

Neiva, 23 de octubre

Señores

CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN

UNIVERSIDAD SURCOLOMBIANA

Ciudad

El suscrito:

ROSEMBERG GÓMEZ NOGUERA, con C.C. No. 1083909975,

Autor de la tesis y/o trabajo de grado o: Rosemberg Gómez Noguera

Titulado: CÁLCULO DEL TIEMPO DE VIDA MEDIA EN LA DESINTEGRACIÓN ALFA. presentado y aprobado en el año 2023 como requisito para optar al título de FÍSICO; Ademas solicito amablemente que mi trabajo de grado, no sea publicado en línea en la biblioteca virtual de la universidad, debido a su proceso de sometimiento en una revista científica especializada.

Deseo informarle que mi trabajo de grado ha sido enviado a una revista científica indexada para su consideración y posible publicación. La publicación en esta revista representa una oportunidad importante para compartir los resultados de mi investigación con la comunidad científica y académica. Entiendo que la Universidad Surcolombiana tiene como política la publicación de los trabajos de grado en línea, lo cual aprecio como una excelente forma de difundir el conocimiento generado por los estudiantes. Sin embargo, en este caso particular, me gustaría solicitar una excepción a esta política y que mi trabajo no sea publicado en línea hasta que sea publicado en la revista científica.

Al solicitar esto, deseo asegurar que no estoy buscando limitar el acceso a mi trabajo de grado ni evitar su difusión, sino más bien proteger los derechos de autor y respetar el proceso editorial de la revista científica.

Agradezco sinceramente su comprensión y apoyo en este asunto. Espero que puedan considerar mi solicitud y tomar las medidas necesarias para asegurar que mi trabajo de grado no sea publicado en línea hasta que haya sido publicado en la revista científica.

EL AUTOR/ESTUDIANTE:

Firma:

Vigilada Mineducación

La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso indebido no es de responsabilidad de la Universidad Surcolombiana.

	UNI (
	DESCRIPCIÓN	150 9001 150 14001 SC 7384-1 84-CERE 597528	USC 45001 OSCER 537555				
CÓDIGO	AP-BIB-FO-07	VERSIÓN	1	VIGENCIA	2014	PÁGINA	1 de 3

TÍTULO COMPLETO DEL TRABAJO: CÁLCULO DEL TIEMPO DE VIDA MEDIA EN LA DESINTEGRACIÓN ALFA AUTOR O AUTORES:

Primero y Segundo Apellido	Primero y Segundo Nombre
Gómez Noguera	Rosemberg

DIRECTOR Y CODIRECTOR TESIS:

Primero y Segundo Apellido	Primero y Segundo Nombre				
Suescún Díaz	Daniel				

ASESOR (ES):

Primero y Segundo Apellido	Primero y Segundo Nombre				
No aplica	No aplica				

PARA OPTAR AL TÍTULO DE: Físico

FACULTAD: Ciencias Exactas y Naturales

PROGRAMA O POSGRADO: Física

CIUDAD: Neiva AÑO DE PRESENTACIÓN: 2023 NÚMERO DE PÁGINAS: 53

TIPO DE ILUSTRACIONES (Marcar con una X):

Diagramas___ Fotografías___ Grabaciones en discos__x_ Ilustraciones en general___ Grabados___ Láminas___ Litografías___ Mapas___ Música impresa___ Planos___ Retratos___ Sin ilustraciones___ Tablas o Cuadros__

SOFTWARE requerido y/o especializado para la lectura del documento:

MATERIAL ANEXO:

Vigilada Mineducación

La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso indebido no es de responsabilidad de la Universidad Surcolombiana.

B	UNI	icontec					
	DESCRIPCIÓN	150 9001 150 14001 SC 7384-1 SA-CERE 597530	USO 45001				
CÓDIGO	AP-BIB-FO-07	VERSIÓN	1	VIGENCIA	2014	PÁGINA	2 de 3

PREMIO O DISTINCIÓN (En caso de ser LAUREADAS o Meritoria):

PALABRAS CLAVES EN ESPAÑOL E INGLÉS:

Español	Inglés
1. Tiempo de Vida Media	Half-life
2. Decaimiento Alfa	Alpha decay
3. Efecto Túnel	Quantum tunnelling
4. Método de Numerov	Numerov's method
5. Potencial de Woods-Saxon	Woods–Saxon potentia

RESUMEN DEL CONTENIDO: (Máximo 250 palabras)

Se expone dos de los modelos teóricos más recientes utilizados para calcular el tiempo de vida media de núcleos que emiten partícula alfa. Estos son, el modelo modificado de Gamow (MGLM) y el modelo deformado del potencial de Woods-Saxon (DWS). Además, se presenta un modelo nuevo basado en un potencial de Woods-Saxon de cinco parámetros; en el cual, se resuelve la ecuación de Schrödinger mediante el método de Numerov para obtener así el tiempo de vida media. El modelo propuesto se caracteriza por su desviación estándar reducida, particularmente cuando el número total de nucleones es par. Además, muestra su precisión cuando el número de protones se encuentra en el intervalo de Z = 108 a Z = 118. Estos resultados respaldan la aplicabilidad del modelo en la predicción del tiempo de vida media en una variedad de núcleos emisores de partícula alfa.

ABSTRACT: (Máximo 250 palabras)

Two of the most recent theoretical models used to calculate the half-life of nuclei that emit alpha particles are presented. These are the modified Gamow model (MGLM) and the deformed Woods-Saxon potential model (DWS). Furthermore, a new model based on a five-parameter Woods-Saxon potential is presented; in which, the Schrödinger equation is solved using the Numerov method to obtain the half-life time. The proposed model is characterized by its reduced standard deviation, particularly when the total number of nucleons is even. Furthermore, it shows its accuracy when the number of protons is in the range of Z = 108 to Z = 118. These results support the applicability of the model in a variety of alpha emisors

Vigilada Mineducación

La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso indebido no es de responsabilidad de la Universidad Surcolombiana.

APROBACION DE LA TESIS

Nombre presidente Jurado: Gonzalo Eduardo Pedraza Guerrero Firma:

Nombre Jurado: Diego Alejando Rasero Causil

Firma: Nombre Jurado: Vosé Miguel Criștancho Fje Firma:

Vigilada Mineducación

La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso indebido no es de responsabilidad de la Universidad Surcolombiana.

CÁLCULO DEL TIEMPO DE VIDA MEDIA EN LA DESINTEGRACIÓN ALFA

ROSEMBERG GÓMEZ NOGUERA

Universidad Surcolombiana Facultad de Ciencias Exactas y Naturales Neiva-Huila 24 octubre 2023

CÁLCULO DEL TIEMPO DE VIDA MEDIA EN LA DESINTEGRACIÓN ALFA.

ROSEMBERG GÓMEZ NOGUERA

Trabajo de grado presentado como requisito parcial para optar por el título de físico

Director:

Dr. Daniel Suescún Díaz

Universidad Surcolombiana Facultad de Ciencias Exactas y Naturales Neiva-Huila 24 octubre 2023

Agradecimientos

Quiero expresar mi profundo agradecimiento al docente Daniel Suescun Díaz, por la gran cantidad de su tiempo empleado para aclarar mis dudas; sus conocimientos y consejos me han inspirado y motivado a obtener los mejores resultados en este trabajo. Así mismo agradezco a los docentes del programa de física por brindarme sus conocimientos y enseñanzas que han sido fundamentales en mi desarrollo como estudiante. Finalmente, deseo agradecer a Jesus Antonio Chala Casanova por sus consejos que contribuyeron a mejorar la presentación de este trabajo.

Dedicatoria

A mis amados padres, María Celmira Noguera y Constantino Gómez Noguera, quienes han sido mi fuente constante de inspiración y mi incondicional apoyo a lo largo de todo este proceso.

Tabla de Contenido

Re	esumen	6
1	Introducción	7 8 8
2	Modelo General de Gamow (MGG)	9 10
3	La Aproximación WKB	12
4	Modelo Modificado de Gamow (MGLM)	14
5	Modelo del Potencial Deformado de Woods-Saxon (DWS)	16
6	Modelo del Potencial de Woods-Saxon de Cinco Parámetros (MWS5).6.1 La función de onda incidente.	19 22
7	Resultados	25 26 26
Co	onclusiones	31
Ap	Déndice A Deducción de Ecuaciones	32 32 33 38 39
Ap	péndice B Tiempos de Vida Media Estimados: Resultados Numéricos	41
Re	eferencias	52

Resumen

Se expone dos de los modelos teóricos más recientes utilizados para calcular el tiempo de vida media de núcleos que emiten partícula alfa. Estos son, el modelo modificado de Gamow (MGLM) y el modelo deformado del potencial de Woods-Saxon (DWS). Además, se presenta un modelo nuevo basado en un potencial de Woods-Saxon de cinco parámetros; en el cual, se resuelve la ecuación de Schrödinger mediante el método de Numerov para obtener así el tiempo de vida media. El modelo propuesto se caracteriza por su desviación estándar reducida, particularmente cuando el número total de nucleones es par. Además, muestra su precisión cuando el número de protones se encuentra en el intervalo de Z = 108 a Z = 118. Estos resultados respaldan la aplicabilidad del modelo en la predicción del tiempo de vida media en una variedad de núcleos emisores de partícula alfa.

Introducción

Desde que se descubrió la radiactividad, esta ha aportado no solo conocimiento de la estructura atómica y nuclear, sino que además ha dotado al ser humano de un sinnúmero de herramientas para diagnosticar enfermedades o fracturas mediante resonancia nuclear, rayos X o tomografía axial; también permite conservar alimentos esterilizándolos, incluso permite conocer la edad del planeta tierra sin haber contemplado su creación, es por esto y por la creciente demanda de aplicaciones de la física nuclear que los fenómenos de la radiación deben ser estudiados. Por ello, este trabajo se centra el estudio del decaimiento alfa por ser uno de los tipos de decaimiento que más se producen en núcleos pesados y super pesados.

El estudio de la radiación alfa inicia por el descubrimiento de Rutherford, quien en 1899 observó que el uranio emitía dos componentes que mostraban diferentes niveles de penetración en el aire, a esta radiación la llamó alfa y beta; posteriores estudios, al considerar la deflexión de las partículas en un campo magnético concluyeron que deben tener cargas opuestas, y además mediante el análisis de la relación carga masa se concluyó que las partículas que Rutherford llamó alfa, eran núcleos de Helio (Demtröder, 2022). Asi que el decaimiento alfa se define como un tipo de desintegración radiactiva en el que un isótopo emite un núcleo de Helio (⁴He) espontáneamente para buscar estabilidad. Es decir que la partícula alfa se emite con una energía definida, dada por la conservación de la energía. Por lo que si se considera que cada elemento tiene diferente número de protones y neutrones, entonces cada isótopo puede caracterizarse por el tiempo que tarda en decaer, o su análogo el tiempo de vida media. Esta caracterización es importante, ya que provee gran información sobre la estabilidad y estructura nuclear de núcleos superpesados (Cheng et al., 2019), así mismo, el estudio de estos núcleos permite el análisis de regiones de la carta de Segré como la isla estabilidad que constituye uno de los principales objetos de estudio dentro de la física nuclear moderna (Garrote et al., 2011).

Por lo anterior, se hace necesario encontrar métodos que permitan determinar el tiempo de vida media con la menor discrepancia con los datos experimentales; en la literatura actual el modelo más utilizado es el modelo de Gamow; el cual hace uso de la teoría cuántica y el efecto túnel para obtener el tiempo de vida media. 8 1 Introducción

En este contexto, el presente trabajo se centra en determinar teóricamente el tiempo de vida media de elementos que decaen emitiendo partícula alfa. Para ello, se emplean los modelos modificado de Gamow (MGLM) (Cheng et al., 2019) y el modelo del potencial deformado de Woods-Saxon (DWS) (Yahya, 2022), empleados ampliamente en la literatura. En este trabajo se usa para validar los resultados obtenidos con el modelo propuesto, ya que consideran efectos de apantallamiento, paridad, y deformación nuclear. Por su parte, el modelo propuesto en este trabajo de grado considera un potencial de Woods-Saxon modificado de cinco parámetros, para obtener la desviación estandar mínima para 336 nucleidos, luego con el fin de analizar el comportamiento del modelo con núcleos fuera del rango de calibración, se toman 71 nucleidos aleatoriamente y se obtiene el tiempo de vida media.

1.1 Objetivo General

Calcular el tiempo de vida media de isótopos que emiten partícula alfa.

1.2 Objetivos Específicos

- Plantear las ecuaciones que permiten determinar el tiempo de vida media usando el potencial de Woods-Saxon de cinco parámetros.
- Solucionar numéricamente la ecuación de Schrödinger con el potencial Woods-Saxon de cinco parámetros.
- Comparar los resultados obtenidos en el método propuesto con el modelo modificado de Gamow, el modelo deformado del potencial de Woods-Saxon y los datos experimentales.

Modelo General de Gamow (MGG)

En 1928 George Gamow propone un modelo teórico para explicar los tiempos de vida media y lo hace al considerar el efecto túnel (Gamow, 1928). Desde entonces, el modelo ha evolucionado mediante la incorporación de diferentes correcciones como fenómenos de apantallamiento, deformación del núcleo, y correcciones referentes a la paridad del núcleo, es así que en este capítulo, se presenta la metodología general empleada para abordar el fenómeno del decaimiento alfa desde una perspectiva física y los capítulos 4, 5 y 6 se centran en explicar las particularidades que introduce cada uno de los métodos analizados.

Al emitir una partícula alfa $\binom{4}{2}$ He) el núcleo baja el número másico en 4 y su número atómico en 2 por lo que la reacción nuclear se expresa de la siguiente forma

$${}^{A}_{Z}X_{N} \longrightarrow {}^{A-4}_{Z-2}Y_{N-2} + {}^{4}_{2}He_{2} + Q$$

donde X es el núcleo padre, Y el núcleo hijo, y la energía producida en la reacción se representa por Q, que incluye la energía del núcleo hijo en retroceso T_n , y la energía de la partícula alfa E. Este proceso de decaimiento, se da espontáneamente siempre que en la ecuación de balance energético (2.1), Q sea mayor a cero (Soria, 2006)

$$Q = (M_X - M_Y - M_\alpha)c^2 = T_n + E$$
(2.1)

donde M_X , M_Y , M_{α} son la masas del núcleo padre, del núcleo hijo y de la partícula alfa respectivamente, además c es la velocidad de la luz en el vacío.

Por otro lado, los electrones que orbitan el núcleo afectan la energía de la reacción, por lo que Q queda expresada de la siguiente forma (Denisov & Khudenko, 2009)

$$Q = (M_X - M_Y - M_\alpha)c^2 + k(Z_p^\epsilon - Z_d^\epsilon)$$

$$(2.2)$$

con kZ^{ϵ} la energía de enlace de los electrones atómicos, donde $k=8.7\,{\rm eV}$ y $\epsilon=2.517$ para núcleos $Z\geq 60$ y $~k=13.6\,{\rm eV}$ y $\epsilon=2.408$ para núcleos Z<60.

Por lo tanto, se considera una partícula de masa M_{α} y energía E que se encuentra dentro del núcleo al menos durante un breve período de tiempo antes de ser expulsada (Sharma & Satyal, n.d.). Así que el clúster interactúa con los protones y neutrones que constituyen el núcleo, por lo que el proceso se puede modelar como una partícula en un pozo de potencial nuclear (Soria, 2006), con una energía E (Figura 2.1), que clásicamente no es suficiente para superar la barrera de potencial. Sin embargo, la teoría cuántica plantea que aunque la probabilidad sea baja (del orden de 10^{-19} para ¹⁶⁶Pt), la partícula alfa puede escapar debido al efecto túnel, además esta ultima se modifica debido al número de oscilaciones que realiza la partícula dentro del núcleo que es del orden de 10^{21} Hz para ¹⁶⁶Pt, es decir que la probabilidad λ de que una partícula alfa sea expulsada está dada por el producto del número de oscilaciones dentro del núcleo en la unidad de tiempo y la probabilidad de que en cada oscilación la partícula alfa sea expulsada.

Figura 2.1. Modelo general del decaimiento alfa.

2.1 Probabilidad de penetración de la barrera

La probabilidad P de que una partícula alfa salga clásicamente del núcleo es cero, pero debido a que el sistema es del orden de femtómetros, se debe tratar el sistema mediante la teoría cuántica, la cual establece que P está dada por la probabilidad que se realice tunelaje a través de la barrera. Esta última se encuentra mediante el coeficiente de transmisión, el cual representa la probabilidad de flujo de la onda transmitida relativa a la onda incidente (Landau et al., 1965) y matemáticamente queda dada por (Rajasekar & Velusamy, 2022):

$$P = \frac{|J_{\text{Transmitida}}|}{|J_{\text{Incidente}}|} \tag{2.3}$$

2.1 Probabilidad de penetración de la barrera 11

donde $J_{\text{Transmitida}}$ es la corriente de probabilidad transmitida y $J_{\text{Incidente}}$ es la corriente de probabilidad incidente.

Así mismo, la corriente de probabilidad se relaciona con la función de onda mediante la siguiente ecuación (Griffiths & Schroeter, 2018),

$$J = \frac{i\hbar}{2m} \left(\Psi \frac{\partial \Psi^*}{\partial x} - \Psi^* \frac{\partial \Psi}{\partial x} \right)$$
(2.4)

Teniendo en cuenta (2.4), la función de onda incidente como Ψ_{in} y la transmitida Ψ_{tr} se remplaza en (2.3) y resulta:

$$P = \frac{\left| \left(\Psi_{\rm tr}^* \frac{\partial \Psi_{\rm tr}}{\partial x} - \Psi_{\rm tr} \frac{\partial \Psi_{\rm tr}}{\partial x} \right) \right|}{\left| \left(\Psi_{\rm in}^* \frac{\partial \Psi_{\rm in}}{\partial x} - \Psi_{\rm in} \frac{\partial \Psi_{\rm in}^*}{\partial x} \right) \right|}$$
(2.5)

la ecuación (2.5) relaciona el coeficiente de transmisión con la función de onda tanto dentro como fuera del núcleo. Además, cuando el potencial es independiente del tiempo, es posible obtener la función de onda a través de la ecuación de Schrödinger independiente del tiempo:

$$\left(\frac{-\hbar^2}{2m}\nabla^2 + V(\vec{r})\right)\psi(\vec{r}) = E\psi(\vec{r})$$
(2.6)

Donde:

- $m\colon \mathrm{Es}$ la masa reducida del sistema
- $\hbar:$ La constante reducida de Planck
- V(r): El potencial al que está sometida la partícula alfa.
- E: La energía de la partícula alfa.

La Aproximación WKB

La aproximación WKB (Wentzel, Kramers, Brillouin) es un método para obtener aproximaciones a la ecuación de Schrödinger independiente del tiempo en una dimensión (Griffiths & Schroeter, 2018), y es aplicable donde la energía cinética es considerable y, por tanto, un número cuántico elevado (Rajasekar & Velusamy, 2022); es por ello que es comúnmente utilizada para obtener el coeficiente de transmisión de la ecuación (2.5).

$$\frac{d^2}{dr^2}\psi(r) = \frac{2m(E - V(r))}{\hbar^2}\psi(r)$$
(3.1)

En el caso unidimensional se parte de la idea de que la solución para la ecuación Schrödinger (3.1) para un potencial constante, está dada por:

$$\psi(r) = \begin{cases} A e^{\pm ikr} & E > V \\ B e^{\pm kr} & E < V \end{cases}$$

donde $k = \sqrt{2m(E-V)} / \hbar$. Así, se supone una solución sinusoidal para E > V y exponencial si E < V, en este sentido se puede pensar que cuando el potencial es aproximadamente constante se tiene una amplitud aproximadamente constante.

Con lo anterior se asume una solución a la ecuación de Schrödinger de la siguiente forma

$$\psi = A(r)e^{iS(r)} \tag{3.2}$$

Sustituyendo la función de onda en la ecuación (3.1)

$$\frac{d^2}{dr^2}A(r)e^{iS(r)} = \frac{2m(E-V(r))}{\hbar^2}A(r)e^{iS(r)}$$
(3.3)

al resolver la ecuación (3.2), se obtiene

$$\frac{d^2}{dr^2}A(r) - \left(\frac{d}{dr}S(r)\right)^2 A(r) + 2m(E - V(r))\frac{A(r)}{\hbar^2} = 0$$
(3.4)

$$\frac{d}{dr}\left(A^2(r)\frac{d}{dr}S(r)\right) = 0 \tag{3.5}$$

3 La Aproximación WKB 13

En caso de que A varíe lentamente, $A'' \approx 0$, además, en la ecuación (3.5) el término entre paréntesis debe ser constante, ya que su derivada es cero; con esto las ecuaciones (3.4) y (3.5) quedan dadas por:

$$\frac{d}{dr}S(r) = \frac{\sqrt{2m(E - V(r))}}{\hbar}$$
(3.6)

$$A^2(r)\frac{d}{dr}S(r) = C \tag{3.7}$$

Al remplazar (3.6) en (3.7), A(r) queda dado por:

$$A(r) = \frac{C'}{(2m(E - V(r)))^{1/4}}$$
(3.8)

Además, al integrar la ecuación (3.6), S(r) se expresa:

$$S(r) = \int \frac{\sqrt{2m(E - V(r))}}{\hbar} dr$$
(3.9)

Finalmente, al sustituir las ecuaciones (3.8) y (3.9) en la expresión (3.2) la función de onda se define.

$$\psi(r) \approx \frac{C'}{(2m(E-V(r)))^{1/4}} \exp\left(\pm \frac{i}{\hbar} \int \sqrt{2m(E-V(r))} dr\right)$$
(3.10)

La ecuación (3.10) se cumple para E > V, o para E < V que da dada por :

$$\psi(r) \approx \frac{C''}{(2m(V(r) - E))^{1/4}} \exp\left(\pm \frac{1}{\hbar} \int \left|\sqrt{2m(V(r) - E)}\right| dx\right)$$
(3.11)

Además, si se considera el momento clásico $p(x) = \sqrt{2 m (V(x) - E)}$ la ecuación (3.11) se escribe

$$\psi(r) \approx \frac{C''}{\sqrt{|p(x)|}} \exp\left(\pm \frac{1}{\hbar} \int |p(x)| dx\right)$$
(3.12)

Modelo Modificado de Gamow (MGLM)

Este es un modelo fenomenológico basado en la teoría de Gamow para el decaimiento alfa y lo propone inicialmente (Zdeb et al., 2013), (Cheng et al., 2019). En él, se considera una partícula alfa bajo la influencia de potencial producido por el núcleo hijo, que está dado por el potencial de Coulomb de una carga puntal, ello sin tener en cuenta el potencial centrífugo, en este modelo se introduce el factor de impedimento o factor «hidrance» que es una corrección al modelo de Gamow para los tiempos de vida media en núcleos par-impar o impar-par. En un trabajo posterior (Cheng et al., 2019) además de tener en cuenta el factor «hidrance», considera correcciones referentes al apantallamiento y a efectos del campo magnético debido al movimiento de la partícula alfa. Esto lo hace al introducir el potencial apantallado de Hulthen en lugar de utilizar el potencial de Coulomb clásico.

Si se considera lo anterior y lo mencionado en el Capítulo 2 la probabilidad λ de que un núcleo decaiga en la unidad de tiempo se expresa,

$$\lambda = \nu P \tag{4.1}$$

donde ν es la frecuencia de colisión de la partícula alfa con la barrera de potencial generada por el núcleo hijo y P la probabilidad dada en la ecuación (2.5) además, el tiempo de vida se relaciona con λ mediante la expresión (4.2) y el factor de impedimento cambia los tiempos de vida media por un factor de 10^h y es introducido para describir sistemas impares (Zdeb et al., 2013). Así, el tiempo de vida es,

$$\tau_{1/2} = \frac{\ln(2)}{\lambda} 10^h = \frac{\ln(2)}{\nu P} 10^h \tag{4.2}$$

donde h es el factor «hidrance» y sus valores están dados de la siguiente forma (Cheng et al., 2019).

$$h = \begin{cases} 0.3455 & \text{par} - Z & \text{impar} - N \\ 0.3455 & \text{impar} - Z & \text{par} - N \\ 0.691 & \text{impar} - Z & \text{impar} - N \\ 0.0 & \text{par} - Z & \text{par} - N \end{cases}$$
(4.3)

4 Modelo Modificado de Gamow (MGLM) 15

La frecuencia de colisión ν está dada por la ecuación (A.8) (Dong et al., 2010). Apéndice (A.1)

$$\nu = \frac{\left(G + \frac{3}{2}\right)\hbar c^2}{1.2\,\pi\,\mu R_0^2} \tag{4.4}$$

A su vez, la probabilidad de penetración de la barrera P queda dada por (A.48) y para una partícula alfa con una energía cinética, E=Q(A-4)/A es:

$$P = \exp\left(-\frac{2}{\hbar c} \int_{R}^{b} \sqrt{2\,\mu(V(r) - E)} dr\right) \tag{4.5}$$

Donde $\mu = 931.494 A_{\alpha} A_d / (A_{\alpha} + A_d)$ es la masa reducida en MeV/ c^2 , R el radio de la esfera en el que se encuentra la partícula inicialmente y está dado por $R = r_0 (A_d^{1/3} + A_{\alpha}^{1/3})$, donde $r_0 = 1.14$ fm es un parámetro ajustable dado en (Cheng et al., 2019), b es el punto de inflexión clásico que se obtiene si se desarrolla la ecuación V(b) - E = 0.

En el modelo propuesto por (Cheng et al., 2019) el potencial V(r) está definido,

$$V(r) = \begin{cases} -V_0, & 0 \le r \le R, \\ B \frac{a Z_d Z_\alpha}{\exp(a r) - 1} + \frac{\hbar^2 c^2 (l + 1/2)^2}{2 \mu r^2}, & r > R, \end{cases}$$
(4.6)

 $\operatorname{con} B = 1.439 \operatorname{MeV} \operatorname{fm}$

Con lo anterior y si se considera las ecuaciones (4.2-4.5) el tiempo de vida media se puede expresar,

$$\tau_{1/2} = \frac{1.2 \pi \, 10^h \, \mu R_0^2 \ln(2)}{\left(G + \frac{3}{2}\right) \hbar c^2} \exp\!\left(-\frac{2}{\hbar c} \int_R^b \sqrt{2 \, \mu(V(r) - E)} \, dr\right) \tag{4.7}$$

donde G y R_0 están dados de la siguiente forma (Cheng et al., 2019),

$$G = \begin{cases} 22 & N > 126\\ 20 & 82 < N \le 126\\ 18 & N \le 82 \end{cases}$$
(4.8)

$$R_0 = 1.28 A^{1/3} - 0.76 + 0.8 A^{-1/3}$$
(4.9)

Modelo del Potencial Deformado de Woods-Saxon (DWS)

A diferencia del (MGLM) que considera un potencial radialmente simétrico; el modelo (DWS) tiene en cuenta la deformación del núcleo hijo, por lo que el potencial nuclear está dado por el potencial deformado de Woods-Saxon; y la interacción eléctrica entre la partícula alfa y el núcleo hijo que se expresa mediante el potencial de Coulomb deformado; con base en estas dos interacciones se calculan el tiempo de vida media en el decaimiento cluster (Pahlavani & Shamami, 2020); y en la misma linea, en el trabajo (Yahya, 2022) se obtiene el tiempo de vida media en el decaimiento alfa para isótopos del Platino con deformaciones para el momento cuadripolar y hexadecapolar.

En el modelo DWS se supone una partícula alfa y un núcleo hijo que forman un sistema con masa reducida μ e interactúan mediante un potencial dado por la expresión,

$$V(r,\theta) = \begin{cases} -V_N, & 0 \le r \le a, \\ V_N + V_C + V_{\ell}, & a < r, \end{cases}$$
(5.1)

donde V_{ℓ} , V_N , y V_C , son el potencial centrífugo, el potencial deformado de Woods-Saxon, y el de Coulomb respectivamente, que matemáticamente se expresan de la siguiente forma (Pahlavani & Shamami, 2020),

$$V_{\ell} = \frac{(\hbar c)^{2} \ell (\ell + 1)}{2 \,\mu \, r^{2}} \tag{5.2}$$

$$V_N = \frac{-V_0}{1 + \exp\left(\frac{r - R(\theta)}{t}\right)}$$
(5.3)

donde t es el parámetro de difusividad y se define t = 0.5 + 0.33I

$$V_C = B \left(Z_d \, Z_\alpha \right) \left(\frac{1}{r} + V_2 + V_4 \right) \tag{5.4}$$

Con B = 1.439 MeV fm y V_2 , V_4 definidos de la siguiente forma,

$$V_2 = \frac{3R^2(\theta)}{5r^3}\beta_2 Y_{20} \tag{5.5}$$

$$V_4 = \frac{3R^4(\theta)}{9r^5} \beta_4 Y_{40} \tag{5.6}$$

En este potencial se tiene en cuenta el término cuadrupolar y hexadecapolar del núcleo. Así, el radio efectivo R depende del ángulo (θ) de simetría. Por otro lado, los términos V_2 y V_4 de las ecuaciones (5.5) y (5.6), que modifican el potencial de Coulomb, quedan determinados por los coeficientes de deformación β_2 y β_4 , además, se tienen los armónicos esféricos Y_{20} y Y_{40} .

Por otro lado, el radio efectivo R se define:

$$R(\theta) = 1.17 + R_2(1 + \beta_2 Y_{20} + \beta_4 Y_{40}) \tag{5.7}$$

Con R_2 dado por,

$$R_2 = (1 + 0.39I) A_d^{1/3} \tag{5.8}$$

Además, el exceso de neutrones relativo I es,

$$I = \frac{N_d - Z_d}{A_d}.\tag{5.9}$$

Así mismo, la profundidad del pozo V_0 en MeV se define (Yahya, 2022), (Pahlavani & Shamami, 2020) de la forma,

$$V_0 = 44.16[1 - 0.40 I] \frac{(A_d A_\alpha)^{2/3}}{A_d^{2/3} + A_\alpha^{2/3}}$$
(5.10)

Esta interacción está descrita por la función de onda que se obtiene con la aproximación WKB, así mismo, la probabilidad P de penetrar la barrera en este modelo está dada por (Pahlavani & Shamami, 2020), (Denisov & Khudenko, 2009),

$$P = \frac{1}{2} \int_0^{\pi} \sin(\theta) T(\theta, E) d\theta$$
(5.11)

18 5 Modelo del Potencial Deformado de Woods-Saxon (DWS)

Donde T es el coeficiente de transmisión y se expresa matemáticamente,

$$T(\theta, E) = \frac{1}{1 + \exp\left(\frac{2}{\hbar c} \int_{a(\theta)}^{b(\theta)} \sqrt{2\,\mu\left(V(r,\theta) - E\right)}\right)} \tag{5.12}$$

Donde los puntos de inflexión $a(\theta)$ y $b(\theta)$ están dados por las raíces de la ecuación $V(r, \theta) = E$ y μ está dado en unidades de MeV/ c^2 .

La frecuencia de colisión con la barrera de la partícula alfa con una energía E_{ν} se expresa de la siguiente forma (Yahya, 2022), (Pahlavani & Shamami, 2020),

$$\nu = \frac{2E_v}{\hbar} = \frac{2Q\left(0.056 + 0.039\exp\left(\frac{4-A_\alpha}{2.5}\right)\right)}{\hbar} = \frac{0.19\,Q}{\hbar} \tag{5.13}$$

Con la probabilidad de atravesar la barrera P ecuación (5.11) y la frecuencia de colisiones ν ecuación (5.13); el tiempo de vida media se expresa.

$$\tau_{1/2} = \frac{\ln(2)}{\nu P} \tag{5.14}$$

Modelo del Potencial de Woods-Saxon de Cinco Parámetros (MWS5)

En este capítulo, se presenta una propuesta para el cálculo del tiempo vida media en la desintegración alfa mediante el uso de un potencial nuclear de Woods-Saxon de cinco parámetros; este es un potencial funcional, donde se ajustan los nuevos parámetros introducidos mediante datos experimentales para reproducir los niveles de energía de nucleones (Koura & Yamada, 2000).

El potencial tiene en cuenta varios parámetros, como el espesor de la superficie nuclear t, la profundidad V_0 y el radio R. Además, se incluyen dos parámetros adicionales κ que modifica el potencial a grandes distancias y V_{dp} que produce un mínimo en la región de superficie nuclear, (ver Figura A.2), donde es de especial interés, ya que a estas distancias ocurre el fenómeno de tunelamiento de la partícula alfa.

La extensión del potencial de Woods-Saxon modificado se define en Apéndice (A.4) (Koura & Yamada, 2000).

$$V_N(r) = \frac{V_0}{\left[1 + \exp((r - R_V)/t)\right]^{t/\kappa}} \left[1 + \frac{V_{\rm dp}}{1 + \exp[-(r - R_V)/t]}\right].$$
(6.1)

Con lo expuesto, se considera el modelo general planteado en el capítulo 2 en el que la partícula alfa se encuentra bajo la influencia de un potencial nuclear, oscilando con una frecuencia ν y una probabilidad P de penetrar la barrera. El tiempo de vida media, es dado por,

$$\tau_{1/2} = \frac{\ln(2)}{\nu P} \tag{6.2}$$

con ν la frecuencia de oscilación para un clúster alfa dado en las ecuaciones (5.13) y (4.4) además, de estas, se tiene la frecuencia de oscilación clásica dada por:

$$\nu = \frac{v}{2a} = \frac{\sqrt{2(E+V_0)}}{2a\sqrt{m}}$$
(6.3)

con E la energía de la partícula alfa dentro del núcleo, V_0 la profundidad del pozo de potencial, m la masa de la partícula alfa. 20 6 Modelo del Potencial de Woods-Saxon de Cinco Parámetros (MWS5)

La probabilidad P de penetrar la barrera desde a hasta b se obtiene mediante la corriente de probabilidad incidente y transmitida,

$$P = \frac{|J_{\rm tr}(b)|}{|J_{\rm in}(a)|} \tag{6.4}$$

donde J_{tr} es la corriente de probabilidad incidente y J_{in} la corriente de probabilidad transmitida. Además, J_{tr} y J_{in} comúnmente en la literatura actual sobre decaimiento alfa se obtiene mediante la aproximación WKB, trabajos como los de (Cheng et al., 2019), (Garrote et al., 2011), (Yahya, W. A. 2022), (Zdeb et al., 2013), (Budaca & Budaca, 2017) emplean dicha aproximación para obtener P mediante la ecuación (4.5), sin embargo esta aproximación WKB falla en los puntos de inflexion (Nakamura & Mil'ikov, 2016). Por lo que en el sentido de proponer una alternativa a esta tendencia en la literatura, y de eludir este fallo de la aproximación WKB se presenta el método de Numerov en favor del cálculo de la corriente de probabilidad y la función de onda.

Con lo anterior se plantea el potencial de interacción V(r) entre el núcleo hijo y la partícula alfa que se define de la siguiente forma (ver Figura 6.1).

$$V(r) = \begin{cases} -V_N & r \le R_w \\ -V_N + V_C + V_\ell & r > R_w \end{cases}$$
(6.5)

donde V_N es el potencial nuclear de Woods-Saxon de cinco parámetros dado en (6.1), V_{ℓ} el potencial centrífugo definido en (5.2) y V_C el potencial de Coulomb dado por

$$V_C = B \frac{Z_d Z_\alpha}{r} \tag{6.6}$$

Figura 6.1. Potencial de interacción para ²³¹Th y la partícula alfa.

6 Modelo del Potencial de Woods-Saxon de Cinco Parámetros (MWS5) 21

Región

Condiciones de frontera

Por otro lado, si se considera el potencial definido en la ecuación (6.5) la ecuaciones de Schrödinger independiente del tiempo en una sola dimensión quedan expresadas de la siguiente forma,

Ecuación

$$\begin{pmatrix} -(\hbar c)^2 \frac{d^2}{2\mu} + V(r) \end{pmatrix} \psi_1 = \psi_1 E$$

$$\begin{pmatrix} \psi_1(a) = \psi_2(a) \\ \frac{d\psi_1}{dr} \Big|_{r=a} = \frac{\psi_2}{dr} \Big|_{r=a}$$

$$\begin{pmatrix} -(\hbar c)^2 \frac{d^2}{dr^2} + V(r) \end{pmatrix} \psi_2 = \psi_2 E$$

$$\begin{pmatrix} \frac{d\psi_2}{dr} \Big|_{r=b} = \frac{d\psi_3}{dr} \Big|_{r=b}$$

$$\begin{pmatrix} \frac{d\psi_3}{dr} \Big|_{r=b} = \frac{d\psi_3}{dr} \Big|_{r=b}$$

$$\lim_{r \to \infty} \psi_3(r) = e^{i\frac{\sqrt{2\mu E}}{\hbar}r}$$

$$\qquad \text{III}$$

$$\begin{pmatrix} \frac{d\psi_3(r)}{dr} \Big|_{r\to\infty} = i\frac{\sqrt{2\mu E}}{\hbar}e^{i\frac{\sqrt{2\mu E}}{\hbar}r}$$

$$\qquad \text{IIII}$$

Las condiciones de frontera para ψ_1 , ψ_2 están establecidas basadas en la continuidad de la función de onda; en la región III gobierna principalmente el potencial de Coulomb, que decae con el inverso de la distancia, así que asintóticamente cuando $r \to \infty$ la partícula alfa se puede considerar libre, que se mueve radialmente fuera del núcleo hijo; por ello se asume que para la región III la condición dada es válida para $r \gg b$.

Para las ecuaciones establecidas anteriormente se plantea un esquema numérico regresivo, mediante el método de Numerov en detalle en el apéndice (A.3). Así, las funciones de onda $\psi^{(1)}$, $\psi^{(2)}, \psi^{(3)}$ quedan dadas por,

$$\psi^{(i)}[j-1] = \frac{2\left(1 - \frac{5(\delta x)^2}{12}S[j]\right)\psi^{(i)}[j] - \left(1 + \frac{(\delta x)^2}{12}S[j+1]\right)\psi^{(i)}[j+1]}{\left(1 + \frac{(\delta x)^2}{12}S[j-1]\right)} \quad \text{con} \quad i = 1, 2, 3.$$
(6.7)

Donde el superíndice (i) indica la región a la que pertenece la función de onda, y $S_j = -\frac{2\mu}{(\hbar c)^2} (V(r_j) - E)$, con μ la masa reducida del sistema en MeV/ c^2 .

Así mismo para que se cumpla la condición sobre la derivada de la función de onda entre las

22 6 Modelo del Potencial de Woods-Saxon de Cinco Parámetros (MWS5) regiones I y II deben cumplir:

$$\left. \frac{d\psi_1}{dr} \right|_{r=a} = \left. \frac{d\psi_2}{dr} \right|_{r=a} \tag{6.8}$$

$$\frac{\psi_1(a) - \psi_1(a - \delta x)}{\delta x} = \frac{\psi_2(a + \delta x) - \psi_2(a)}{\delta x}$$
(6.9)

$$\psi_1(a - \delta x) = -\psi_2(a + \delta x) + 2\psi_2(a)$$
(6.10)

de igual forma entre las regiones II y III,

$$\left. \frac{d\psi_2}{dr} \right|_{r=b} = \left. \frac{d\psi_3}{dr} \right|_{r=b} \tag{6.11}$$

$$\frac{\psi_2(b) - \psi_2(b - \delta x)}{\delta x} = \frac{\psi_3(b + \delta x) - \psi_3(b)}{\delta x}$$
(6.12)

$$\psi_2(b - \delta x) = -\psi_3(b + \delta x) + 2\psi_3(b)$$
(6.13)

Con a y b obtenidos mediante la condición V(a) = E y V(b) = E.

6.1 La función de onda incidente

Al considerar la ecuación (6.7) para i=1, que representa la solución a la ecuación de Schrödinger en la región I, resulta difícil distinguir entre la parte de la solución con número de onda k o -k, lo cual si es posible con aproximaciones asintóticas y WKB como se hace en (Landau et al., 1965), y se aplica en los métodos MGLM y DWS. Esta dificultad surge debido a que la solución es numérica y presenta una función de onda implícita que incluye las ondas reflejada y transmitida. Con esto en mente, una estrategia para obtener la función de onda incidente en la solución numérica, consiste en aplicar una transformada discreta de Fourier para obtener la función de onda en el dominio del momento. Posteriormente, eliminar las funciones propias que pertenecen a números de onda -k, correspondientes a la onda reflejada. Finalmente, para obtener la función de onda en el dominio espacial, se realiza la transformada inversa de Fourier.

Si se considera la función de onda $\psi^{(1)}(r)$; como la suma continua (integral) de funciones propias $\phi_k(r)$ con número de onda k, es posible obtener una función C(k) que representa la amplitud de cada función propia ϕ_k , mediante la transformada de Fourier dada por:

$$C(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi^{(1)}(r) \, e^{-ikr} dr \tag{6.14}$$

con C(k) la llamada la función de onda de momento (Rajasekar & Velusamy, 2022) con el momento $p = \hbar k$, si se considera que k es positivo el momento es positivo y la función de onda es la incidente. Por ello, para obtener la función de onda incidente se debe incluir de la función C(k) solo valores propios pertenecientes a p > 0. Así, la función de onda de momento incidente D(k) esta dada por:

$$D(k) = \begin{cases} 0 & , \ k < 0\\ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi^{(1)}(r) \, e^{-ikr} dr & , \ k \ge 0 \end{cases}$$
(6.15)

Mediante la transformada inversa de Fourier de D(k) en la ecuación (6.15) se obtiene la función de estado incidente

$$\psi_{\rm in}(r) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} D(k) e^{ikr} dk \tag{6.16}$$

Las ecuaciones (6.14) y (6.16) se manejan en el dominio discreto mediante las siguientes expresiones (Izaac & Wang, 2018),

$$\psi_{\rm in}[n] = \frac{\Delta k}{\sqrt{2\pi}} \sum_{m=0}^{M-1} D[m] e^{ik[m]x[n]}$$
(6.17)

$$C[m] = \frac{\Delta r}{\sqrt{2\pi}} \sum_{n=0}^{N-1} \psi^{(1)}[n] e^{-ik[m]x[n]}$$
(6.18)

donde N y M son el número de puntos discretizados, y se debe cumplir $\Delta r \Delta k = 2\pi/N$; Además, el número de onda máximo vienen dado por el momento de Nyquist que se define $k_{\text{max}} = \frac{\pi}{\Delta x}$ (Izaac & Wang, 2018).

De igual forma D(k) en el dominio discreto se expresa de la siguiente forma,

$$D(k) = \begin{cases} 0 & , \ k < 0\\ \frac{\Delta r}{\sqrt{2\pi}} \sum_{n=0}^{N-1} \psi^{(1)}[n] e^{-ik[m]x[n]} & , \ k \ge 0 \end{cases}$$
(6.19)

El algoritmo a seguir se ilustra en la Figura (6.2).

Figura 6.2. Algoritmo para obtener la función de onda incidente.

Con la función de estado incidente dada en la ecuación (6.17) y la función de onda transmitida de la ecuación (6.7) para i=3, se obtiene la probabilidad P de penetrar la barrera mediante la ecuación (6.4); en este caso la corriente de probabilidad incidente en a es $J_{in}(a)$ y la corriente de probabilidad transmitida en b es $J_{tr}(b)$, además, el coeficiente de transmisión queda dado por:

$$P = \frac{|J_{\rm tr}(b)|}{|J_{\rm in}(a)|} = \frac{\left|\Psi_{\rm tr}^*(b)\frac{\partial\Psi_{\rm tr}}{\partial x}\right|_{r=b} - \Psi_{\rm tr}(b)\frac{\partial\Psi_{\rm tr}}{\partial x}\Big|_{r=b}}{\left|\Psi_{\rm in}^*(a)\frac{\partial\Psi_{\rm in}}{\partial x}\Big|_{r=a} - \Psi_{\rm in}(a)\frac{\partial\Psi_{\rm in}^*}{\partial x}\Big|_{r=a}\right|}$$
(6.20)

Ahora, si se considera el dominio discreto donde $\Psi_{tr}^*(b) = \Psi_{tr}^*[0]; \Psi_{tr}(b) = \Psi_{tr}[0]; \Psi_{in}(a) = \Psi_{in}[N];$ $\Psi_{in}^*(a) = \Psi_{in}^*[N]$ la ecuación (6.20) es,

$$P = \frac{\left|\Psi_{\rm tr}^*[0]\frac{\partial\Psi_{\rm tr}}{\partial x}[0] - \Psi_{\rm tr}[0]\frac{\partial\Psi_{\rm tr}^*}{\partial x}[0]\right|}{\left|\Psi_{\rm in}^*[N]\frac{\partial\Psi_{\rm in}}{\partial x}[N] - \Psi_{\rm in}[N]\frac{\partial\Psi_{\rm in}^*}{\partial x}[N]\right|}$$
(6.21)

Finalmente, el tiempo de vida media en este modelo queda descrito mediante la expresión (6.2).

Resultados

En este capítulo se presenta el comportamiento de los modelos empleados en el cálculo del tiempo de vida media para 407 nucleidos. Esto se logra mediante la implementación de los métodos (MGLM), (DWS) y (MWS5); en el lenguaje de programación MATLAB. Para el modelo MWS5 se tienen en cuenta tres frecuencias de oscilación: la frecuencia que se obtiene mediante el oscilador cuántico en adelante denotada por ν_1 y expresada en la ecuación (4.4); la frecuencia clásica de una partícula en un pozo de potencial con profundidad V_0 denotada por ν_2 definida por la ecuación (6.3), y la frecuencia que se obtiene mediante la energía de punto cero de un oscilador armónico (Poenaru et al., 1985), expresada ν_3 ecuación (5.13). Por otro lado, las integrales en los modelos MGLM y DWS de las ecuaciones (4.5, 5.11) se desarrollan numéricamente mediante la regla se Simpson 1/3; además, el método de localización de raíces que se emplea, es el método de la regula falsi; y las deformaciones utilizadas para el modelo DWS se obtienen de (Möller et al., 2016).

Los coeficientes para el modelo MWS5 que se dan en la Tabla (7.1) difieren de los propuestos por (Koura & Yamada, 2000), ya que la profundidad del pozo de potencial para una partícula alfa difiere del potencial para un nucleón, por lo que los coeficientes V_i , V_{dpi} , y κ_i se han ajustado para obtener las menores desviaciones del tiempo de vida media; para este ajuste se ha empleado los datos experimentales de 336 nucleidos obtenidos de las bases de datos NUBASE2020 (Kondev et al., 2021); y los tiempos de vida media de 71 núcleos más fueron incorporados luego de hacer el ajuste, con el fin de observar el comportamiento del método MWS5 en nucleidos para los que no fue ajustado.

i	0	1	2	3	4	5	i	1	2	3
V_i	-216.802	1.2410	0.001	2.74580	-1.56754	-0.7	α_{vi}	4.50	0.0	2.2
$v_{\mathrm{dp}i}$	0.380000	-2.1000	-0.760	-4.58300	1.50880	0.5	$\alpha_{v \mathrm{dp}i}$	-0.40	-0.4	0.0
d_i	1.258000	-0.3876	6.360	11.00954	-0.94200	-14.0	α_{di}	1.73	1.5	0.7
t_i	1.298000	0.0000	5.300	1.37730	0.08500	-14.0	α_{ti}	-0.50	0.0	1.8
κ_i	1.419138	1.0000	-0.400	0.76810	-2.40000	0.2	$\alpha_{\kappa i}$	2.00	0.1	-0.5

Tabla 7.1. Valores para los parametros del potencial de Woods-Saxon en las ecuaciones (A.60-A.64), modificado de (Koura & Yamada, 2000).

 $\mathbf{7}$

7.1 Criterios de evaluación

La medida mas general que determina la fiabilidad del método; es la desviación estándar σ que se define mediante la expresión,

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left\{ \left(\log\left(\tau_i^{\text{Teo}}\right) - \log\left(\tau_i^{\text{Exp}}\right) \right)^2 \right\}}$$
(7.1)

donde N es el número de isótopos analizados; τ_i^{Teo} el tiempo de vida media teórico en segundos; y τ_i^{Exp} es el tiempo de vida media experimental reportado en la base de datos NUBASE2020.

Las diferencias mínimas y máximas se obtienen al encontrar el valor mínimo y máximo de la siguiente expresión,

$$\Delta \tau = \left| \log \left(\tau^{\text{Teo}} \right) - \log \left(\tau^{\text{Exp}} \right) \right| \tag{7.2}$$

7.2 Simulaciones

Una de las simulaciones realizadas incluye el cálculo del tiempo de vida media para 407 nucleidos apéndice (B.0). Los resultados se resumen en la Tabla (7.2), donde se muestra la desviación estándar.

Modelo	σ	Error Máximo	Error Mínimo $\times 10^{-3}$
MGLM	1.750	18.771 en 229 Ra	2.731 en 214 Rn
DWS	2.075	19.076 en $^{229}\rm{Ra}$	11.40 en 173 Au
NWS5- ν_1	1.788	17.854 en 204 Pb	1.524 en ²²¹ Pa
NWS5- ν_2	1.877	17.496 en $^{204}\rm{Pb}$	$1.153 \text{ en } {}^{220}\text{Th}$
NWS5- ν_3	1.858	17.378 en 204 Pb	1.433 en ²²² Ac

 Tabla 7.2. Desviación de los tiempos de vida media teóricos con respecto a los experimentales para los distintos modelos.

En la Tabla (7.2), se observa que el método propuesto MWS5 con las frecuencias ν_1 , ν_2 , ν_3 presenta desviaciones que se encuentran en un intervalo similar al de los métodos existentes en la literatura MGLM y DWS; sin embargo, entre las tres frecuencias empleadas para el modelo MWS5 la que tiene menor desviación es ν_1 , lo que es de esperar, ya que incorpora el número cuántico G en la frecuencia, en cambio, las frecuencias ν_2 y ν_3 son lineales con respecto a números cuánticos nucleares; además, para las tres frecuencias empleadas se tiene los errores máximos más bajos que son para el isótopo 204 del Plomo.

Figura 7.1. Desviación σ según la paridad de *A* o *Z* para los modelos MGLM, DWS y MWS5; en (a) y (b) muestran las mismas valores para los modelos MGLM y DWS, sin embargo, se varía la frecuencia para el modelo MWS5

Una representación más precisa de los datos se obtiene a través del diagrama de radar, que se muestra en la Figura (7.1). En este diagrama, se ilustra la desviación por paridad. A partir de estas dos representaciones, es evidente que los métodos presentan una tendencia a menor desviación estándar para núcleos con paridad A par y Z par y A par y Z impar. Lo que sugiere que estos métodos logran una aproximación más precisa del tiempo de vida media en núcleos que tienden a ser más estables debido a su número de masa A par. Así mismo, es importante destacar que la tendencia en los modelos MGLM y MWS5 es muy similar para todas las paridades,

28 7 Resultados

además, si se tiene en cuenta que el modelo MWS5 no utiliza factor de impedimento h, se puede argumentar que los nuevos parámetros introducidos al potencial de Woods-Saxon remplazan la función de h en el modelo MGLM, es decir que probablemente la caída en el potencial en la superficie nuclear y el factor κ que modifica el potencial a grandes distancias puede estar relacionado con la paridad de los nucleones.

Por otro lado, el método DWS muestra una desviación considerable para núcleos con A impar Z par. Sin embargo, es interesante notar que para las demas paridades, el método DWS muestra un valor de desviación estándar σ con tendencia similar. lo que sugiere que podría mejorarse la precisión y exactitud del método DWS si se ajustaran algunos parámetros utilizando los datos experimentales como referencia.

Figura 7.2. Tiempo de vida para los isótopos del Nobelio (Z = 102), para las diferentes frecuencias en el modelo NWS5 donde la desviación en cada caso es $\sigma = 0.431$ para ν_1 , $\sigma = 0.717$ para ν_2 , y $\sigma = 0.524$ para ν_3 .

Si se analiza el comportamiento del modelo MWS5 para el caso de las tres frecuencias al considerar la Figura (7.2), se observa que para isótopos del Nobelio la menor desviación es para la frecuencia ν_1 , lo que indica que la parte de la precisión del modelo MGLM viene de considerar la frecuencia de un oscilador armónico cuántico con diferentes valores de G en la ecuación (4.8); lo anterior lleva a considerar una comparación del modelo MWS- ν_1 con los modelos MGLM y DWS como se presenta en la Figura (7.3).

Figura 7.3. Tiempo de vida para los isótopos del Nobelio (Z = 102), para los diferentes modelos. Con una desviación, para MGLM de $\sigma = 0.464$, para DWS de $\sigma = 0.778$, para NWS5- ν_1 de $\sigma = 0.431$

A pesar de que el método propuesto tiene las mejores estimaciones para los isótopos del Nobelio, la desviación estándar mostrada en la Tabla (7.2) está arriba del modelo MGLM, por el contrario el modelo DWS como en los datos anteriores tiene la mayor desviación. Sin embargo, MWS5 tiene mejores desviaciones en algunos elementos, por ejemplo en la región desde Z = 108 hasta Z = 118 hay una notable caída en la desviación y lo muestra la Figura (7.4), además, el σ promedio en esta región es 0.617 para el modelo MGLM, 0.842 para el modelo DWS y 0.598 para el modelo MWS5- ν_1 , lo que lo hace apropiado para los cálculos de vida media en esta región.

Figura 7.4. Desviación estándar por elemento para los diferentes modelos.

Si se examina la Tabla (7.3) que muestra los 71 núcleos los cuales no fueron utilizados para el ajuste del modelo MWS5- ν_1 , se observa que el modelo MWS5 presenta una desviación menor en comparación con la desviación general de 1.788. Por otro lado, el modelo MGLM exhibe una desviación aún menor, aunque no se puede afirmar con certeza su efectividad en la predicción de los tiempos de vida media de núcleos para los cuales no fue ajustado debido a la falta de datos con los que se calibró.

Modelo	σ
MGLM	0.968
DWS	2.401
MWS5- ν_1	1.232
MWS5- ν_2	1.463
MWS5- ν_3	1.301

Tabla 7.3. Desviación de los tiempos de vida media teóricos
con respecto a los experimentales de 71 núcleos
con los que el modelo MWS5 no fue ajustado.

Conclusiones

Se presentó un modelo para el cálculo del tiempo de vida media, basado en un método numérico y en un potencial de Woods-Saxon modificado. Además, se implementó los modelos MGLM, DWS existentes en la literatura. Se logró obtener tiempos de vida media, acordes a los reportados experimentalmente, y a los modelos presentados en la literatura. El método MWS5 con la frecuencia ν_1 muestra tiempos de vida más precisos en una región Z = 108 hasta Z = 118, incluso mejor que los dos metodos de referencia MGLM y DWS. Ademas, muestra una ligera menor desviación para los núcleos A-impar Z-par; por otro lado, el comportamiento similar de los métodos MGLM, MWS5 para las diferentes paridades sugiere que el efecto del factor de impedimento h está siendo simulado por los parámetros ajustados del potencial de Woods-Saxon, así mismo el comportamiento del modelo MWS5 con las diferentes frecuencias, muestra que la frecuencia desarrollada mediante el oscilador armónico en tres dimensiones mejora notablemente la discrepancia con los datos experimentales.

Las bajas desviaciones estándar obtenidas en el MWS5 abren una puerta a futuros estudios que podrían considerar la influencia de la deformación del núcleo o la exploración de un conjunto diferente de parámetros en las ecuaciones (A.60-A.64); las consideraciones anteriores en un trabajo futuro podrían optimizar el modelo, además con los datos obtenidos y recolectados en la Tabla B.0 pueden ser empleados realizar diferentes estudios.

Apéndice A

Deducción de Ecuaciones

A.1 Frecuencia en el modelo MGLM

Se supone que la partícula alfa oscila en el potencial de un oscilador armónico dado por,

$$V(r) = \frac{1}{2}\mu\omega^2 r^2 \tag{A.1}$$

donde μ es la masa reducida del sistema y w la frecuencia angular clásica; así, la energía para el potencial de la ecuación (A.1) queda dada por,

$$E = \hbar \omega \left[2n + l + \frac{3}{2} \right] \tag{A.2}$$

Con lo anterior, la energía cinética T está representada la expresión

$$T = E - V = \hbar \omega \left[2n + l + \frac{3}{2} \right] - \frac{1}{2} \mu \omega^2 r^2$$
 (A.3)

En el caso del potencial de la forma $V(r) = k r^m$ el teorema del virial relaciona la energía cinética T y potencial V mediante la expresión,

$$2\langle T \rangle = m \langle V \rangle \tag{A.4}$$

Además, si se considera las ecuaciones (A.1) y (A.3) en el teorema del virial (A.4),

$$\left\langle \hbar\omega \left[2n+l+\frac{3}{2}\right] - \frac{1}{2}\mu\omega^2 r^2 \right\rangle = \left\langle \frac{1}{2}\mu\omega^2 r^2 \right\rangle \tag{A.5}$$

la ecuación (A.5) de la frecuencia ω queda dada por,

$$\omega = \frac{\hbar}{\mu \langle r^2 \rangle} \left[2n + l + \frac{3}{2} \right] \tag{A.6}$$

A.2 Probabilidad de Superar la Barrera en modelo MGLM 33

Del mismo modo, si el radio cuadrático medio $\langle r^2 \rangle$, y el número cuántico principal G, se expresan de la forma $\langle r^2 \rangle = 3/5 R_0^2$; G = 2 n + l. La frecuencia de la ecuación (A.6) se describe como,

$$\omega = \frac{\left(G + \frac{3}{2}\right)\hbar}{\mu_{5}^{3}R_{0}^{2}} \tag{A.7}$$

La frecuencia de colisión ν se relaciona con la frecuencia angular ω de la siguiente forma,

$$\nu = \frac{\omega}{2\pi} = \frac{\left(G + \frac{3}{2}\right)\hbar}{1.2\,\pi\mu R_0^2} \tag{A.8}$$

A.2 Probabilidad de Superar la Barrera en modelo MGLM

En el cálculo de la probabilidad de penetración de la barrera de Coulomb se considera el método WKB descrito en el capitulo 3; en general se supone una partícula con energía E y una función de onda $\psi(x)$, que será reflejada o transmitida através de la barrera de potencial (ver Figura A.1), que esta dada por:

$$V(x) = \begin{cases} g(x) & 0 \le x \le b, \\ 0 & x < 0 \land x > b, \end{cases}$$
(A.9)

Figura A.1. Dispersión de una barrera

34 A Deducción de Ecuaciones

Con el potencial dado en la ecuación (A.9) la función de onda se obtiene mediante la ecuación de Schrödinger en las tres regiones,

Región IRegión IIRegión III
$$-\frac{\hbar^2}{2m}\psi_1'' = E\psi_1$$
 $-\frac{\hbar^2}{2m}\psi_2'' + g\psi_2 = E\psi_2$ $-\frac{\hbar^2}{2m}\psi_3'' = E\psi_3$

Cómo $\psi(x)$ debe ser continua, las condiciones de frontera quedan dadas de la siguiente forma,

$$\psi_1(0) = \psi_2(0) \tag{A.10}$$

$$\psi_2(b) = \psi_3(b) \tag{A.11}$$

$$\psi_1'(0) = \psi_2'(0) \tag{A.12}$$

$$\psi_2'(b) = \psi_3'(b)$$
 (A.13)

En las regiones I y III el potencial es cero, así que se asume que la partícula sintóticamente se comporta como una partícula libre si $x \to \pm \infty$ y se obtiene

$$\psi_1(x) = A \exp(i \, k_1 \, x) + B \exp(-i \, k_1 \, x) \tag{A.14}$$

$$\psi_3(x) = F \exp(i \, k_3 \, x) + H \exp(-i \, k_3 \, x) \tag{A.15}$$

En las ecuaciones (A.14) y (A.15) los números de onda k_1 y k_3 cumplen, $k_1 = k_3 = k = \sqrt{2 m E} / \hbar$, además, si $x \to \infty$ H = 0 ya que en la región III la partícula se mueve solamente hacia la derecha una vez que se ha cruzado la barrea (Landau et al., 1965); con estas consideraciones las ecuaciones (A.14) y (A.15) se reescriben,

$$\psi_1(x) = A \exp(i k x) + B \exp(-i k x) \tag{A.16}$$

$$\psi_3(x) = F \exp(i\,k\,x) \tag{A.17}$$

En la región II se hace uso de la aproximación WKB para E < V(x) así la ecuación (3.12) queda dada por,

$$\psi_2(r) \approx \frac{C \exp(-\int |p(x)| dx)}{(|p(x)|)^{1/2}} + \frac{D \exp(\int |p(x)| dx)}{(p(x))^{1/2}}$$
(A.18)

A.2 Probabilidad de Superar la Barrera en modelo MGLM 35

Sí se aplica las condiciones de frontera (ecuaciones A.10 a la A.13) en las ecuaciones (A.16, A.17, A.18) se obtiene,

$$A + B = \frac{C}{\sqrt{p(0)}} \exp\left(-\frac{1}{\hbar} \int |p(x)| dx \Big|_{x=0}\right) + \frac{D}{\sqrt{p(0)}} \exp\left(\frac{1}{\hbar} \int |p(x)| dx \Big|_{x=0}\right)$$
(A.19)

$$i k A - i k B = \frac{C\alpha}{\sqrt{p(0)}} \exp\left(-\frac{1}{\hbar} \int |p(x)| dx \bigg|_{x=0}\right) + \frac{D\beta}{\sqrt{p(0)}} \exp\left(\frac{1}{\hbar} \int |p(x)| dx \bigg|_{x=0}\right)$$
(A.20)

$$i\,k\,F\exp(i\,k\,a) = \frac{C\gamma}{\sqrt{p(a)}} \exp\left(-\frac{1}{\hbar}\int |p(x)|dx\Big|_{x=a}\right) + \frac{D\theta}{\sqrt{p(a)}} \exp\left(\frac{1}{\hbar}\int |p(x)|dx\Big|_{x=a}\right) \tag{A.21}$$

$$F\exp(i\,k\,a) = \frac{C}{\sqrt{p(a)}} \exp\left(-\frac{1}{\hbar} \int |p(x)|dx\Big|_{x=a}\right) + \frac{D}{\sqrt{p(a)}} \exp\left(\frac{1}{\hbar} \int |p(x)|dx\Big|_{x=a}\right) \tag{A.22}$$

con α , β , γ , θ dadas por:

$$\gamma = -\frac{1}{\hbar}p(a) - \frac{1}{2p(a)} \left| \frac{dp}{dx} \right|_{x=a}$$
(A.23)

$$\theta = \frac{1}{\hbar}p(a) - \frac{1}{2p(a)} \left| \frac{dp}{dx} \right|_{x=a}$$
(A.24)

$$\alpha = -\frac{1}{\hbar}p(0) - \frac{1}{2p(0)} \left| \frac{dp}{dx} \right|_{x=0}$$
(A.25)

$$\beta = \frac{1}{\hbar} p(0) - \frac{1}{2p(0)} \left| \frac{dp}{dx} \right|_{x=0}$$
(A.26)

Si se divide (A.21) entre γ se obtiene,

$$\frac{ikF\exp(ika)}{\gamma} = \frac{C}{\sqrt{p(a)}} \exp\left(-\frac{1}{\hbar}\int |p(x)|dx\Big|_{x=a}\right) + \frac{D\theta}{\sqrt{p(a)}\gamma} \exp\left(\frac{1}{\hbar}\int |p(x)|dx\Big|_{x=a}\right)$$
(A.27)

Al restar (A.27) de (A.22) y desarrollar para D se obtiene,

$$D = \frac{F \exp(i \, k \, a)(\gamma - i \, k) \sqrt{p(a)}}{(\gamma - \theta)} \exp\left(-\frac{1}{\hbar} \int |p(x)| dx \bigg|_{x=a}\right) \tag{A.28}$$

36 A Deducción de Ecuaciones

Para encontrar C se divide (A.21) por θ ,

$$\frac{i\,k\,F\exp(i\,k\,a)}{\theta} = \frac{C\gamma}{\theta\sqrt{p(a)}} \exp\left(-\frac{1}{\hbar}\int |p(x)|dx\Big|_{x=a}\right) + \frac{D}{\sqrt{p(a)}} \exp\left(\frac{1}{\hbar}\int |p(x)|dx\Big|_{x=a}\right) \tag{A.29}$$

Al restar (A.29) de (A.22) y desarrollar para C se obtiene,

$$C = \frac{F \exp(i \, k \, a)(\, \theta - i \, k) \sqrt{p(a)}}{(\theta - \gamma)} \exp\left(\frac{1}{\hbar} \int |p(x)| dx \Big|_{x=a}\right) \tag{A.30}$$

Se divide (A.20) por ik y se obtiene,

$$A - B = \frac{C\alpha}{ik\sqrt{p(0)}} \exp\left(-\frac{1}{\hbar}\int |p(x)|dx\Big|_{x=0}\right) + \frac{D\beta}{ik\sqrt{p(0)}} \exp\left(\frac{1}{\hbar}\int |p(x)|dx\Big|_{x=0}\right)$$
(A.31)

Al adicionar (A.31) con (A.19) y reducir términos se obtiene,

$$A = \left(\frac{\alpha}{ik} + 1\right) \frac{C}{\sqrt{p(0)}} \exp\left(\frac{-1}{\hbar} \int |p(x)| dx \Big|_{x=0}\right) + \left(\frac{\beta}{ik} + 1\right) \frac{D}{\sqrt{p(0)}} \exp\left(\frac{1}{\hbar} \int |p(x)| dx \Big|_{x=0}\right)$$
(A.32)

Se define W y T de la siguiente forma,

$$W = C \exp\left(-\frac{1}{\hbar} \int |p(x)| dx \bigg|_{x=0}\right)$$
(A.33)

$$T = D \exp\left(\frac{1}{\hbar} \int |p(x)| dx \bigg|_{x=0}\right)$$
(A.34)

La ecuación (A.32) queda expresada de la siguiente forma,

$$A = \left(\frac{\alpha}{ik} + 1\right) \frac{W}{\sqrt{p(0)}} + \left(\frac{\beta}{ik} + 1\right) \frac{T}{\sqrt{p(0)}}$$
(A.35)

Si se considera C y D de las expresiones (A.28) y (A.30) y se remplazan en (A.32) y (A.33) se obtiene,

$$W = \frac{F \exp(i k a)(\theta - i k) \sqrt{p(a)}}{(\theta - \gamma)} \exp\left(-\frac{1}{\hbar} \int |p(x)| dx \bigg|_{x=0} + \frac{1}{\hbar} \int |p(x)| dx \bigg|_{x=a}\right)$$
(A.36)

$$T = \frac{F \exp(i \, ka)(\gamma - i \, k) \sqrt{p(a)}}{(\gamma - \theta)} \exp\left(\frac{1}{\hbar} \int |p(x)| dx \bigg|_{x=0} - \frac{1}{\hbar} \int |p(x)| dx \bigg|_{x=a}\right) \tag{A.37}$$

A.2 Probabilidad de Superar la Barrera en modelo MGLM 37

En las ecuaciones (A.36) y (A.37) el exponencial claramente es una integral definida, así $T \ge W$ quedan dadas por:

$$W = \frac{F \exp(i \, k \, a)(\theta - i \, k) \sqrt{p(a)}}{(\theta - \gamma)} \exp\left(\frac{1}{\hbar} \int_0^a |p(x)| dx\right) \tag{A.38}$$

$$T = \frac{F \exp(i \, k \, a)(\gamma - i \, k) \sqrt{p(a)}}{(\gamma - \theta)} \exp\left(-\frac{1}{\hbar} \int_0^a |p(x)| dx\right) \tag{A.39}$$

Las ecuaciones integrales (A.38) y (A.39) se observa que $W \gg T$; por lo que en la ecuación (A.35) T se puede despreciar y la ecuación (A.35) se puede expresar de la siguiente forma,

$$A = F\left(\frac{\alpha}{ik} + 1\right) \frac{\exp(ika)(\theta - ik)\sqrt{p(a)}}{\sqrt{p(0)}(\theta - \gamma)} \exp\left(\frac{1}{\hbar} \int_0^a |p(x)| dx\right)$$
(A.40)

despejando A/F y al realizar el producto de la ecuación (A.40) con su complejo conjugado se obtiene,

$$\frac{AA^*}{FF^*} = \frac{(\alpha^2 + k^2)(\theta^2 + k^2)p(a)}{k^2(\theta - \gamma)^2 p(0)} \exp\left(\frac{2}{\hbar} \int_0^a |p(x)| dx\right)$$
(A.41)

De las ecuaciones (A.22-A.25) si se considera que el momento varia poco en x = 0 y en x = a se puede obtener:

$$\gamma = -\frac{1}{\hbar}p(a) \tag{A.42}$$

$$\theta = \frac{1}{\hbar} p(a) \tag{A.43}$$

$$\alpha = -\frac{1}{\hbar}p(0) \tag{A.44}$$

Considerando las ecuaciones (A.42-A.44) en la ecuación (A.41) se obtiene,

$$\frac{AA^*}{FF^*} \approx \frac{\left(\frac{1}{\hbar^2}p^2(0) + k^2\right) \left(\frac{1}{\hbar^2}p^2(a) + k^2\right) p(a)}{4\frac{k^2}{\hbar^2}p^2(a)p(0)} \exp\left(\frac{2}{\hbar}\int_0^a |p(x)|dx\right)$$
(A.45)

El número de onda k y el momento p se relacionan mediante $p = \hbar k$, por lo que la expresión (A.45) se puede expresar,

$$\frac{AA^*}{FF^*} \approx \frac{(p^2(0) + p_1^2)(p^2(a) + p_1^2)p(a)}{4p^2(a)p(0)p_1^2} \exp\left(\frac{2}{\hbar} \int_0^a |p(x)| dx\right)$$
(A.46)

38 A Deducción de Ecuaciones

Si se considera que tanto en las regiones I y III el potencial es cero entonces el momento p es constante, inclusive se puede considerar constante en las fronteras x = 0 y x = a entonces $p(0) = p(a) = p_1$ y la ecuación (A.46) se puede expresar,

$$\frac{AA^*}{FF^*} \approx \exp\left(\frac{2}{\hbar} \int_0^a |p(x)| dx\right) \tag{A.47}$$

Finalmente, el coeficiente de transmisión de la ecuación (2.5) para las funciones de onda incidente y transmitida de las ecuaciones (A.16) y (A.17) se expresa de la siguiente forma:

$$P \approx \left(\frac{AA^*}{FF^*}\right)^{-1} \approx \exp\left(-\frac{2}{\hbar} \int_0^a |p(x)| dx\right) \tag{A.48}$$

A.3 Método de Numerov

Este es un método numérico que tiene la precisión que el método de Runge-Kutta de cuarto orden pero con un menor costo computacional, (Izaac & Wang, 2018), con el que es posible la solución de la ecuación de Schrödinger independiente del tiempo que se expresa de la siguiente forma,

$$\frac{d^2\psi(r)}{dr^2} + \frac{2m}{\hbar^2}(V(r) - E)\psi(r) = 0$$
(A.49)

Se observa que si $S = -\frac{2m}{\hbar^2}(V(r) - E)$ la ecuación (A.49) queda,

$$\frac{d^2\psi(r)}{dr^2} = S(r)\psi(r) \tag{A.50}$$

Si se realiza una expansión en la serie de Taylor para $\psi(x)$ centrada en r la función de onda ψ es,

$$\psi(x) = \sum_{n=0}^{\infty} \psi^{(n)}(r) \frac{(x-r)^n}{n!}$$
(A.51)

Además, se establece que $x = r \pm \Delta r$ la ecuación (A.51) queda dada por,

$$\psi(r + \Delta r) = \sum_{n=0}^{\infty} \psi^{(n)}(r) \frac{(\Delta r)^n}{n!}$$
(A.52)

$$\psi(r - \Delta r) = \sum_{n=0}^{\infty} \psi^{(n)}(r) \frac{(-\Delta r)^n}{n!}$$
 (A.53)

A.4 Potencial de Woods-Saxon de Cinco Parámetros 39

Si se adicionan las ecuaciones (A.52) y (A.53) se obtiene,

$$\psi(r + \Delta r) + \psi(r - \Delta r) = \sum_{n=0}^{\infty} \frac{\psi^{(n)}(r)}{n!} (\Delta r)^n ((-1)^n + 1)$$
(A.54)

Si en la ecuación (A.54) $\Delta r \ll 1$ entonces $(\Delta r)^n \to 0$ para $n \to \infty$. Además para n impar la expresión se reduce a cero. Teniendo en cuenta lo anterior la expresión (A.54) se puede expresar,

$$\psi(r + \Delta r) + \psi(r - \Delta r) \approx 2\psi(r) + \psi''(r)(\Delta r)^2 + \frac{\psi^{(IV)}(r)}{12}(\Delta r)^4$$
 (A.55)

Considerando el método de diferencias finitas en la derivada de cuarto orden $\psi^{(IV)}$,

$$\psi^{(IV)}(r) = \frac{d^2}{dr^2}(\psi''(r)) = \frac{\psi''(r+\Delta r) - 2\psi''(r) + \psi''(r-\Delta r)}{(\Delta r)^2}$$
(A.56)

Si se sustituye $\psi^{(IV)}$ de la ecuación (A.56) en (A.55) y se considera que $\psi'' = S(r)\psi(r)$ el esquema numérico regresivo para la ecuación de Schrödinger queda dado por,

$$\psi(r - \Delta r) \approx \frac{\left(2 - \frac{5S(r)(\Delta r)^2}{6}\right)\psi(r) - \psi(r + \Delta r)\left(1 + \frac{S(r + \Delta r)(\Delta r)^2}{12}\right)}{\left(1 + \frac{S(r - \Delta r)(\Delta r)^2}{12}\right)}$$
(A.57)

Además, si se discretiza el espacio $\Delta r = r_{j+1} - r_j$ y se establece la notación $f(r_j) = f_j$; la ecuación (A.57) se expresa,

$$\psi_{j-1} = \frac{2\psi_j \left(1 - \frac{5(\delta r)^2}{12}S_j\right) - \left(1 + \frac{(\delta r)^2}{12}S_{j+1}\right)\psi_{j+1}}{\left(1 + \frac{(\delta r)^2}{12}S_{j-1}\right)}$$
(A.58)

A.4 Potencial de Woods-Saxon de Cinco Parámetros

Generalmente, se asume que el potencial de Woods-Saxon describe las interacciónes del núcleo, pero su descripción es limitada, ya que simplemente se tiene en cuenta tres parámetros para representar las interacciones nucleares, es por ello que se introducen dos parámetros más, que modifican el potencial de Woods-Saxon al incorporar un mínimo en la región de la superficie nuclear mediante un potencial V_{dp} y además, se modifica el potencial a grandes distancias mediante el parámetro κ (Koura & Yamada, 2000). Este potencial está dado por la siguiente ecuación,

$$V_N(r) = \frac{V_0}{\left[1 + \exp((r - R_V)/t)\right]^{t/\kappa}} \left[1 + \frac{V_{\rm dp}}{1 + \exp[-(r - R_V)/t]}\right]$$
(A.59)

40 A Deducción de Ecuaciones

y se ilustra en la Figura (A.2).

Figura A.2. Comparación del potencial de Woods-Saxon y su modificación Woods-Saxon-5.

De la misma manera, los parámetros ajustables varían lentamente con el exceso de nucleones relativo I, es así que los parámetros V_0 , V_{dp} , R_V , t, κ ; se expresan en series de potencias de I de la siguiente forma,

$$V_0 = v_0 \left(1 - v_1 I - v_2 I^2 - v_3 \frac{1}{A_d^{1/3} + \alpha_{v1}} - v_4 \frac{I}{A_d^{1/3} + \alpha_{v2}} - v_5 \frac{I^2}{A_d^{1/3} + \alpha_{v3}} - 6 \times 10^{-3} \frac{Z^2}{A^{4/3}} \right)$$
(A.60)

$$V_{\rm dp} = v_{\rm dp0} \left(1 - v_{\rm dp1}I - v_{\rm dp2}I^2 - v_{\rm dp3}\frac{1}{A_d^{1/3} + \alpha_{\rm vdp1}} - v_{\rm dp4}\frac{I}{A_d^{1/3} + \alpha_{\rm vdp2}} - v_{\rm dp5}\frac{I^2}{A_d^{1/3} + \alpha_{\rm vdp3}} \right) \quad (A.61)$$

$$R_V = r_m + c_w + d_0 - d_1 I - d_2 I^2 - d_3 \frac{1}{A_d^{1/3} + \alpha_{d1}} - d_4 \frac{I}{A_d^{1/3} + \alpha_{d2}} - d_5 \frac{I^2}{A_d^{1/3} + \alpha_{d3}}$$
(A.62)

$$t = t_0 \exp\left(-t_1 I - t_2 I^2 - t_3 \frac{1}{A_d^{1/3} + t_{a1}} - t_4 \frac{I}{A_d^{1/3} + \alpha_{t2}} - t_5 \frac{I^2}{A_d^{1/3} + \alpha_{t3}}\right)$$
(A.63)

$$\kappa = \kappa_0 \exp\left(-\kappa_1 I - \kappa_2 I^2 - \kappa_3 \frac{1}{A_d^{1/3} + \alpha_{\kappa_1}} - \kappa_4 \frac{I}{A_d^{1/3} + \alpha_{\kappa_2}} - \kappa_5 \frac{I^2}{A_d^{1/3} + \alpha_{\kappa_3}}\right) \tag{A.64}$$

Además, $r_m = 1.0588 A_d^{1/3} \left(1 + \frac{0.005 Z^2}{A^{4/3}} \right)$ (Koura & Yamada, 2000)

Apéndice B

Tiempos de Vida Media Estimados: Resultados Numéricos

	Tabla B.0										
٨	7	O [MaV]	ß	ß	P			lo	$g(\tau[s])$		
A	L	$Q_{\alpha}[\text{Mev}]$	ρ_1	ρ_2	ł	Exp	MGLM	DWS	MWS5- ν_1	MWS5- ν_2	MWS5- ν_3
8	4	0.092150	0.000	0.000	0	-16.086	-13.921	-14.354	-13.963	-12.950	-10.857
104	52	5.113016	0.000	0.000	0	-7.745	-6.631	-6.593	-7.885	-8.130	-7.592
105	52	5.085816	-0.011	0.000	0	-6.208	-6.218	-6.561	-7.354	-7.600	-7.062
106	52	4.306837	0.000	0.000	0	-4.155	-3.506	-3.422	-4.891	-5.142	-4.530
107	52	4.027393	0.000	0.000	0	-2.509	-1.861	-2.109	-2.873	-3.126	-2.486
108	53	4.116345	0.075	0.051	0	-1.444	-1.391	-1.870	-3.476	-3.733	-3.101
108	54	4.587099	0.000	0.000	0	-4.268	-3.671	-3.502	-4.851	-5.109	-4.523
109	54	4.234587	0.086	0.051	2	-1.886	-1.425	-1.466	-2.333	-2.597	-1.973
110	54	3.889746	0.119	0.066	0	-1.032	-0.353	-0.044	-1.765	-2.028	-1.371
111	54	3.729308	0.128	0.068	0	-0.131	0.875	0.842	-0.504	-0.770	-0.096
144	60	1.922556	0.000	0.000	0	22.859	22.625	23.364	23.660	23.386	24.314
146	62	2.551157	0.000	0.000	0	15.332	15.266	15.716	15.440	15.161	15.967
147	62	2.333723	0.032	0.012	0	18.524	18.364	18.604	18.929	18.648	19.492
148	62	2.009422	0.000	0.000	0	23.344	22.933	23.714	24.058	23.776	24.684
151	63	1.986905	0.172	0.060	2	25.730	24.852	25.481	25.778	25.489	26.402
148	64	3.294790	0.000	0.000	0	9.351	9.281	9.551	9.005	8.721	9.416
150	64	2.830892	0.000	0.000	0	13.752	13.610	14.016	13.932	13.645	14.405
152	64	2.227346	0.172	0.060	0	21.533	21.176	21.997	21.503	21.214	22.076
154	66	2.969761	0.172	0.047	0	13.976	13.590	14.120	13.645	13.350	14.088
152	68	4.960063	0.011	0.000	0	1.013	1.083	1.193	0.108	-0.185	0.332
153	68	4.828192	-0.042	0.012	0	1.569	2.054	1.790	1.673	1.379	1.907
153	69	5.274715	-0.021	0.000	0	0.170	0.473	0.219	-0.209	-0.504	-0.013
154	69	5.120220	-0.063	0.013	0	0.908	1.499	0.876	0.019	-0.278	0.226
154	70	5.501292	0.011	0.000	0	-0.388	-0.372	-0.242	-1.043	-1.341	-0.868
155	70	5.365738	-0.063	0.013	0	0.254	0.535	0.272	-0.278	-0.577	-0.094
153	71	3.167633	-0.166	-0.024	0	-0.046	15.684	15.980	15.485	15.137	15.860
155	71	5.829214	0.021	0.000	0	-1.167	-0.897	-1.102	-2.449	-2.750	-2.301
156	71	5.623385	-0.073	0.014	0	-0.306	0.257	-0.346	-0.794	-1.095	-0.632
157	71	5.135448	-0.104	0.028	5	0.833	3.399	3.332	2.263	1.950	2.462

42 B Tiempos de Vida Media Estimados: Resultados Numéricos

•	7		0	0	0				$\log(\tau[s])$		
А	Ζ	$Q_{\alpha}[\text{MeV}]$	β_1	eta_2	l	Exp	MGLM	DWS	$MWS5-\nu_1$	MWS5- ν_2	MWS5- ν_3
						1			1		
156	72	6.054129	0.000	0.000	0	-1.638	-1.655	-1.506	-2.833	-3.136	-2.703
157	72	5.908458	-0.052	0.013	0	-0.939	-0.775	-1.003	-1.500	-1.803	-1.361
174	72	2.522602	0.287	-0.018	0	22.800	23.224	23.958	24.093	23.772	24.568
157	73	6.383376	-0.021	0.000	5	-1.996	-0.784	-0.812	-2.365	-2.680	-2.260
158	73	6.152182	-0.084	0.014	0	-1.260	-0.911	-1.493	-2.097	-2.403	-1.978
158	74	6.641825	0.021	0.000	0	-2.903	-2.877	-2.689	-3.475	-3.782	-3.390
159	74	6.480676	-0.063	0.001	0	-2.137	-2.004	-2.223	-3.061	-3.369	-2.966
160	74	6.094910	-0.084	0.014	0	-1.041	-0.966	-0.819	-1.799	-2.109	-1.680
161	74	5.951588	0.118	0.029	0	-0.388	-0.084	-0.150	-0.854	-1.165	-0.727
180	74	2.544654	0.278	-0.057	0	25.754	24.433	25.167	25.596	25.267	26.057
183	74	1.701841	0.267	-0.073	5	28.325	42.239	43.644	42.960	42.620	43.590
162	75	6.270771	0.107	0.016	0	-0.971	-0.519	-0.940	-1.919	-2.232	-1.816
164	75	5.956340	0.150	0.020	0	-0.155	0.652	0.238	-0.430	-0.746	-0.310
161	76	7.099487	-0.063	0.001	0	-3.194	-3.214	-3.407	-5.230	-5.543	-5.180
162	76	6.798614	0.085	0.003	0	-2.678	-2.617	-2.361	-3.138	-3.452	-3.070
163	76	6.702670	0.107	0.004	0	-2.260	-1.972	-2.067	-3.466	-3.781	-3.394
164	76	6.510048	0.128	0.018	0	-1.678	-1.671	-1.401	-2.249	-2.565	-2.167
165	76	6.366401	0.139	0.019	0	-1.149	-0.828	-0.906	-1.800	-2.118	-1.710
166	76	6.173390	0.150	0.020	0	-0.672	-0.468	-0.196	-1.229	-1.547	-1.127
167	76	6.015277	0.162	-0.003	0	-0.092	0.478	0.378	-0.218	-0.537	-0.107
184	76	2.989375	0.243	-0.065	0	21.247	20.192	20.760	20.360	20.026	20.744
186	76	2.851810	0.232	-0.066	0	22.800	21.802	22.413	22.344	22.008	22.745
166	77	6.753592	0.129	0.006	0	-1.979	-1.428	-1.869	-3.262	-3.581	-3.199
167	77	6.536125	0.150	0.008	0	-1.453	-1.037	-1.123	-1.928	-2.248	-1.853
168	77	6.412531	0.151	-0.004	0	-0.654	-0.265	-0.717	-1.548	-1.869	-1.467
169	77	6.172258	0.162	-0.003	0	-0.452	0.281	0.186	-0.770	-1.093	-0.674
166	78	7.324292	0.107	-0.008	0	-3.523	-3.528	-3.295	-4.897	-5.216	-4.870
167	78	7.190157	0.118	-0.007	0	-3.155	-2.792	-2.909	-3.658	-3.978	-3.624
168	78	7.021592	0.129	0.006	0	-2.695	-2.623	-2.381	-3.122	-3.444	-3.081
169	78	6.889285	0.140	-0.005	0	-2.155	-1.863	-1.987	-3.382	-3.704	-3.334
170	78	6.739269	0.151	-0.004	0	-1.860	-1.720	-1.502	-2.188	-2.512	-2.132
171	78	6.639238	0.162	-0.015	0	-1.342	-1.046	-1.200	-2.059	-2.383	-1.998
172	78	6.495271	0.173	-0.013	0	-1.011	-0.895	-0.705	-1.520	-1.845	-1.452
173	78	6.393172	0.173	-0.013	0	-0.418	-0.192	-0.358	-0.909	-1.236	-0.837
174	78	6.215030	0.184	-0.012	0	-0.051	0.124	0.306	-0.122	-0.450	-0.039
175	78	6.195499	0.184	-0.012	2	0.403	0.776	0.620	-0.489	-0.819	-0.406
190	78	3.300474	0.209	-0.083	0	19.195	18.127	18.573	19.211	18.870	19.541
172	79	6.955795	0.140	-0.005	0	-1.658	-1.375	-1.852	-3.256	-3.583	-3.218
173	79	6.868974	0.151	-0.003	0	-1.580	-1.450	-1.591	-2.234	-2.561	-2.192
174	79	6.731560	0.162	-0.003	0	-0.921	-0.651	-1.144	-2.053	-2.381	-2.004

Tabla B.0

						Iac	na D.0				
А	\mathbf{Z}	$Q_{\rm e}[{\rm MeV}]$	β_1	Ba	P				$\log(\tau[s])$		
		$\mathcal{Q}\alpha[\mathcal{U}\mathcal{U}\mathcal{U}]$	\wp_1	P2	r	Exp	MGLM	DWS	MWS5- ν_1	MWS5- ν_2	MWS5- ν_3
171	80	7.700948	0.107	0.004	2	-4.229	-3.355	-3.440	-4.898	-5.226	-4.902
172	80	7.556925	0.118	0.005	0	-3.636	-3.541	-3.320	-4.797	-5.124	-4.795
173	80	7.411254	0.129	0.007	0	-3.097	-2.778	-2.905	-3.622	-3.950	-3.613
174	80	7.266395	0.129	-0.006	1	-2.678	-2.614	-2.406	-3.026	-3.356	-3.011
175	80	7.105335	0.140	0.007	0	-1.975	-1.853	-1.988	-3.414	-3.744	-3.391
176	80	6.930240	0.140	-0.005	0	-1.693	-1.636	-1.441	-2.533	-2.864	-2.501
177	80	6.769145	0.151	-0.004	2	-0.932	-0.510	-0.629	-1.375	-1.709	-1.335
178	80	6.610471	0.162	-0.003	0	-0.574	-0.551	-0.356	-1.038	-1.371	-0.989
179	80	6.383970	0.173	-0.001	0	0.021	0.625	0.486	-0.369	-0.704	-0.307
177	81	7.100762	0.129	-0.006	0	-1.745	-1.459	-1.580	-2.212	-2.546	-2.192
178	81	7.053266	0.129	-0.006	2	-0.595	-0.735	-1.188	-2.358	-2.694	-2.336
179	81	6.742902	0.129	-0.006	0	-0.638	-0.265	-0.384	-1.374	-1.710	-1.335
181	81	6.355835	0.140	-0.005	0	0.505	1.150	1.045	0.268	-0.069	0.329
178	82	7.823878	-0.105	-0.019	1	-3.921	-3.573	-3.528	-4.680	-5.015	-4.704
179	82	7.630542	-0.115	-0.030	2	-2.456	-2.522	-2.822	-4.206	-4.544	-4.221
180	82	7.453060	-0.115	-0.030	0	-2.387	-2.583	-2.569	-3.898	-4.235	-3.905
181	82	7.274682	-0.115	-0.019	3	-1.347	-1.217	-1.483	-1.962	-2.303	-1.960
182	82	7.100279	-0.125	-0.017	0	-1.260	-1.484	-1.471	-1.822	-2.160	-1.811
183	82	6.962406	-0.135	-0.017	2	-0.272	-0.449	-0.770	-1.186	-1.528	-1.169
184	82	6.808417	-0.135	-0.005	0	-0.310	-0.512	-0.510	-1.019	-1.359	-0.993
185	82	6.729406	-0.146	-0.004	2	0.799	0.339	-0.002	-0.262	-0.604	-0.232
204	82	2.002941	-0.094	-0.020	0	24.645	40.768	42.451	42.499	42.141	43.023
184	83	8.255298	0.032	0.001	3	-1.886	-3.435	-4.038	-4.537	-4.879	-4.594
186	83	7.791851	-0.052	0.001	4	-1.824	-1.865	-2.480	-2.964	-3.310	-3.000
187	83	7.814122	-0.084	0.002	5	-1.432	-1.917	-2.197	-2.616	-2.966	-2.655
188	83	7.298691	-0.094	0.003	1	-1.222	-1.074	-1.798	-2.167	-2.511	-2.178
189	83	7.303217	-0.094	0.003	5	-0.162	-0.370	-0.642	-1.497	-1.849	-1.510
190	83	6.897171	-0.094	0.003	4	0.799	0.959	0.329	-0.455	-0.805	-0.445
191	83	6.815377	-0.094	0.003	5	1.093	1.276	1.026	0.428	0.074	0.442
209	83	3.172349	0.000	0.000	5	26.802	24.319	24.794	25.113	24.746	25.430
211	83	6.785456	0.000	0.000	5	2.109	0.942	0.375	1.193	0.869	1.216
186	84	8.536875	0.011	0.000	0	-4.553	-4.992	-4.989	-5.973	-6.314	-6.049
187	84	8.014603	-0.010	0.013	2	-2.854	-3.024	-3.296	-4.606	-4.951	-4.657
188	84	8.117996	0.000	0.012	0	-3.569	-3.911	-3.901	-5.147	-5.490	-5.204
189	84	7.730003	-0.010	0.000	2	-2.456	-2.231	-2.525	-2.862	-3.208	-2.899
190	84	7.728976	0.000	0.000	0	-2.611	-2.825	-2.821	-3.105	-3.451	-3.145
191	84	7.529012	0.011	0.000	0	-1.658	-1.884	-2.214	-2.870	-3.216	-2.899
192	84	7.355328	0.000	0.000	0	-1.492	-1.694	-1.685	-2.048	-2.396	-2.070
193	84	7.129504	0.000	0.000	0	-0.399	-0.615	-0.941	-1.179	-1.527	-1.188
194	84	7.022776	0.000	0.000	0	-0.407	-0.611	-0.598	-1.166	-1.515	-1.171

Tabla B.0

						Ia	ola D.0				
۸	7	O [MaV]	B	ß	P			le	$\operatorname{og}(\tau[\mathbf{s}])$		
Α		$Q_{\alpha}[Mev]$	ρ_1	ρ_2	ł	Exp	MGLM	DWS	MWS5- ν_1	MWS5- ν_2	MWS5- ν_3
195	84	6.785376	0.000	0.000	0	0.667	0.569	0.250	-0.426	-0.776	-0.417
196	84	6.693901	0.000	0.000	0	0.763	0.545	0.564	-0.129	-0.480	-0.116
198	84	6.345374	0.000	0.000	0	2.024	1.878	1.910	1.561	1.209	1.594
208	84	5.251394	0.000	0.000	0	7.961	6.871	6.910	6.961	6.602	7.061
209	84	5.014934	-0.010	-0.012	2	9.593	8.784	8.518	8.954	8.593	9.072
210	84	5.443232	0.000	0.000	0	7.078	5.808	5.763	6.063	5.703	6.144
211	84	7.630263	0.000	0.000	5	-0.287	-1.491	-2.111	-1.364	-1.690	-1.393
212	84	8.989898	0.000	0.000	0	-6.531	-6.627	-7.213	-6.586	-6.900	-6.687
213	84	8.571842	-0.011	0.000	0	-5.429	-5.277	-6.187	-5.360	-5.676	-5.442
214	84	7.869244	0.000	0.000	0	-3.784	-3.729	-4.217	-4.232	-4.551	-4.279
215	84	7.562029	0.000	0.000	0	-2.749	-2.477	-3.288	-2.332	-2.651	-2.362
216	84	6.942052	0.000	0.000	0	-0.839	-0.780	-1.175	-0.572	-0.893	-0.567
217	84	6.697837	0.000	0.000	0	0.185	0.440	-0.280	0.441	0.120	0.461
218	84	6.150457	0.000	0.000	0	2.269	2.278	1.977	2.990	2.667	3.044
191	85	7.858630	0.297	-0.005	5	-2.770	-1.355	-1.575	-2.061	-2.417	-2.110
192	85	7.731983	-0.196	0.014	7	-1.056	0.318	-0.300	-0.473	-0.837	-0.516
193	85	7.608782	-0.196	0.014	5	-1.553	-0.629	-1.020	-1.487	-1.845	-1.525
194	85	7.490857	-0.196	0.014	3	-1.398	-0.610	-1.429	-1.643	-1.997	-1.676
195	85	7.380493	-0.196	0.014	5	-0.538	0.067	-0.345	-0.957	-1.316	-0.985
196	85	7.232804	0.085	0.015	0	-0.411	-0.260	-0.879	-1.376	-1.728	-1.397
197	85	7.140750	0.075	0.014	0	-0.411	-0.310	-0.597	-0.772	-1.124	-0.788
198	85	6.925714	0.064	0.014	0	0.623	0.777	0.150	0.084	-0.269	0.079
199	85	6.813630	-0.052	0.013	0	0.847	0.823	0.451	-0.160	-0.514	-0.159
200	85	6.632580	0.053	0.013	0	1.633	1.836	1.207	0.549	0.194	0.560
201	85	6.509195	-0.052	0.013	0	1.930	1.957	1.590	1.708	1.353	1.725
212	85	7.853444	-0.011	0.000	4	-0.503	-1.822	-2.818	-2.975	-3.299	-3.017
213	85	9.290509	-0.011	0.000	0	-6.903	-6.647	-7.574	-7.277	-7.594	-7.394
214	85	9.024195	-0.021	0.012	0	-6.253	-5.703	-6.962	-6.446	-6.763	-6.552
215	85	8.213975	-0.010	0.012	0	-4.000	-3.997	-4.824	-4.018	-4.338	-4.084
216	85	7.986062	-0.011	0.000	0	-3.523	-3.026	-4.200	-4.173	-4.493	-4.228
217	85	7.237710	-0.010	0.012	0	-1.487	-1.056	-1.788	-0.853	-1.175	-0.867
218	85	6.912440	-0.010	0.012	2	0.107	0.638	-0.386	0.482	0.157	0.486
219	85	6.378190	-0.021	0.012	0	1.748	2.109	1.466	2.216	1.891	2.253
193	86	8.077015	0.297	-0.005	2	-2.939	-2.553	-20.674	-3.216	-3.568	-3.280
194	86	7.899432	-0.217	0.017	1	-3.108	-2.549	-2.722	-3.597	-3.949	-3.653
195	86	7.731115	-0.217	0.017	0	-2.222	-1.788	-2.318	-2.380	-2.732	-2.427
196	86	7.653753	-0.217	0.017	0	-2.357	-1.913	-2.111	-2.123	-2.476	-2.168
197	86	7.447769	-0.217	0.017	0	-1.187	-0.927	-1.467	-1.542	-1.896	-1.577
198	86	7.386397	-0.207	0.015	0	-1.187	-1.089	-1.286	-1.385	-1.740	-1.418
199	86	7.168908	-0.207	0.015	0	-0.229	-0.025	-0.560	-0.741	-1.096	-0.762

Tabla B.0

					Tabla D.0						
۸	7	O [MeV]	ß	ß	P]	$\log(\tau[s])$		
A		$Q_{\alpha}[\text{Mev}]$	ρ_1	ρ_2	ł	Exp	MGLM	DWS	MWS5- ν_1	MWS5- ν_2	MWS5- ν_3
200	86	7.080377	0.085	0.003	0	0.013	-0.079	-0.012	-0.153	-0.509	-0.171
201	86	6.897766	0.085	0.003	0	0.845	0.908	0.635	-0.051	-0.408	-0.059
202	86	6.810817	0.075	0.002	0	0.987	0.867	0.928	0.944	0.587	0.940
203	86	6.666884	0.075	0.002	0	1.643	1.744	1.461	1.489	1.131	1.493
204	86	6.583668	-0.063	0.013	0	1.872	1.706	1.670	1.844	1.485	1.852
206	86	6.420750	-0.063	0.001	0	2.532	2.327	2.268	2.454	2.094	2.469
208	86	6.297756	-0.042	0.001	0	3.165	2.804	2.744	3.011	2.650	3.031
210	86	6.196004	0.000	0.000	0	3.937	3.204	3.156	3.602	3.240	3.627
212	86	6.422088	0.000	0.000	0	3.157	2.207	2.077	1.944	1.581	1.950
213	86	8.282166	0.000	0.000	5	-1.710	-2.677	-3.284	-3.267	-3.596	-3.335
214	86	9.245497	0.000	0.000	0	-6.569	-6.566	-7.089	-7.029	-7.348	-7.146
215	86	8.875602	-0.011	0.000	0	-5.638	-5.356	-6.209	-5.627	-5.948	-5.728
216	86	8.234822	0.000	0.000	0	-4.347	-4.042	-4.482	-4.104	-4.426	-4.173
217	86	7.924185	0.000	0.000	0	-3.268	-2.823	-3.587	-3.443	-3.767	-3.497
218	86	7.299486	0.000	0.000	0	-1.472	-1.213	-1.564	-0.694	-1.019	-0.713
219	86	6.983208	0.000	0.000	2	0.598	0.445	-0.198	-0.082	-0.410	-0.084
220	86	6.441757	0.000	0.000	0	1.745	1.939	1.688	2.509	2.181	2.540
222	86	5.627404	0.056	0.028	0	5.519	5.610	5.544	5.979	5.650	6.067
197	87	7.934054	-0.227	0.019	3	-3.222	-1.598	-2.097	-2.144	-2.502	-2.206
198	87	7.906951	-0.227	0.019	3	-1.824	-1.191	-2.056	-2.583	-2.941	-2.645
199	87	7.854451	-0.217	0.017	0	-1.921	-1.848	-2.415	-2.423	-2.778	-2.484
200	87	7.659515	-0.217	0.017	0	-1.310	-0.916	-1.827	-1.804	-2.161	-1.856
201	87	7.556591	-0.207	0.015	0	-1.208	-0.951	-1.512	-1.679	-2.037	-1.727
202	87	7.423047	-0.207	0.015	0	-0.523	-0.186	-1.098	-1.107	-1.465	-1.148
203	87	7.312552	0.096	0.003	0	-0.260	-0.178	-0.482	-0.888	-1.247	-0.924
204	87	7.207965	0.096	0.003	0	0.255	0.509	-0.146	-0.185	-0.545	-0.217
205	87	7.092388	0.086	-0.009	0	0.591	0.552	0.220	-0.338	-0.699	-0.365
206	87	6.961009	0.086	-0.009	0	1.204	1.355	0.677	0.090	-0.271	0.070
207	87	6.926349	-0.083	0.014	0	1.170	1.119	0.669	0.199	-0.162	0.180
208	87	6.823086	-0.084	0.002	0	1.772	1.833	1.025	1.297	0.934	1.282
209	87	6.815137	-0.073	0.002	0	1.703	1.499	1.027	1.299	0.936	1.284
210	87	6.708642	-0.073	0.002	1	2.281	2.312	1.500	1.549	1.185	1.540
211	87	6.699929	-0.053	-0.011	0	2.270	1.905	1.420	1.564	1.200	1.553
213	87	6.942336	0.011	0.000	0	1.542	0.946	0.443	0.741	0.377	0.712
214	87	8.626535	0.011	0.000	5	-2.301	-2.919	-3.857	-3.574	-3.905	-3.661
215	87	9.578092	0.000	0.000	0	-7.066	-6.650	-7.509	-7.601	-7.922	-7.734
216	87	9.211934	0.011	0.012	0	-6.155	-5.488	-6.653	-6.756	-7.079	-6.874
217	87	8.506947	-0.011	0.000	0	-4.658	-4.084	-4.864	-4.317	-4.641	-4.402
218	87	8.051355	-0.010	0.000	0	-2.959	-2.483	-3.569	-3.192	-3.518	-3.255
219	87	7.486285	0.011	0.000	0	-1.699	-1.097	-1.764	-1.046	-1.374	-1.079

Tabla B 0

						1000	ла Б .о				
۸	7	O [MeV]	ß	ß	P]	$\log(\tau[s])$		
Α		$Q_{\alpha}[Mev]$	ρ_1	ρ_2	ł	Exp	MGLM	DWS	MWS5- ν_1	MWS5- ν_2	MWS5- ν_3
220	87	6.838416	0.057	0.040	0	1.438	1.512	0.647	0.379	0.050	0.384
221	87	6.495416	0.068	0.041	2	2.468	2.728	2.280	3.050	2.718	3.076
201	88	8.039878	-0.227	0.019	5	-2.796	-0.945	-1.414	-1.697	-2.063	-1.771
202	88	7.918649	-0.227	0.019	0	-1.796	-2.053	-2.295	-2.851	-3.210	-2.920
203	88	7.774606	-0.217	0.017	0	-1.509	-1.282	-1.860	-2.249	-2.609	-2.312
204	88	7.674981	-0.207	0.004	0	-1.244	-1.331	-1.559	-1.527	-1.887	-1.586
205	88	7.524695	-0.207	0.004	0	-0.678	-0.517	-1.093	-1.144	-1.505	-1.196
206	88	7.453602	-0.115	0.017	0	-0.620	-0.645	-0.770	-0.942	-1.304	-0.992
207	88	7.311461	-0.115	0.017	0	0.130	0.165	-0.307	-0.603	-0.966	-0.646
208	88	7.311478	-0.115	0.017	0	0.114	-0.200	-0.348	-0.690	-1.053	-0.734
209	88	7.181433	-0.104	0.016	0	0.681	0.582	0.099	0.325	-0.039	0.287
210	88	7.189186	-0.094	0.015	0	0.568	0.190	0.041	0.325	-0.039	0.285
211	88	7.080041	-0.084	0.002	0	1.114	0.908	0.413	0.741	0.376	0.706
212	88	7.070056	-0.063	-0.010	0	1.114	0.580	0.423	0.758	0.392	0.722
213	88	6.900036	-0.063	-0.010	2	2.214	1.764	1.293	1.376	1.008	1.350
214	88	7.310933	0.000	0.000	0	0.391	-0.311	-0.483	-0.571	-0.937	-0.624
215	88	8.900754	0.000	0.000	5	-2.780	-3.638	-4.223	-4.321	-4.653	-4.422
216	88	9.564115	0.000	0.000	0	-6.740	-6.647	-7.113	-6.674	-6.998	-6.809
217	88	9.198914	-0.010	0.012	0	-5.796	-5.475	-6.261	-6.404	-6.729	-6.523
218	88	8.578649	0.000	0.000	0	-4.587	-4.272	-4.660	-4.674	-5.000	-4.764
219	88	8.176272	-0.011	0.000	2	-2.000	-2.607	-3.293	-2.824	-3.153	-2.895
220	88	7.632207	0.000	0.000	0	-1.745	-1.531	-1.832	-1.305	-1.634	-1.347
221	88	6.918739	0.068	0.041	2	1.447	1.505	1.055	0.728	0.396	0.727
222	88	6.716220	0.079	0.054	0	1.580	1.695	1.594	2.289	1.957	2.300
223	88	6.017336	0.100	0.067	2	5.995	5.250	4.955	5.010	4.675	5.066
224	88	5.827267	0.110	0.068	0	5.497	5.566	5.615	6.339	6.005	6.409
226	88	4.909048	0.110	0.068	0	10.703	10.667	10.900	11.631	11.295	11.772
229	88	3.641249	0.163	0.097	1	2.380	21.153	21.457	16.567	16.228	16.834
205	89	8.132215	-0.217	0.006	0	-1.699	-2.017	-2.613	-2.528	-2.890	-2.614
206	89	7.997315	-0.217	0.006	0	-1.658	-1.287	-2.234	-2.119	-2.482	-2.199
207	89	7.883915	-0.207	-0.007	0	-1.569	-1.303	-1.902	-1.812	-2.175	-1.887
208	89	7.767645	-0.197	-0.009	0	-1.022	-0.612	-1.551	-1.645	-2.009	-1.715
209	89	7.768802	-0.125	0.018	0	-1.060	-0.980	-1.500	-1.575	-1.940	-1.647
210	89	7.625038	-0.125	0.018	6	-0.456	1.351	0.656	0.885	0.509	0.819
211	89	7.606606	-0.115	0.017	0	-0.678	-0.494	-1.024	-0.823	-1.189	-0.889
212	89	7.578627	-0.094	0.003	1	-0.056	-0.001	-0.867	-0.612	-0.979	-0.678
213	89	7.537273	-0.084	0.002	0	-0.132	-0.302	-0.836	-1.206	-1.573	-1.271
214	89	7.390879	-0.063	-0.010	1	0.914	0.594	-0.265	-0.646	-1.014	-0.704
215	89	7.784965	0.011	0.000	0	-0.770	-1.144	-1.672	-2.086	-2.453	-2.167
216	89	9.279835	0.000	0.000	4	-3.357	-4.252	-5.224	-5.516	-5.848	-5.638

Tabla B.0

А	\mathbf{Z}	$Q_{\alpha}[\text{MeV}]$	β_1	β_2	ℓ		10110		$\log(\tau[s])$		
		Ja[]	, 1	, 2		Exp	MGLM	DWS	MWS5- ν_1	MWS5- ν_2	MWS5- ν_3
	~ ~						0.001	- 400			
217	89	9.870620	0.000	0.000	0	-7.161	-6.661	-7.460	-7.238	-7.563	-7.387
218	89	9.423272	-0.010	0.012	0	-5.987	-5.332	-6.443	-6.081	-6.407	-6.211
219	89	8.865516	0.000	0.000	0	-4.928	-4.333	-5.055	-4.563	-4.891	-4.668
220	89	8.386833	0.011	0.000	2	-1.578	-2.503	-3.498	-3.024	-3.355	-3.107
221	89	7.830486	0.079	0.054	4	-1.284	-0.706	-1.150	-1.004	-1.340	-1.058
222	89	7.176457	0.090	0.055	0	0.699	1.086	0.294	0.716	0.383	0.698
223	89	6.822215	0.100	0.068	2	2.100	2.272	1.900	1.653	1.318	1.656
225	89	5.974154	0.111	0.081	2	5.933	5.896	5.652	5.371	5.034	5.428
208	90	8.241718	-0.207	-0.007	0	-2.770	-2.358	-2.608	-3.205	-3.571	-3.301
209	90	8.206149	-0.197	-0.009	5	-2.602	-0.839	-1.326	-1.453	-1.826	-1.549
210	90	8.108682	-0.125	0.018	0	-1.796	-2.001	-2.172	-2.557	-2.923	-2.649
211	90	7.977183	-0.125	0.018	2	-1.432	-1.054	-1.551	-1.674	-2.043	-1.761
212	90	7.997727	-0.125	0.018	0	-1.499	-1.702	-1.902	-1.842	-2.210	-1.931
213	90	7.876642	-0.104	0.004	0	-0.842	-0.999	-1.530	-1.467	-1.835	-1.551
214	90	7.866867	-0.084	-0.009	0	-1.060	-1.332	-1.526	-1.367	-1.735	-1.452
215	90	7.704337	-0.073	-0.010	2	0.079	-0.264	-0.766	-1.098	-1.470	-1.176
216	90	8.112074	-0.053	-0.011	0	-1.585	-2.123	-2.365	-2.087	-2.456	-2.188
217	90	9.474997	0.000	0.000	5	-3.599	-4.393	-4.949	-4.721	-5.057	-4.853
218	90	9.888782	0.000	0.000	0	-6.914	-6.736	-7.144	-7.189	-7.517	-7.341
219	90	9.545560	-0.021	0.012	0	-5.979	-5.639	-6.380	-6.204	-6.533	-6.342
220	90	9.012846	0.000	0.000	0	-5.013	-4.716	-5.063	-4.682	-5.012	-4.796
221	90	8.665164	0.056	0.039	2	-2.759	-3.265	-3.837	-3.450	-3.783	-3.549
222	90	8.172257	0.078	0.054	0	-2.650	-2.450	-2.636	-2.241	-2.574	-2.315
223	90	7.606323	0.090	0.055	2	-0.222	-0.129	-0.566	-0.385	-0.721	-0.430
224	90	7.338264	0.111	0.081	0	0.017	0.203	0.126	0.369	0.034	0.339
225	90	6.961090	0.111	0.081	2	2.720	2.134	1.779	1.762	1.424	1.753
226	90	6.492218	0.122	0.082	0	3.263	3.436	3.466	4.112	3.775	4.132
227	90	6.186288	0.132	0.083	2	6.208	5.340	5.091	4.478	4.138	4.517
228	90	5.559841	0.143	0.084	0	7.780	7.868	8.053	8.804	8.464	8.888
229	90	5.207247	0.154	0.085	2	11.396	10.428	10.357	10.614	10.272	10.725
230	90	4.809710	0.164	0.098	0	12.376	12.356	12.696	13.326	12.984	13.470
232	90	4.121290	0.174	0.099	0	17.645	17.529	18.060	18.934	18.591	19.143
211	91	8.521450	-0.197	-0.020	0	-6.523	-2.493	-3.113	-3.712	-4.080	-3.827
212	91	8.451121	-0.125	0.018	0	-2.292	-1.968	-2.847	-3.500	-3.869	-3.613
213	91	8.424761	-0.125	0.018	0	-2.276	-2.257	-2.809	-2.691	-3.060	-2.804
214	91	8.311269	-0.115	0.005	0	-1.770	-1.602	-2.500	-2.833	-3.203	-2.942
215	91	8.276504	-0.094	0.004	0	-1.854	-1.864	-2.410	-2.580	-2.951	-2.689
216	91	8.139651	-0.084	-0.009	2	-0.824	-0.911	-1.780	-1.774	-2.146	-1.877
217	91	8.529172	-0.063	-0.010	0	-2.420	-2.626	-3.228	-3.235	-3.606	-3.360
218	91	9.831750	0.000	0.000	3	-3.947	-5.173	-6.147	-6.360	-6.693	-6.509

Tabla B.0

Δ	Z	O [MeV]	ß.	Ba	P]	$\log(\tau[s])$		
Π		$\mathcal{Q}_{\alpha}[\mathcal{W}\mathcal{E}_{V}]$	ρ_1	ρ_2	ł	Exp	MGLM	DWS	MWS5- ν_1	MWS5- ν_2	MWS5- ν_3
219	91	10.168126	0.000	0.000	0	-7.276	-6.681	-7.419	-7.830	-8.159	-7.995
220	91	9.744114	-0.021	0.012	0	-6.108	-5.428	-6.491	-6.623	-6.954	-6.772
221	91	9.288069	0.000	0.000	0	-5.229	-4.721	-5.399	-5.231	-5.563	-5.359
222	91	8.828969	0.078	0.054	0	-2.538	-3.226	-4.121	-4.285	-4.619	-4.393
223	91	8.383514	0.090	0.055	0	-2.292	-2.360	-2.864	-2.495	-2.830	-2.582
224	91	7.734049	0.100	0.068	2	-0.073	0.179	-0.562	-0.779	-1.117	-0.833
225	91	7.441044	0.111	0.069	2	0.230	0.805	0.438	0.504	0.165	0.465
226	91	7.027255	0.122	0.082	0	2.033	2.418	1.734	1.944	1.606	1.930
227	91	6.620769	0.133	0.083	0	3.361	3.674	3.389	3.851	3.511	3.861
231	91	5.190275	0.164	0.098	0	12.014	10.795	10.739	11.495	11.152	11.605
215	92	8.629051	-0.115	0.005	0	-3.155	-2.497	-3.041	-2.937	-3.308	-3.063
216	92	8.571679	-0.094	-0.008	0	-2.347	-2.701	-2.899	-2.756	-3.128	-2.881
217	92	8.466672	-0.084	-0.009	2	-1.796	-1.860	-2.377	-2.674	-3.048	-2.795
218	92	8.815859	-0.063	-0.022	0	-3.292	-3.409	-3.665	-4.019	-4.392	-4.159
219	92	9.990656	0.000	0.000	5	-4.377	-4.948	-5.466	-5.740	-6.080	-5.898
221	92	9.930352	-0.021	0.012	0	-6.180	-5.877	-6.568	-6.312	-6.645	-6.470
222	92	9.522222	0.000	0.000	0	-5.328	-5.304	-5.617	-5.802	-6.136	-5.943
223	92	9.198633	0.078	0.041	2	-4.745	-3.976	-4.506	-4.474	-4.810	-4.601
224	92	8.669288	0.090	0.055	0	-3.076	-3.157	-3.305	-3.411	-3.747	-3.514
225	92	8.048210	0.110	0.068	2	-1.161	-0.794	-1.182	-1.656	-1.996	-1.728
226	92	7.741894	0.111	0.069	0	-0.572	-0.392	-0.434	-0.901	-1.240	-0.958
227	92	7.275767	0.133	0.083	2	1.820	1.773	1.473	1.748	1.406	1.717
228	92	6.840555	0.144	0.084	0	2.737	2.855	2.928	3.181	2.839	3.175
230	92	6.033502	0.154	0.085	0	6.243	6.388	6.575	6.420	6.077	6.466
232	92	5.454680	0.174	0.100	0	9.337	9.401	9.674	8.771	8.426	8.858
233	92	4.949729	0.184	0.113	0	12.701	12.822	12.859	12.594	12.247	12.721
234	92	4.898582	0.195	0.114	0	12.889	12.798	13.167	13.874	13.527	14.005
235	92	4.719106	0.195	0.115	1	16.347	14.440	14.505	14.798	14.450	14.943
236	92	4.614006	0.205	0.103	0	14.869	14.758	15.164	15.828	15.480	15.982
238	92	4.310908	0.226	0.095	0	17.149	17.062	17.504	18.082	17.733	18.263
219	93	9.249236	-0.063	-0.022	0	-5.301	-3.853	-4.459	-5.029	-5.403	-5.192
220	93	10.268046	0.000	0.000	5	-4.602	-4.905	-5.752	-6.387	-6.728	-6.558
223	93	9.692181	0.055	0.027	0	-5.658	-5.038	-5.608	-6.148	-6.484	-6.298
224	93	9.370672	0.089	0.054	2	-4.420	-3.730	-4.564	-4.460	-4.799	-4.597
225	93	8.859982	0.100	0.056	0	-2.444	-2.985	-3.450	-3.510	-3.849	-3.624
227	93	7.858224	0.122	0.069	3	-0.292	0.383	0.083	0.386	0.041	0.321
229	93	7.061558	0.144	0.084	1	2.380	2.820	2.570	2.863	2.519	2.842
237	93	4.999009	0.205	0.116	1	13.830	13.049	13.057	13.832	13.482	13.950
228	94	7.982630	0.132	0.070	0	0.041	-0.419	-0.393	-0.240	-0.583	-0.313
229	94	7.640433	0.143	0.084	2	1.954	1.266	1.011	0.452	0.106	0.397

Tabla B 0

B Tiempos de Vida Media Estimados: Resultados Numéricos 49

						_ ~					
Λ	7	$O [M_{\rm AV}]$	ß.	ß-	Ø				$\log(\tau[s])$		
<i>_</i>		<i>Q</i> α[mev]	ρ_1	ρ_2	i	Exp	MGLM	DWS	MWS5- ν_1	$MWS5-\nu_2$	MWS5- ν_3
230	94	7.220884	0.143	0.084	1	2.009	2.275	2.394	2.670	2.324	2.638
236	94	5.909575	0.206	0.116	0	7.955	7.870	8.085	7.985	7.636	8.032
238	94	5.635699	0.215	0.106	0	9.442	9.295	9.522	8.830	8.480	8.895
239	94	5.286948	0.215	0.106	3	11.881	12.099	12.084	11.500	11.146	11.591
240	94	5.298248	0.226	0.108	0	11.316	11.217	11.473	12.348	11.996	12.437
242	94	5.026655	0.236	0.098	0	13.073	12.900	13.174	13.335	12.982	13.444
244	94	4.708034	0.237	0.086	0	15.409	15.070	15.395	16.163	15.809	16.298
223	95	10.880945	0.000	0.000	0	-2.301	-6.947	-7.575	-7.674	-8.011	-7.875
229	95	8.180521	0.132	0.070	2	-0.046	-0.118	-0.389	-0.553	-0.900	-0.638
241	95	5.680941	0.226	0.108	1	10.135	9.914	9.791	10.641	10.287	10.698
243	95	5.482205	0.236	0.098	1	11.366	11.007	10.876	9.573	9.219	9.643
234	96	7.409144	0.195	0.114	1	1.708	2.339	2.477	2.724	2.373	2.675
240	96	6.441616	0.215	0.106	0	6.368	6.157	6.318	6.735	6.381	6.739
242	96	6.259453	0.226	0.095	0	7.148	6.979	7.121	7.647	7.293	7.661
243	96	6.212619	0.236	0.098	2	8.963	7.752	7.543	7.660	7.304	7.676
244	96	5.945419	0.237	0.086	0	8.757	8.517	8.665	8.565	8.209	8.599
245	96	5.668312	0.237	0.086	2	11.425	10.563	10.426	9.189	8.831	9.242
246	96	5.518939	0.237	0.073	0	11.172	10.834	11.035	12.042	11.685	12.105
247	96	5.397447	0.237	0.073	1	14.692	11.957	11.830	12.877	12.519	12.949
248	96	5.205629	0.237	0.061	0	13.041	12.711	12.947	14.026	13.668	14.112
233	97	8.210195	0.206	0.103	2	1.322	0.489	0.259	0.255	-0.097	0.163
234	97	8.142694	0.195	0.114	2	2.146	1.034	0.455	0.320	-0.032	0.231
241	97	7.030489	0.215	0.106	1	2.441	4.455	4.221	3.855	3.499	3.820
247	97	5.934121	0.237	0.073	2	10.639	9.574	9.404	10.305	9.945	10.335
237	98	8.265226	0.205	0.103	2	0.322	0.627	0.377	0.383	0.028	0.283
240	98	7.756209	0.215	0.106	0	1.760	1.728	1.806	2.045	1.690	1.969
242	98	7.562089	0.226	0.095	0	2.346	2.390	2.444	2.858	2.502	2.790
244	98	7.374184	0.237	0.085	0	3.066	3.058	3.084	3.679	3.321	3.619
246	98	6.906838	0.237	0.086	0	5.109	4.899	4.964	4.983	4.624	4.949
248	98	6.406426	0.249	0.063	0	7.460	7.105	7.191	7.696	7.336	7.692
249	98	6.338518	0.249	0.063	1	10.044	7.829	7.570	7.978	7.617	7.977
250	98	6.173734	0.249	0.051	0	8.616	8.206	8.292	8.643	8.282	8.653
251	98	6.222185	0.250	0.039	5	10.452	9.359	9.142	8.776	8.409	8.781
252	98	6.262173	0.250	0.039	0	7.922	7.731	7.750	8.770	8.409	8.771
240	99	8.305257	0.215	0.093	4	0.778	1.656	1.100	1.030	0.669	0.924
242	99	8.205587	0.237	0.085	1	1.130	1.325	0.652	0.762	0.404	0.658
243	99	8.118026	0.226	0.095	3	1.322	1.594	1.309	1.641	1.280	1.540
252	99	6.784577	0.250	0.039	1	7.610	6.525	5.828	6.456	6.093	6.422
253	99	6.785172	0.250	0.039	0	6.248	6.088	5.712	6.335	5.972	6.300
254	99	6.663164	0.250	0.026	5	7.377	8.011	7.362	7.090	6.720	7.061

Tabla B.0

А	Ζ	$Q_{\alpha}[\text{MeV}]$	β_1	β_2	ℓ				$\frac{\log(7 [s])}{MWGF}$	MANAGE	MUNCE
						Exp	MGLM	DWS	MWS5- ν_1	MWS5- ν_2	MWS5- ν_3
0.40	100	0 796990	0.007	0.005	1	0.000	0.010	0.007	1 000	1 0.01	1 104
243	100	8.736320	0.237	0.085	1	-0.636	-0.316	-0.667	-1.002	-1.361	-1.134
245	100	8.486679	0.237	0.086	3	0.623	0.752	0.427	0.579	0.217	0.457
246	100	8.425937	0.237	0.073	0	0.188	0.172	0.134	0.265	-0.096	0.144
247	100	8.305038	0.237	0.073	4	1.491	1.567	1.244	1.027	0.662	0.911
248	100	8.041429	0.249	0.063	0	1.538	1.398	1.353	1.357	0.996	1.254
250	100	7.603697	0.249	0.051	0	3.255	2.920	2.891	2.370	2.007	2.289
252	100	7.200392	0.250	0.039	0	4.961	4.449	4.433	5.210	4.846	5.150
254	100	7.353917	0.250	0.027	0	4.067	3.802	3.712	3.702	3.337	3.630
255	100	7.287217	0.250	0.027	4	4.859	5.085	4.697	5.309	4.940	5.241
257	100	6.910308	0.240	0.012	2	6.939	6.128	5.724	6.376	6.008	6.327
244	101	8.994129	0.237	0.073	2	-0.420	-0.242	-0.919	-1.573	-1.934	-1.719
245	101	9.053745	0.237	0.073	1	-3.046	-0.911	-1.283	-1.843	-2.204	-1.993
246	101	8.936376	0.237	0.073	1	-0.046	-0.245	-0.967	-0.655	-1.017	-0.801
247	101	8.811556	0.237	0.073	1	0.079	-0.240	-0.621	-0.845	-1.207	-0.986
249	101	8.488472	0.249	0.063	2	1.336	0.852	0.464	0.664	0.300	0.537
258	101	7.318647	0.240	0.012	1	6.648	5.056	4.273	5.172	4.804	5.097
251	102	8.799235	0.249	0.051	0	-0.097	0.030	-0.399	-0.486	-0.851	-0.632
252	102	8.596746	0.249	0.051	0	0.391	0.289	0.213	0.571	0.206	0.434
253	102	8.462722	0.250	0.039	1	1.988	1.109	0.680	0.995	0.629	0.864
254	102	8.274288	0.250	0.039	0	1.709	1.294	1.211	1.648	1.282	1.526
256	102	8.629604	0.250	0.027	0	0.464	0.118	-0.063	0.196	-0.171	0.053
257	102	8.524685	0.251	0.015	2	1.389	0.977	0.448	1.176	0.807	1.037
259	102	7.902084	0.252	0.002	2	3.542	3.039	2.541	3.431	3.061	3.322
253	103	8.966413	0.250	0.039	0	-0.244	-0.136	-0.572	-0.887	-1.254	-1.043
254	103	8.870640	0.250	0.039	3	1.258	0.877	0.124	0.539	0.169	0.386
255	103	8.604450	0.250	0.027	4	1.493	1.602	1.221	1.508	1.135	1.367
256	103	8.903378	0.250	0.027	1	1.446	0.412	-0.425	0.023	-0.346	-0.134
257	103	9.115736	0.251	0.015	0	0.602	-0.640	-1.198	-0.649	-1.017	-0.817
259	103	8.632568	0.252	0.002	4	0.792	1.442	0.947	0.916	0.542	0.769
257	104	9.132314	0.251	0.015	5	0.643	0.653	0.246	0.495	0.119	0.326
259	104	9.179396	0.252	0.002	2	0.380	-0.300	-0.840	-0.285	-0.657	-0.459
261	104	8.695790	0.240	0.000	0	1.833	0.922	0.400	0.855	0.483	0.702
256	105	9.386397	0.250	0.027	2	0.204	-0.135	-0.892	-0.510	-0.882	-0.690
257	105	9.256167	0.251	0.015	1	0.362	-0.259	-0.700	-0.248	-0.619	-0.423
258	105	9.487168	0.251	0.015	2	0.633	-0.451	-1.273	-0.797	-1.170	-0.984
259	105	9.669068	0.252	0.003	5	-0.292	-0.538	-1.001	-0.448	-0.825	-0.644
261	105	9.268097	0.252	-0.010	1	0.255	-0.361	-0.915	-1.060	-1.433	-1.241
259	106	9.815619	0.252	0.002	2	-0.538	-1.354	-1.843	-2.095	-2.470	-2.298
260	106	9.951591	0.252	0.002	0	-2.444	-2.265	-2.462	-2.036	-2.410	-2.247
261	106	9.764703	0.252	-0.010	2	-0.638	-1.253	-1.792	-2.223	-2.598	-2.426

Tabla B 0

						Tabi	a D.0				
۸	7	O [MeV]	ß	ß	P]	$\log(\tau[s])$		
Л		$Q_{\alpha}[Mev]$	ρ_1	ρ_2	ł	Exp	MGLM	DWS	MWS5- ν_1	MWS5- ν_2	MWS5- ν_3
263	106	9.454200	0.242	-0.025	0	0.000	-0.632	-1.202	-1.616	-1.991	-1.808
265	106	9.101544	0.242	-0.025	5	1.158	1.321	0.848	1.352	0.970	1.174
261	107	10.551951	0.252	-0.010	3	-1.921	-2.713	-3.258	-2.987	-3.363	-3.224
267	107	9.281680	0.231	-0.040	3	1.230	0.536	-0.002	-0.095	-0.476	-0.284
264	108	10.643238	0.242	-0.024	0	-3.097	-3.379	-3.632	-3.394	-3.770	-3.638
265	108	10.522809	0.242	-0.025	0	-2.699	-2.763	-3.369	-3.176	-3.553	-3.416
266	108	10.398171	0.243	-0.037	0	-2.527	-2.822	-3.108	-2.712	-3.089	-2.948
268	108	9.812443	0.232	-0.052	0	-0.398	-1.349	-1.622	-1.868	-2.247	-2.081
269	108	9.327134	0.232	-0.052	1	0.987	0.405	-0.166	0.576	0.196	0.383
270	108	9.122206	0.232	-0.052	0	0.881	0.588	0.364	0.104	-0.276	-0.080
270	110	11.170973	0.232	-0.052	0	-3.699	-4.056	-4.396	-3.954	-4.335	-4.226
282	110	9.199152	0.130	-0.042	0	1.820	0.882	0.639	1.484	1.097	1.282
286	112	9.290085	0.130	-0.043	0	2.820	1.262	1.060	0.951	0.559	0.740
286	114	10.411265	0.086	-0.009	0	-0.780	-1.204	-1.364	-0.897	-1.291	-1.157
288	114	10.133679	0.086	-0.021	0	-0.194	-0.500	-0.680	-0.707	-1.102	-0.958
290	116	11.055533	0.064	-0.010	0	-2.081	-2.229	-2.424	-1.895	-2.291	-2.185
292	116	10.849673	-0.021	0.012	0	-1.893	-1.759	-1.997	-1.465	-1.863	-1.749
294	118	11.928032	0.064	-0.022	0	-3.237	-3.666	-3.932	-3.362	-3.762	-3.689

Tabla B.0

Referencias

Budaca, R., & Budaca, A. I. (2017). Proton emission with a screened electrostatic barrier. The European Physical Journal A, 53(8). https://doi.org/10.1140/epja/i2017-12352-0

Cheng, J., Chen, J., Deng, J., Wu, X., Li, X., & Chu, P. (2019). Systematic study of α decay half-lives based on Gamow-like model with a screened electrostatic barrier. *Nuclear Physics*, 987, 350-368. https://doi.org/10.1016/j.nuclphysa.2019.05.002

Demtröder, W. (2022). Nuclear and particle Physics. In Undergraduate lecture notes in physics. https://doi.org/10.1007/978-3-030-58313-2

Denisov, V. Y., & Khudenko, A. A. (2009). α decays to ground and excited states of heavy deformed nuclei. *Physical Review*, 80(3). https://doi.org/10.1103/physrevc.80.034603

Dong, J., Zuo, W., Gu, J., Wang, Y., & Bang-Bao, P. (2010). α -decay half-lives and Q α values of superheavy nuclei. *Physical Review*, 81(6). https://doi.org/10.1103/physrevc.81.064309

Gamow, G. (1928). Zur Quantentheorie des Atomkernes. The European Physical Journal A, 51(3-4), 204-212. https://doi.org/10.1007/bf01343196

Garrote, F. B., Aguilera, J. F., & Rodríguez, O. H. (2011). Alpha decay half-lives of superheavy nuclei in the WKB approximation. *SciELO Nucleus*, 49, 33–39.

Griffiths, D. J., & Schroeter, D. F. (2018). Introduction to Quantum Mechanics (3rd ed.). Cambridge University Press. https://doi.org/10.1017/9781316995433

Izaac, J., & Wang, J. (2018). Computational Quantum Mechanics. In Undergraduate lecture notes in physics. https://doi.org/10.1007/978-3-319-99930-2

Kondev, F. G., Wang, M., Huang, W., Naimi, S., & Audi, G. (2021). The NUBASE2020 evaluation of nuclear physics properties *. Chinese Physics C, 45(3), 030001. https://doi.org/10.1088/1674-1137/abddae

Koura, H., & Yamada, M. (2000). Single-particle potentials for spherical nuclei. Nuclear Physics, 671(1-4), 96-118. https://doi.org/10.1016/s0375-9474(99)00428-5

Landau, L. D., & Lifshitz, E. M. (1965). *Quantum Mechanics: Non-Relativistic Theory* (2nd ed., Vol. 3). Pergamon.

Möller, P., Sierk, A. J., Ichikawa, T., & Sagawa, H. (2016). Nuclear ground-state masses and deformations: FRDM(2012). *Atomic Data and Nuclear Data Tables*, 109–110, 1–204. https://doi.org/10.1016/j.adt.2015.10.002

Nakamura, H., & Mil'nikov, G. (2016). *Quantum mechanical tunneling in chemical Physics*. CRC Press.

Pahlavani, M. R., & Shamami, S. R. (2020). Clusters decay half-live of various heavy deformed nuclei with mass numbers in the range $221 \le A \le 242$. *Chinese Journal of Physics*, 66, 733–744. https://doi.org/10.1016/j.cjph.2020.06.019

Poenaru, D. N., Ivaşcu, M., Sndulescu, A., & Greiner, W. (1985). Atomic nuclei decay modes by spontaneous emission of heavy ions. *Physical review*, 32(2), 572-581. https://doi.org/ 10.1103/physrevc.32.572

Rajasekar, S., & Velusamy, R. (2022). *Quantum Mechanics* (2nd ed., Vol. 1). CRC Press. Sharma, K. K., & Satyal, B. S. (n.d.). Theory of Alpha Decay. In *Nuclear and Particle Physics*.

Soria, A. F. (2006). Física nuclear y de partículas (2a ed.). Publicacions de la Universitat de València.

Yahya, W. A. (2022). Theoretical calculations of the alpha decay half-lives of 166-190Pt. Iranian Journal of Physics Research, 21(3). https://doi.org/10.47176/ijpr.21.3.41231

Zdeb, A., Warda, M., & Pomorski, K. (2013). Half-lives for α and cluster radioactivity within a Gamow-like model. *Physical Review*, 87(2). https://doi.org/10.1103/physrevc.87.024308