-01T13:52:55Z-
dc.date.issued2021-04-28-
dc.identifier.urihttp://repositoriousco.co:8080/jspui/handle/123456789/2698-
dc.description.abstractEste documento de tesis tiene el objetivo de sustentar por qué un problema de tipo no polinomial (NP), dentro de la lógica de la computación clásica, se puede convertir en un problema de tipo polinomial (P) dentro de la lógica de la computación cuántica. Para ello, se busca relacionar la complejidad computacional con la lógica cuántica. La complejidad computacional está diseñada dentro de la lógica clásica, pero no hay todavía un diseño de la complejidad computacional dentro de la lógica cuántica, debido a que la lógica cuántica es una ciencia en pleno desarrollo, todavía no hay computadores cuánticos capaces de superar a los computadores clásicos, la supremacía cuántica por ahora es algorítmica y teórica. Se desarrolla la complejidad computacional desde las Máquinas de Turing, con la lógica de la computación clásica, los algoritmos computacionales clásicos, el determinismo y la secuencialidad de los computadores clásicos. Las Máquinas de Turing son máquinas secuenciales, deterministas, y en la práctica son modelos teóricos de los computadores clásicos. Aunque existen Máquinas de Turing no deterministas a nivel teórico, en la práctica los computadores clásicos son deterministas. Se desarrolla la lógica cuántica dentro de la computación cuántica, con algoritmos cuánticos, el no determinismo y la no secuencialidad. Por último, se comparan las características de la lógica clásica frente a la lógica cuántica, encontrándose que la supremacía cuántica se da por las características no deterministas que tiene la computación cuántica, especialmente el paralelismo, la superposición y el entrelazamiento cuántico.es
dc.language.isoeses
dc.publisherUNIVERSIDAD SURCOLOMBIANAes
dc.relation.ispartofseriesTH MEIC;0065-
dc.subjectAlgoritmoes
dc.subjectMáquina de Turinges
dc.subjectComplejidad computacionales
dc.subjectDeterminismoes
dc.subjectNo determinismoes
dc.subjectLógica clásicaes
dc.subjectLógica cuánticaes
dc.subjectInterdisciplinariedades
dc.titleProblemas P y NP en la Complejidad Computacional AUTOR O AUTORES: Luis Angel Gonzales Esquiveles
dc.typeThesises
Aparece en los programas: Maestría en Estudios Interdisciplinarios de la Complejidad

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TH MEIC 0065.pdf2.38 MBAdobe PDFVisualizar/Abrir


Los ítems del repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.