GRUPO DE INVESTIGACIÓN COMPORTAMIENTO DE FASES

MODELAMIENTO DE CORROSIÓN POR DIÓXIDO DE CARBONO EN SISTEMAS DE PRODUCCIÓN (TUBERÍAS) DE CRUDO CON BASE EN EL MODELO DE WAARD Y LOTZ

> UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERÍA INGENIERÍA DE PETRÓLEOS NEIVA 2013

MODELAMIENTO DE CORROSIÓN POR DIÓXIDO DE CARBONO EN SISTEMAS DE PRODUCCIÓN (TUBERÍAS) DE CRUDO CON BASE EN EL MODELO DE WAARD Y LOTZ

DIEGO ANDRÉS GIL SUÁREZ COD. 2008277303

HAROLD IVÁN MANTILLA CÓRDOBA COD. 2008171369

Presentado a: Comité de Proyectos de Grado Facultad de Ingeniería

UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA DE PETRÓLEOS NEIVA, 2013

Nota de aceptación:

Presidente del jurado

Jurado

Jurado

Neiva, 15 de Noviembre del 2013

DEDICATORIA

A Dios, a quien siempre estoy agradecido por iluminarme en los momentos más difíciles, por darme salud y la fuerza para seguir adelante y conseguir la meta anhelada. A mis padres Eduardo y Silvia, porque sé que sus vidas solo ha estado llena de sacrificios para que yo y mis hermanos tuviéramos una vida sana, esto no es más que una muestra de agradecimiento a ustedes por ese amor incondicional que siempre me ofrecieron. A mis hermanos Miguel y Luis, por su cariño y su compañía que incondicionalmente me han ofrecido desde siempre. A mi novia Zuleima por ser la persona que me ha inspirado para seguir adelante en los momentos más difíciles, por darme su apoyo y brindarme su cariño, estando allí en los momentos buenos y malos. Finalmente, doy gracias a mis amigos, porque han contribuido en mi crecimiento personal y profesional.

Harold Iván Mantilla Córdoba

A mi madre Marleny Suárez que me ha apoyado de manera incondicional, se ha sacrificado para que a mis hermanas y a mí no nos falte nada, me ha enseñado los más grandes valores humanos y me ha demostrado en cada momento su amor fraternal. A mis hermanas Diana y Jhoana que me han brindado su amor, confianza y a mistad. Por último, agradezco a mis amigos, por permitirme aprender de ellos, porque han estado conmigo en todos los momentos.

Diego Andrés Gil Suárez.

AGRADECIMIENTOS

Expresamos nuestros más sinceros agradecimientos a la profesora Carmen Pinzón Torres, por su confianza y constante apoyo durante las diferentes etapas del proyecto. Sin su interés y sus importantes aportes, este trabajo de grado no hubiese sido posible.

A la Universidad Surcolombiana, por ser nuestra segunda casa la que nos ha aportado y brindado la formación como profesionales y como seres humanos y a todos los profesores de Ingeniería que contribuyeron en nuestra formación académica.

CONTENIDO

	Pág.
RESUMEN	13
ABSTRACT	14
INTRODUCCIÓN	15
1. MARCO CONCEPTUAL	16
1.1. CORROSIÓN POR CO2	16
1.2. REACCIONES	17
1.3. FACTORES QUE INFLUYEN EN LA CORROSIÓN POR CO2	18
1.3.1. Velocidad de flujo	19
1.3.2. Temperatura	20
1.3.3. Presión parcial del CO2	22
1.3.4. рН	23
1.3.5. Humectación	24
1.3.5.1. Humectación del agua	24
1.3.5.2. Humectación del crudo	25
1.3.6. Ácidos orgánicos	26
1.3.7. Cloruros disueltos	27
1.3.8. Presencia de oxígeno y oxidantes	27
1.3.9. Efecto del petróleo crudo	28
1.3.10. Efecto de parafinas	28
1.3.11. Formación de capas protectoras	29
1.3.12. Efecto del H ₂ S	30
1.3.13. Factores metalúrgicos	31
1.4. CLASES DE CORROSIÓN POR CO2	32
1.4.1. Corrosión uniforme	32
1.4.2. Corrosión por picadura	33
1.4.3. Corrosión ataque mesa	35
1.4.4. Corrosión inducida por flujo	36
1.5. MODELOS USADOS EN LA INDUSTRIA DEL PETRÓLEO Y PREDECIR LA CORROSIÓN POR CO2	GAS PARA 36

1.5.1. <i>I</i>	MODELO DE C. WAARD	36
1.5.2. I	MODELO DE WAARD Y MILLIAMS	37
1.5.3.	MODELO DE CASSANDRA	37
1.5.4. <i>I</i>	MODELO DE NORSOK	37
1.5.5. <i>I</i>	MODELO DE CORMED	37
1.5.6. <i>I</i>	MODELO LIPUCOR	37
1.5.7.	MODELO HYDROCOR	38
1.5.8. <i>I</i>	MODELO KSC	38
1.5.9. <i>I</i>	MODELO TULSA	38
1.5.10.	MODELO SWEETCOR	38
1.5.11.	MODELO DE OHIO	38
1.5.12.	MODELO ECE	38
2. MOD	DELO DE C. DE WAARD Y U. LOTZ	39
2.1. EVA CORRELA	LUACIÓN DE LA VELOCIDAD DE CORROSIÓN MEDIANTE LA CIÓN DE C. DE WAARD Y U. LOTZ	40
2.1.1. (POR LA	CÁLCULO DE LA VELOCIDAD DE CORROSIÓN CONTROLADA REACCIÓN (V _{react})	.41
2.1.2. (POR LA	CÁLCULO DE LA VELOCIDAD DE CORROSIÓN CONTROLADA TRANSFERENCIA DE MASA (Vmass)	.41
2.1.3. I	FACTOR DE CORRECCIÓN DEBIDO AL pH TOTAL	46
2.1.4. FORMA	FACTOR DE CORRECCIÓN DEBIDO AL EFECTO DE LA CIÓN DE LA CAPA PROTECTORA	.47
2.1.5. F	FACTOR DE CORRECCIÓN DEBIDO AL CORTE DE AGUA	48
2.1.6. (CÁLCULO DEL TIPO DE CORROSIÓN PREDOMINANTE	48
3. DISEÑO	Y FUNCIONAMIENTO DEL SOFTWARE CORROSIONSUITE 1.0	49
3.1. INST	ALACIÓN DEL PROGRAMA	51
3.2. EJE	CUCIÓN DEL PROGRAMA	56
4. VALIDA	CIÓN DEL SOFTWARE CORROSIONSUITE	67
4.1. DES LINEA DE	CRIPCIÓN DE LAS VARIABLES OPERACIONALES DE CADA FLUJO EN EL PROCESO	.67
4.2. APL	ICACIÓN DEL SOFTWARE CORROSIONSUITE 1.0	70
4.3. DET	ERMINACIÓN DEL TIPO DE CORROSIÓN PREDOMINANTE	73
4.4. ANÁ CORROSI EL SOFTV	LISIS COMPARATIVOS DE LOS CÁLCULOS DE VELOCIDAD D ÓN A PARTIR DE CORRELACIONES EMPÍRICAS UTILIZADAS Y VARE CORROSIONSUITE 1.0	E 1 .74

CONCLUSIONES	81
RECOMENDACIONES	82
BIBLIOGRAFÍA	83

LISTA DE TABLAS

Tabla 1. Fallas en la industria petrolera Tabla 2. Corrosión en la industria petrolera	16 17
Tabla 3. Tipos de corrosión presentes en sistemas con CO2 según la temperat	ura. 21
Tabla 4. Límites de corrosión en función de la presión (Pco2)	22
Tabla 5. Características de las capas protectoras	30
Tabla 6. Tipo de corrosión predominante.	48
Tabla 7. Presiones de operación y contenido de CO2 en cada pozo	68
Tabla 8. Presiones parciales de CO2 para cada pozo.	69
Tabla 9. Condiciones de operación de cada pozo	70
Tabla 10. Condiciones del flujo de gas y del flujo de hidrocarburos para cada p	ozo. 71
Tabla 11. Tipo de corrosión predominante en los pozos.	73
Tabla 12. Cuadro Comparativo de las Velocidades de Corrosión.	75

LISTA DE FIGURAS

Figura 1. Variables que influyen en la corrosión por CO ₂ 19
Figura 2. Velocidad de corrosión en función de la velocidad de flujo para diferentes temperaturas
Figura 3. Velocidad de corrosión en función de la temperatura para diferentes velocidades de flujo
Figura 4. Relación entre la presión parcial del CO_2 y la velocidad de corrosión23
Figura 5. Velocidad de corrosión en función del pH para diferentes velocidades. 24
Figura 6. Velocidad de corrosión en función del corte de agua25
Figura 7. Concentración del ácido acético en función la rata de corrosión27
Figura 8. Concentración del H ₂ S en función la rata de corrosión31
Figura 9. Corrosión uniforme
Figura 10. Picadura en tubería de producción
Figura 11. Corrosión ataque mesa35
Figura 12a. Algoritmo del programa "CORROSIONSUITE 1.0"
Figura 12b. Continuación del algoritmo del programa "CORROSIONSUITE 1.0" 50
Figura 13. Archivo de instalación del software CORROSIONSUITE 1.051
Figura 14. Ventana de instalación del software CORROSIONSUITE 1.052
Figura 15. Ruta de instalación del software CORROSIONSUITE 1.052
Figura 16. Confirmación de instalación del software CORROSIONSUITE 1.053
Figura 17. Instalación del software CORROSIONSUITE 1.053
Figura 18. Instalación terminada del software CORROSIONSUITE 1.054
Figura 19. Software CORROSIONSUITE 1.0 en el escritorio55
Figura 20. Software CORROSIONSUITE 1.0 en el menú de programas de inicio 55
Figura 21. Ventana principal del software CORROSIONSUITE 1.056
Figura 22. Menú principal del software CORROSIONSUITE 1.057
Figura 23. Cálculo de la corrosión puntual58
Figura 24. Ingreso de la temperatura al software en diferentes unidades58
Figura 25. Ingreso de la presión al software en diferentes unidades

Figura 26. Ingreso de la presión parcial del CO ₂ al software en diferentes unidades
Figura 27. Cálculo de la fuerza iónica60
Figura 28. Cálculo de la corrosión nodal61
Figura 29. Base de datos Access62
Figura 30. Datos ingresados al programa por el usuario63
Figura 31. Datos ingresados correctamente
Figura 32. Datos de corrosión generados64
Figura 33. Gráficas generadas por el programa64
Figura 34. Ventana de reporte65
Figura 35. Función ayuda del software66
Figura 36. Acerca del CORROSIONSUITE 1.066
Figura 37. Velocidades de corrosión reportadas por el programa CORROSIONSUITE 1.0 para cada pozo en estudio72
Figura 38. Corrosión predominante en los pozos, según los rangos establecidos por la Norma RP0775
Figura 39. Cuadro comparativo de las velocidades de corrosión por las correlaciones empíricas y el simulador CORROSIONSUITE 1.0
Figura 40. Velocidad de corrosión en función de la temperatura para cada uno de los pozos en estudio
Figura 41. Velocidad de corrosión en función del pH para cada uno de los pozos en estudio
Figura 42. Velocidad de corrosión en función de la presión parcial de CO ₂ para cada uno de los pozos en estudio
Figura 43. Velocidad de corrosión en función del corte de agua para cada uno de los pozos en estudio
Figura 44. Velocidad de corrosión en función del caudal de líquido para cada uno de los pozos en estudio
Figura 45. Velocidad de corrosión en función del caudal de gas para cada uno de los pozos en estudio

LISTA DE SÍMBOLOS Y ABREVIATURAS

Nomenclatura

- f_i:
- KHi:
- Fugacidad del componente en equilibrio. Constante de Henry del componente i. Constante de equilibrio del componente i. Ki:

Subíndices

- ads: Adsorbido.
- En solución. sol:
- Fase gaseosa. g:
- Fase líquida. I:
- Acuoso ac:

RESUMEN

TÍTULO: MODELAMIENTO DE CORROSIÓN POR DIÓXIDO DE CARBONO EN SISTEMAS DE PRODUCCIÓN (TUBERÍAS) DE CRUDO CON BASE EN EL MODELO DE WAARD Y LOTZ.

AUTOR: Harold Iván Mantilla Córdoba; Diego Andrés Gil Suárez.

PALABRAS CLAVES: Corrosión, presión parcial del CO₂, Waard y Lotz, modelos.

DESCRIPCIÓN:

En este documento se presentan las reacciones químicas involucradas en la corrosión por dióxido de carbono en tuberías de producción de hidrocarburos y los parámetros más importantes que deben ser tenidos en cuenta para determinar la velocidad de corrosión y los factores de corrección que se deben aplicar para no sobrestimar este fenómeno.

Se mencionan también los modelos más comunes para calcular la velocidad de corrosión por dióxido de carbono, haciendo énfasis en el modelo propuesto por WAARD Y LOTZ; Con base en este modelo se diseñó el programa "CORROSIONSUITE 1.0", que permite calcular la velocidad de corrosión de manera puntual y estimar si la corrosión que se presenta es leve, moderada o severa; además predice la velocidad de corrosión a lo largo de la tubería de producción y realiza un perfil de corrosión que facilita determinar cuál es la zona de corrosión más crítica en la tubería.

La validación del programa se hizo con datos tomados de la literatura y se corroboró que el programa creado proporciona datos confiables.

ABSTRACT

TITLE: CARBON DIOXIDE CORROSION MODELING IN OIL PRODUCTION SYSTEMS (PIPES) BASED ON WAARD Y LOTZ MODEL.

AUTHOR: Harold Iván Mantilla Córdoba; Diego Andrés Gil Suárez.

KEYWORDS: Corrosion, CO₂ partial pressure, Waard and Lotz, models.

DESCRIPTION:

In this paper we present the chemical reactions involved in carbon dioxide corrosion in oil production pipelines and the most important parameters to be taken into account to determine the corrosion rate and the correction factors to be applied to non-overestimate this phenomenon.

Also mentioned are the most common models to calculate the carbon dioxide corrosion rate, with emphasis on the model proposed by WAARD AND LOTZ ; Based on this model, it was designed the "CORROSIONSUITE 1.0 ", which allows to calculate the corrosion rate punctually and estimate whether the corrosion that occurs is mild, moderate or severe, also predicts the corrosion rate along the production tubing and execute a corrosion profile that makes it easier to determinate which is the most critical area in the pipe.

The program validation data were taken from the literature and it was confirmed that the program provides a reliable data set.

INTRODUCCIÓN

Es frecuente encontrar pozos con altas concentraciones de CO₂, las cuales generan problemas de corrosión asociadas con el agua. La necesidad de reducir costos originados por la corrosión, ha llevado a las operadoras, institutos de investigación y compañías de servicios, a intensificar los estudios para conocer los mecanismos de la formación de corrosión por CO₂, los cuales han permitido el desarrollo de diversos modelos para la predicción de la corrosión.

El modelamiento de la corrosión interna de tuberías de petróleo y gas de acero al carbono debe incluir las reacciones electroquímicas, composición química del agua, formación de capas protectoras, temperatura, tipo de flujo, tipo de acero, concentración de glicol / metanol y ataque localizado, entre los muchos factores que inciden en la corrosión por CO₂.

Los modelos desarrollados presentan metodologías para estimar la velocidad de corrosión en la producción de petróleo y gas, algunos de estos modelos son mecanísticos y otros son empíricos.

Por ello en el presente trabajo se realizó un software "CORROSIONSUITE 1.0", que permite calcular la velocidad de corrosión de manera puntual y estimar el tipo de corrosión presente; además predice la velocidad de corrosión a lo largo de la tubería de producción y realiza un perfil de corrosión que facilita determinar cuál es la zona de corrosión más crítica en la tubería. Este software se diseñó con base en el modelo de Waard y U. Lotz, teniendo en cuenta que existen otros modelos para calcular la velocidad de la corrosión, siendo este uno de los modelos más completo, puesto que incluye diversas variables físicas y químicas que afectan la velocidad de la corrosión. Además incorpora factores de corrección que reducen las velocidades de corrosión, que de otro modo sobreestimarían los valores reales.

1. MARCO CONCEPTUAL

1.1. CORROSIÓN POR CO2

La corrosión se define como una reacción química o electroquímica entre un material, normalmente un metal, y su entorno, que produce deterioro del material y de sus propiedades.

La corrosión le genera a los países industrializados una inversión de 2 al 4% del producto interno bruto; ésta se evidencia en la infraestructura pública, bienes domiciliarios y en las máquinas y equipos industriales ^[2].

De todas las fallas que ocurren en las operaciones de la industria del gas y del petróleo, la más importante es la corrosión, con el 33% de los casos, como se observa en la tabla 1. La mitad de las fallas por corrosión están vinculadas con la presencia de gases como CO₂, los cuales se disuelven en la fase acuosa del fluido, produciendo diferentes formas de corrosión ^[1].

TIPOS DE FALLAS	%
Corrosión	33
Fatigas	18
Daño mecánico	14
Fractura frágil	9
Defecto de fabricación	9
Defecto de soldadura	7
Otros	10

Tabla 1. Fallas en la industria petrolera.

Fuente ^[3]

Algunos autores como M. B. Kermani ^[3], clasifican la corrosión por CO₂ como la más importante y la de mayor impacto entre los diferentes tipos que se presentan en los pozos de producción de petróleo, como se muestra en la tabla 2. El CO₂ es corrosivo cuando reacciona con la fase acuosa presente la mayoría de las veces en la producción de petróleo, formando el ácido carbónico. La presencia de este ácido es más agresiva que la de cualquier otro ácido fuerte con un pH similar.

Tabla 2. Corrosión en la industria petrolera.

TIPOS DE FALLAS	%
Por CO ₂	28
Por H ₂ S	18
En soldaduras	18
Picaduras	12
Corrosión-erosión	9
Galvánica	6
Espacios confinados	3
Impacto	3
Corrosión bajo tensión	3

Fuente ^[3]

1.2. REACCIONES

La corrosión por CO₂ involucra las siguientes reacciones:

1. El CO₂ se hidrata mediante la reacción con el agua para producir ácido carbónico (H₂CO₃), según la ecuación (1):

$$CO_{2(g)} + H_2O_{(l)} \to H_2CO_{3(ac)}$$
 (1)

El ácido obtenido sufre doble disociación dando lugar a la formación de iones carbonato ($CO^{=}_{3}$) y bicarbonato (HCO^{-}_{3}), como se observa en las ecuaciones (2) y (3).

$$H_2CO_3 + H_2O \leftrightarrows H_3O^+ + HCO_3^-$$
⁽²⁾

$$HCO_{3}^{-} + H_{2}O \ \ \ H_{3}O^{+} + CO_{3}^{-}$$
 (3)

2. Posteriormente tiene lugar el transporte de masa desde la solución hacia la superficie del metal como se muestra en las ecuaciones (4), (5) y (6).

$$H_2CO_{3(sol.)} \to H_2CO_{3(ads.)} \tag{4}$$

$$HCO_{3}^{-}(sol.) \rightarrow HCO_{3}^{-}(ads.)$$
⁽⁵⁾

$$H^+_{(\text{sol.})} \to H^+_{(\text{ads.})} \tag{6}$$

 En esta etapa se presentan las reacciones electroquímicas en la superficie del metal.

Reacción Catódica: A través de estas reacciones ocurre la reducción de los iones disociados H⁺:

$$2H_2CO_3 + 2e^- \rightarrow H_2 + 2HCO_3^- \tag{7}$$

$$2HCO_3^- + 2e^- \to H_2 + 2CO_3^=$$
 (8)

$$2H^+ + 2e^- \to H_2 \tag{9}$$

Reacción Anódica: Está corresponde a la oxidación del hierro.

$$Fe \rightarrow Fe^{2+} + 2e^{-} \tag{10}$$

4. Las especies disueltas se combinan para formar carbonato de hierro (FeCO₃).

$$Fe^{2+} + CO_3^{2-} \rightarrow FeCO_3 \tag{11}$$

1.3. FACTORES QUE INFLUYEN EN LA CORROSIÓN POR CO2

Existen numerosos factores que afectan la corrosión por CO₂, que incluyen entre otros los ambientales, los metalúrgicos y los hidrodinámicos, como se muestra en la figura 1. Estos factores se deben tener en cuenta en el análisis de la corrosión, en los diferentes modelos que simulan y predicen la corrosión, y en la selección de los métodos de control de la corrosión ^[6].

Figura 1. Variables que influyen en la corrosión por CO₂.

Fuente^[4].

Entre los parámetros que influyen en la corrosión se encuentran:

1.3.1. Velocidad de flujo

La velocidad de flujo es un parámetro significativo, puesto que afecta la composición, de las películas que se forman ^[7]. El aumento de la velocidad de flujo provoca aumento de la velocidad de corrosión, debido a la remoción de la película de carbonato de hierro formado.

Altas velocidades (>4 m/s para sistemas no inhibidos) y altas temperaturas conducen a la remoción de las capas y a la exposición de la superficie metálica al medio corrosivo que la degrada nuevamente, originando elevadas velocidades de corrosión, como se observa en la figura 2^[8].

Figura 2. Velocidad de corrosión en función de la velocidad de flujo para diferentes temperaturas.

Fuente^[9]

En el caso de que coexistan dos fases (líquido-gas) en la tubería, es necesario establecer el patrón de flujo existente en el sistema, como flujo estratificado, flujo en baches y flujo anular, los cuales son los más comúnmente encontrados ^[6]. El patrón de flujo se determina debido a que cada uno de ellos interviene de manera diferente sobre la velocidad de corrosión. A altas velocidades superficiales de gas donde se produce esparcimiento de la fase líquida sobre las paredes del sistema, se obtiene un incremento considerable de la velocidad de corrosión en sistemas donde hay presencia de flujo bifásico.

1.3.2. Temperatura

Éste es uno de los parámetros más significativos en la determinación de la rata de corrosión durante la producción y transporte de hidrocarburos. Existe una relación directa entre la formación de carbonato de hierro y la temperatura. Se puede afirmar que a medida que la temperatura cambia, se afectan otros parámetros que a la vez incurren en la corrosión ^[4].

Se pueden relacionar los tipos de corrosión con la temperatura como se muestra en la tabla 3. A baja temperatura (menos de 60 °C), la velocidad de corrosión uniforme aumenta con la temperatura ^[8]. Entre 60-100 °C se presenta la corrosión tipo meseta; el riesgo de corrosión tipo meseta se

reduce a temperaturas superiores a 100 °C, debido a la formación de capas protectoras de carbonato de hierro ^[5].

Tabla 3. Tipos de corro	osión presentes en sist	emas con CO ₂ según la
	temperatura.	

TEMPERATURA	CORROSIÓN
< 60°C	Corrosión uniforme
60-100°C	Corrosión tipo meseta
> 100°C	Resistente a la corrosión

Fuente: Autores.

Está demostrado a través de experiencias de laboratorio, que incrementos en la temperatura, aumentan la velocidad de formación de FeCO₃. A temperaturas muy altas, la velocidad de corrosión comienza a reducirse, ya que comienza a decrecer la solubilidad del carbonato de hierro, permitiendo la precipitación y formación de películas que pueden detener la corrosión. La formación de estas películas que detienen la corrosión, a su vez depende de la cantidad de hierro disuelto en los hidrocarburos.

La relación entre la temperatura y la solubilidad del dióxido de carbono es inversa; un aumento de la temperatura del sistema, produce disminución de la solubilidad de CO₂.

La presencia de iones cloruros, que penetran las películas de corrosión, y el aumento de la temperatura, pueden formar corrosión localizada en la tubería.

Se observa en la figura 3 el efecto de la temperatura sobre la velocidad de la corrosión, a medida que incrementa la temperatura, aumenta la velocidad de la corrosión, y a partir de 60 °C, ésta disminuye.

Figura 3. Velocidad de corrosión en función de la temperatura para diferentes velocidades de flujo.

Fuente ^[9]

1.3.3. Presión parcial del CO₂

La corrosión por dióxido de carbono aumenta con la presión parcial del CO_2 , se incrementa la precipitación de carbonato de hierro y disminuye el valor del pH. Se considera una relación directa de la presión del CO_2 en la fase gaseosa con la velocidad de corrosión. Se observa que cuando la presión parcial del CO_2 aumenta, también aumenta la concentración del CO_2 en la fase acuosa en equilibrio, y por lo tanto la velocidad de corrosión.

Tabla 4. Límites de corrosión en función de la presión (Pco₂).

CONDICIONES	VELOCIDAD DE CORROSIÓN
< 7 psi	Leve
7 < 30 psi	Moderada
> 30 psi	Severa

Fuente ^[3]

En la tabla 4 se observa la relación directa entre la presión parcial del CO₂ y la velocidad de la corrosión. A presiones parciales por debajo de 7 psi, se produce una corrosión leve, a medida que la presión parcial del CO₂ aumenta, el riesgo de corrosión es mayor.

Figura 4. Relación entre la presión parcial del CO₂ y la velocidad de corrosión.

Fuente^[10]

1.3.4. pH

El pH juega un papel importante tanto en la predicción de la tasa de corrosión, como en la precipitación de la capa protectora, producto de la disolución del hierro de la tubería de acero al carbono, debido a las reacciones electroquímicas. Se calcula a partir de la presión parcial de CO₂, temperatura, contenido de bicarbonato en el agua y la fuerza iónica.

La corrosión de un acero al carbono se incrementa cuando el pH de la fase acuosa disminuye (se hace más ácido), por lo tanto, cuando la presión parcial del CO₂ aumenta, el pH desciende y la corrosión aumenta.

A altos valores de pH, las capas protectoras se forman sobre la superficie del acero y disminuyen la velocidad de corrosión. Las aguas asociadas al crudo generalmente tienen un valor de pH ligeramente alcalino ^[4].

A modo de ejemplo, el aumento del pH de 4 a 5 reduce la solubilidad de Fe⁺⁺ cinco veces; para un aumento del pH de 5 a 6, esta reducción es de alrededor de 100 veces. La baja solubilidad corresponde a mayor sobresaturación, que acelera el proceso de formación de la película de FeCO₃. Para valores de pH> 5, se incrementa la formación de películas

protectoras, por lo tanto, contribuye a la reducción de las tasas de corrosión [4].

La figura 5 muestra el efecto del pH sobre la velocidad de la corrosión. La velocidad de corrosión disminuye gradualmente al variar el pH pasando de 4 a 6, por lo tanto la corrosión en solución alcalina o neutra es menor que en solución ácida.

Fuente ^[9]

1.3.5. Humectación

La humectación ocurre cuando el agua está presente en el sistema y humecta la capa superficial de acero. En presencia de emulsiones de agua en aceite, la humectación por agua se reduce, como también la corrosión, mientras que cuando se producen emulsiones de aceite en agua ocurre el efecto contrario ^[4].

La humectación se puede presentar por agua o por crudo y dependiendo de éste, puede favorecer o perjudicar la formación de corrosión.

1.3.5.1. Humectación del agua

La corrosión por CO₂ se produce cuando el agua está presente en el medio, y moja las paredes internas de la tubería. La severidad del

ataque de la corrosión del CO₂ aumenta con el tiempo de contacto de la fase acuosa con la superficie del acero. Consecuentemente, el corte de agua es una variable muy importante a tener en cuenta en el diseño de la tubería. Éste debe ser estudiado teniendo en cuenta la velocidad de flujo y los efectos del régimen del flujo. Cuando el corte de agua es menor al 30%, la corrosión se reduce significativamente, pero ésta condición está influenciada por la tensión interfacial, aditivos, temperatura y composición de crudo; para otros yacimientos existen diferentes valores de referencia ^[11].

Como se observa en la figura 6, para cortes de agua por debajo de 40%, no se presentan problemas de corrosión. Para cortes de agua más altos, donde el agua se encuentra mojando la tubería, la corrosión es directamente proporcional a la corte de agua.

Figura 6. Velocidad de corrosión en función del corte de agua.

Fuente^[11]

1.3.5.2. Humectación del crudo

El grado de humectación del crudo es función en gran medida de los parámetros de flujo, las propiedades del hidrocarburo y el corte de agua, y es difícil de calcular sin la realización de pruebas de laboratorio o de campo. Si el agua se transporta como una emulsión (agua en aceite), se puede reducir sustancialmente la corrosión. Los crudos pueden actuar como inhibidores dependiendo de la gravedad API, velocidad de flujo y corte de agua ^[12].

1.3.6. Ácidos orgánicos

Los ácidos orgánicos presentes en los fluidos de producción influyen en la formación de la corrosión por CO₂. Los ácidos orgánicos se encuentran donde se observa corrosión por CO₂. La presencia de ácido acético muestra una reducción de las películas protectoras y un aumento en la corrosión tipo meseta ^[4].

El ácido acético presente en el agua de formación de los yacimientos de petróleo y gas, aumenta la velocidad de la corrosión en las tuberías de acero al carbón en presencia del CO₂ a pH constante. La mayor parte de los modelos para predecir la corrosión no tienen en cuenta los efectos del ácido acético sobre las ratas de corrosión ^[13].

Los estudios de ácidos orgánicos se hicieron por primera vez en la década de 1980, donde se observó aumento de la velocidad de corrosión de CO₂ en presencia de ácido acético a pH 4, mientras que el efecto desapareció a pH > 6. Ésto puede explicarse por la disociación de HAc; a diferentes valores de pH, cantidades de HAc no disociado y Ac⁻ están presentes en la solución. Con el aumento del pH, la concentración del ácido acético en la solución disminuye. Los estudios muestran que la causa principal de la corrosión del acero es la concentración del HAc y no la del ion acetato, Ac⁻; el ácido acético afecta a la velocidad de corrosión sólo a valores de pH bajos ^[14].

La relación entre la velocidad de corrosión y la concentración de ácido acético se presenta a diferentes temperaturas en la Figura 7. Se observa que las tasas de corrosión varían linealmente con la concentración del ácido acético, a medida que la concentración de ácido acético aumenta, aumenta la rata de corrosión. Se muestra también que a mayores temperaturas, mayor es la tasa de corrosión.

Figura 7. Concentración del ácido acético en función la rata de corrosión.

1.3.7. Cloruros disueltos

El agua originada durante la producción de petróleo y gas por lo general contiene gran cantidad de sales de cloruro en solución. Los iones cloruro se incorporan a la solución y disminuyen las películas superficiales de protección e incrementan la corrosión ^[15].

Los iones cloruro alteran la protección de la tubería al dejar el metal expuesto a la corrosión, ya que se forma un compuesto soluble, el cloruro ferroso (FeCl₂) con los óxidos de hierro que constituyen la tubería. La corrosión por cloruros se presenta porque el Cl⁻ atrae el hierro Fe²⁺, que se separa de la superficie metálica de la tubería, debido a su electronegatividad, estos iones son capturados por el oxígeno presente y forma óxidos de hierro, y se produce la corrosión en la superficie afectada.

1.3.8. Presencia de oxígeno y oxidantes

La contaminación por oxígeno es registrada como el principal problema en el estudio de la corrosión por CO₂. La adición de O₂ (10 ppb hasta 1500 ppb) resulta en un moderado incremento de la velocidad de corrosión causado por una reacción catódica alterna e incrementa la velocidad de corrosión. El O₂ también puede originar capas protectoras a partir de los productos de corrosión, retrasando el ataque corrosivo ^[11].

El FeCO₃ es inestable en presencia de oxígeno, por lo tanto las películas pasivas de FeCO₃ se forman normalmente bajo condiciones anaeróbicas. El oxígeno puede entrar en el equipo de producción debido a la inyección de agua o inhibidores. La concentración de oxígeno debe mantenerse por debajo de 40 ppb con el fin de impedir la oxidación de iones ferrosos (Fe²⁺)

en iones férricos (Fe³⁺). Además de la modificación de la estabilidad de la película, una mayor concentración de oxígeno contribuye a un aumento en la velocidad de la reacción catódica (reducción de oxígeno)^[8].

1.3.9. Efecto del petróleo crudo

Aunque no ha habido ninguna investigación específica por el efecto del tipo de petróleo en la formación de las capas protectoras de FeCO₃, se determinó que los crudos modifican la morfología, la composición y la compactación de los productos de la corrosión para las diferentes relaciones de agua / aceite evaluados ^[4].

Al igual que en el proceso de condensación de agua, los hidrocarburos se condensan a partir de la fase vapor a ciertas condiciones de temperatura y presión. Los condensados típicos de gas son moléculas con 3 a 10 átomos de carbono. La cantidad de hidrocarburos líquidos en un sistema de tubería es una consideración importante con respecto a los riesgos de corrosión y a los esquemas de remediación de la corrosión.

Dependiendo del tipo de hidrocarburo, se desestabiliza la película de FeCO₃, aumentando la corrosión "localizada". La combinación entre el corte de agua y el tipo de hidrocarburo, es clave en la agresividad de la corrosión por CO₂. Ésto depende de la madurez de los hidrocarburos (aceites no maduros que contienen surfactantes naturales) y de la naturaleza de su kerógeno (I, II, III)^[4].

Además algunos tipos de crudos liberan inhibidores de corrosión naturales, que ayudan en la reducción de la velocidad de corrosión ^[4].

1.3.10. Efecto de parafinas

La presencia de parafinas en la producción de petróleo puede influir en la corrosión por CO₂ de dos maneras, puede agravar el daño o retardar el proceso, dependiendo de la naturaleza de la capa de cera, la dinámica del flujo, la temperatura, y otros parámetros físicos. La capa de cera (parafina) depositada sobre la superficie del acero al carbono, genera problemas por picaduras en ambientes anaeróbicos dulces. El mecanismo de corrosión propuesto es que hay difusión de CO₂ a través de la capa de cera, que proporciona una gran área catódica que promueve la disolución anódica de acero en las discontinuidades de la capa de cera. Sin embargo, generalmente, la cera puede proporcionar un grado de protección, aunque su protección no es fiable ^[4].

1.3.11. Formación de capas protectoras

En la industria del petróleo y el gas, el transporte de los hidrocarburos puede implicar altas concentraciones de CO₂ y de agua líquida, necesarios para la formación de la corrosión del acero al carbono. Este daño puede ser en forma de corrosión general o localizada (picaduras). Sin embargo, la capa de carbonato de hierro (FeCO₃) proporciona un cierto nivel de protección ^[16].

En la corrosión de aceros al carbono de baja aleación y en ambientes húmedos con CO₂, se obtiene carbonato de hierro o siderita (FeCO₃) como producto de reacción; el ión carbonato precipita debido a la elevación local del pH y a la concentración de los iones ferrosos cerca a la superficie. Cuando el FeCO₃ alcanza la solubilidad límite se forma la película protectora, que limita el transporte de las especies químicas involucradas en las reacciones electroquímicas, reduciendo la velocidad de corrosión ^[17].

La velocidad de crecimiento de la película depende del grado de sobresaturación; así, una solubilidad baja produce sobresaturación del FeCO₃ sobre la superficie del acero y acelera la precipitación y deposición de capas de carbonato de hierro, lográndose mayores espesores. El grado de la sobresaturación es función de la relación metal/agua, de la temperatura y del pH.

La velocidad de corrosión uniforme y la susceptibilidad a la corrosión localizada depende de la estabilidad y permeabilidad de estas capas superficiales, las cuales son función de la presión parcial de CO₂, temperatura, contenido de sales del medio corrosivo, composición de la aleación, condiciones de flujo y esfuerzos mecánicos.

En la tabla 5 se resumen las características de todos los productos de corrosión que se pueden formar en la corrosión por CO₂.

TIPO DE PELÍCULA DE CORROSIÓN	TEMPERATURA DE FORMACIÓN	CARACTERÍSTICAS/ NATURALEZA	CRECIMIENTO Y COMPOSICIÓN
Transparente	Se forma a temperatura ambiente e inferiores.	Espesor <1µm Una vez formada es muy protectora.	Se forma cuando hay una disminución rápida de la temperatura ambiente. Consiste principalmente de hierro y oxígeno.
Carburo de hierro	Sin rango	Espesor <100 μm Metálico Conductivo No adherente	Esponjoso Frágil consiste de Fe y C.
Carbonato de hierro	Como mínimo requiere 50-70 °C	No conductivo Adherente Protector	Morfología cúbica Consiste de Fe, C y O
Carburo de hierro + Carbonato de hierro	Máximo 150°C (temperaturas más altas no se han estudiado)	Todas dependen de cómo el FeCO ₃ es mezclado con el Fe ₃ C	Consiste de carburo de hierro y carbonato de hierro.

 Tabla 5. Características de las capas protectoras.

Fuente^[4]

1.3.12. Efecto del H₂S

El efecto del CO₂ sobre la corrosión de los aceros de carbono ha sido ampliamente estudiado, sin embargo poco se ha investigado la corrosión por CO₂ contaminado con pequeñas cantidades de H₂S ^[18].

Niveles bajos de H₂S pueden afectar a la corrosión por CO₂ de diferentes maneras. Puede aumentar la corrosión por CO₂ al actuar como un promotor de la disolución anódica, que puede afectar el pH, o puede disminuir la corrosión dulce mediante la formación de una capa protectora de sulfuro ^[4].

En la figura 8 se puede observar cómo la velocidad de corrosión se ve afectada por la presencia de H_2S y por la temperatura. Cantidades pequeñas de H_2S (pCO₂/pH₂S> 200), conducen a la formación de una capa protectora de sulfuro de hierro a temperaturas menores a 120 °C, disminuyendo la velocidad de la corrosión ^[15].

Figura 8. Concentración del H₂S en función la rata de corrosión.

1.3.13. Factores metalúrgicos

El contenido de elementos como cromo, molibdeno, níquel y azufre, disminuyen la velocidad de corrosión.

La estructura metalográfica de las aleaciones puede controlarse para reducir el ataque corrosivo. Este factor ha alcanzado mayor importancia en los últimos años debido al desarrollo de nuevas aleaciones cada vez más resistentes a los diferentes ambientes corrosivos.

La composición química, el tratamiento térmico y la microestructura del acero, son características que juegan un papel importante en la corrosión de los aceros al carbono en entornos de CO₂. Aunque la mayoría de los autores han reportado los efectos beneficiosos de las adiciones de cromo, todavía no existe un consenso sobre la cantidad óptima de Cr en la estructura de acero ^[4].

La influencia de la composición de la aleación del acero de baja aleación se ha investigado intensamente en los últimos años. Se ha demostrado que la velocidad de la corrosión disminuye significativamente con el aumento de contenido de Cr^[14]. Pequeñas cantidades de cromo (0,5% en peso a 3% en peso) ofrecen una mejor resistencia a la corrosión que los

aceros de baja aleación en medios que contienen CO₂, mediante la formación de una película protectora de óxido de cromo ^[4].

La microestructura depende de la composición química y del tratamiento térmico, y determina las propiedades mecánicas de un metal, y las propiedades de resistencia a la corrosión. En el estudio de la corrosión por CO₂ se ha dado mucha importancia a este aspecto, observándose que varias muestras de un mismo material con diferentes microestructuras poseen diversos grados de resistencia a la corrosión, determinándose que un metal con una estructura perlítica-ferrítica presenta características favorables para la formación de capas protectoras, mientras que el mismo material con una microestructura de martensita revenida, no posee características favorables para la formación de capas protectoras capas protectoras [14][4].

1.4. CLASES DE CORROSIÓN POR CO2

Existen muchas formas de corrosión, sin embargo, cuando ésta ocurre en presencia de CO₂ se desarrollan principalmente en forma de corrosión generalizada y tres variantes de corrosión localizada: picadura, ataque mesa y corrosión inducida por flujo^[4].

1.4.1. Corrosión uniforme

Este tipo de corrosión es la más común y la más evidente; el material va disminuyendo su espesor y eventualmente puede fallar. Se caracteriza por el desgaste uniforme y general del material, sin embargo ésta es la corrosión más fácil de prevenir y controlar. Un ejemplo de este tipo de corrosión es el desgaste de una tubería expuesta continuamente a un fluido corrosivo de forma más o menos uniforme alrededor de toda su superficie, considerando que la tubería está expuesta a unas condiciones atmosféricas normales; este ejemplo se puede detallar en la figura 9.

Figura 9. Corrosión uniforme.

Fuente ^[19]

Es la forma de corrosión menos dañina, pues el material se va gastando gradualmente, extendiéndose en forma homogénea sobre toda la superficie metálica y su penetración media es igual en todos los puntos ^[20].

La definición de corrosión uniforme es solo para indicar que el proceso de corrosión se extiende sobre toda la superficie de un metal, sin hacer distinciones del ambiente corrosivo ^[20].

1.4.2. Corrosión por picadura

La corrosión por picadura se caracteriza por un ataque corrosivo extremadamente localizado. Se trata de un ataque que afecta a zonas relativamente pequeñas en comparación con la superficie expuesta, como se puede apreciar en la figura 10. Si se produce corrosión sobre un área relativamente pequeña que actúa como ánodo, el ataque progresa en profundidad, y la picadura resultante se describe como profunda. Si por el contrario, el área de ataque es más amplia, y no tan profunda, la picadura se denomina superficial. La magnitud de las picaduras se expresa como "factor de picadura", que se define como la relación entre la profundidad media de las picaduras y el espesor promedio perdido por corrosión generalizada, determinado este último por la pérdida de peso experimentada por la muestra.

Figura 10. Picadura en tubería de producción.

Fuente^[20]

La corrosión tipo picadura se produce a bajas velocidades y temperatura cercana a la temperatura de rocío, en pozos productores de gas. En campo sólo se ha observado en algunos pozos, los cuales estuvieron accidentalmente adyacentes a inclusiones no metálicas o de ataque mesa incipiente. La susceptibilidad de la corrosión tipo picaduras aumenta con la temperatura y la presión parcial del CO₂ ^[4].

La intensidad y la penetración de los ataques por picaduras disminuyen con el aumento del pH en el rango de 5.5 a 6.5. ^[21] Para reducir la corrosión por picadura se necesita una superficie limpia y homogénea; un metal homogéneo y puro con una superficie muy pulida es más resistente que una superficie que tenga incrustaciones, defectos o rugosidad. La limpieza de la superficie y la selección de materiales resistentes a la formación de picaduras en un medio ambiente determinado, es el camino más seguro para evitar este tipo de corrosión ^[20].

A temperaturas elevadas aumenta la velocidad de corrosión, sin embargo la tasa de precipitación también aumenta con la temperatura, por lo que a temperaturas elevadas se reduce la velocidad de corrosión cuando se forman películas protectoras. Por otra parte, a presiones altas aumenta la corrosión si se promueve la disolución del metal, y disminuye la velocidad de corrosión por picaduras si se facilita la formación de capas protectoras. Con el aumento de la presión parcial de CO₂, las capas protectoras se vuelven compactas, y como resultado la velocidad de corrosión por picaduras disminuye con la presión parcial de CO₂^[20].

1.4.3. Corrosión ataque mesa

Este tipo de corrosión ocurre por la exposición de aceros bajos en carbono con dióxido de carbono, a temperaturas ligeramente elevadas. Los carbonatos de hierro se adhieren a la superficie formando una capa protectora delgada que puede ser removida por el flujo; en esos espacios expuestos se localiza la corrosión, que genera un aspecto similar a las dunas, como se puede apreciar en la figura 11. Se ha atribuido como mecanismo de inicio de la corrosión la formación de capas de FeCO₃. Las condiciones a las que ocurre este tipo de corrosión son difíciles de determinar y se necesitan muchos estudios para prevenirla ^[4].

Fuente^[4]

Algunas investigaciones demuestran que a bajas velocidades de flujo se presenta corrosión uniforme, mientras que a altas velocidades la corrosión tipo ataque mesa es más pronunciada; este tipo de corrosión depende de las velocidades de flujo e hidrodinámica del medio, principalmente. Se ha comprobado que este tipo de corrosión se presenta a temperaturas entre 80 °C - 120 °C ^[5].

Se recomienda utilizar aceros con cromo o níquel, puesto que evitan que se presente la corrosión tipo ataque mesa, sin embago, hay que tener en cuenta otros tipos de corrosiones que se presentan para las capas de cromo y níquel. Para la mayoría de los casos, la velocidad de flujo es la principal causa de este tipo de corrosión; manteniendo regímenes de flujo bajos, se evita este tipo de corrosión ^[5].

1.4.4. Corrosión inducida por flujo

La corrosión inducida por flujo se inicia y se desarrolla en lugares que presentan grietas y desprendimiento de las capas de protección y bajo flujo locales críticos que impiden que se forme nuevamente la capa protectora. La destrucción de la capa por las fuerzas hidrodinámicas ocurre porque dichas fuerzas no supera la fuerza de la fractura de la capa protectora. Las tensiones intrínsecas en las capas reducen la resistencia a la fractura. El crecimiento intrínseco se incrementa con el aumento del espesor de la incrustación. El espesor crítico depende de las condiciones del ambiente ^[4].

Las fuerzas hidrodinámicas que participan pueden ser cuantificadas en términos de velocidades de flujo crítico, números de Reynolds crítico o esfuerzos críticos de corte de la pared ^[14].

1.5. MODELOS USADOS EN LA INDUSTRIA DEL PETRÓLEO Y GAS PARA PREDECIR LA CORROSIÓN POR CO2

Con el objeto de predecir problemas de corrosión de oleoductos y gaseoductos en presencia de CO_2 se han desarrollado diferentes modelos. Algunos de los modelos se basan en modelos mecanicistas de los diferentes procesos que intervienen en la corrosión por CO_2 del acero al carbono, mientras que otros modelos se basan principalmente en correlaciones empíricas con datos de laboratorio o de campo.

Estos modelos se diferencian considerablemente en la forma de predecir el efecto que tiene la película protectora en el material y los efectos del CO₂ al mezclarse con el crudo.

1.5.1. MODELO DE C. WAARD

Este modelo se aplica en gasoductos húmedos y presenta distintas versiones. El modelo toma como datos de entrada la temperatura, presión parcial del CO₂, pH, velocidad del líquido, corte de agua, presión total, diámetro hidráulico, concentración del glicol, tipo de crudo (subsaturado o condensado) y tipo de agua (agua condensada o de formación). El modelo incluye el cálculo del pH sólo para agua condensada pura o agua condensada saturada con productos de corrosión) y requiere el pH como una entrada separada cuando la composición química del agua de formación está especificada ^[12].
1.5.2. MODELO DE WAARD Y MILLIAMS

Es un modelo que predice la velocidad de corrosión de un acero en ambientes con CO₂, este calcula la velocidad de la corrosión en función de la presión parcial del CO₂ y de la temperatura. Es uno de los primeros modelos que se inició en 1975 que aun continua utilizándose por su fuerte fundamentación teórica ^[22].

1.5.3. MODELO DE CASSANDRA

Este modelo incluye un módulo para calcular el pH con base en la concentración de CO₂, temperatura y composición química del agua. El modelo tiene en cuenta el porcentaje molar de CO₂, temperatura, presión total, velocidad del líquido, la composición química del agua, diámetro hidráulico, concentración de glicol, tipo de crudo (subsaturado o condensado) y tipo de agua (agua condensada o de formación). El modelo reporta la rata de corrosión, que es el promedio de los valores evaluados con base en el modelo de Waard de las versiones de 1993 y 1995^[12].

1.5.4. MODELO DE NORSOK

Es un modelo empírico basado en datos de laboratorio a baja temperatura, y combinación de datos de laboratorio y de campo para temperaturas por encima de 100 °C. El modelo toma en cuenta los efectos de las películas protectoras y también predice la disminución de la rata de corrosión a temperaturas y pH altos. Este modelo es más sensible a la variación del pH que el de Waard; no tiene en cuenta la humectación del crudo ^[12].

1.5.5. MODELO DE CORMED

Este modelo predice la corrosión de los pozos con bajo, medio o alto riesgo de ataque. Riesgo alto se refiere a ratas de corrosión por encima de 1 mm/año. El ácido acético es identificado como un parámetro importante para la predicción de la corrosión. Es muy usado para cálculos de pH para el agua de formación; no incluye los efectos de la humedad del aceite y la velocidad del flujo del líquido ^[12].

1.5.6. MODELO LIPUCOR

Es un programa de predicción de corrosión para pozos y tuberías basado en resultados de laboratorio y datos de campo. Calcula el valor de pH a partir de la temperatura. El modelo indica si la corrosión es localizada o generalizada y da una evaluación de la severidad de la corrosión ^[12].

1.5.7. MODELO HYDROCOR

Fue desarrollado por Shell para combinar el modelamiento de la corrosión y el flujo de fluido y es la herramienta preferida por Shell para la predicción de corrosión en tuberías. Los diferentes modelos de corrosión por CO₂ son acoplados a flujos multifásicos, cálculo de pH y precipitación del carbonato de hierro. El factor de la formación de la capa protectora se aplica para agua condensada, pero no en los casos del agua de formación. El programa incluye un modelo de flujo de fluido que calcula la presión, la temperatura y los perfiles de presión a lo largo de la tubería ^[12].

1.5.8. MODELO KSC

Es un modelo mecanístico para la corrosión por CO2 con inclusión de películas protectoras de corrosión. El modelo está basado en un modelo electroquímico acoplado a un modelo de transporte. Simula las reacciones electroquímicas en la superficie del acero, reacciones químicas en la fase líquida, difusión de especies, difusión a través de las películas de corrosión y la precipitación del carbonato de hierro en la película de corrosión ^[12].

1.5.9. MODELO TULSA

Es un modelo de corrosión por CO₂ para condiciones de flujo de tubería realizado en la universidad de Tulsa. Es un modelo mecanístico de flujo monofásico con inclusión de la cinética de las reacciones y transferencia de masa electroquímica. Enfatiza en el modelaje del flujo y es usado para tuberías. Calcula la rata de corrosión en presencia de formación de capas protectoras de carbonato de hierro y también predice la rata de corrosión sin la formación de las capas de carbonato de hierro ^[12].

1.5.10. MODELO SWEETCOR

Utiliza una base de datos de corrosión de experimentos de laboratorio y datos de campo ^[12].

1.5.11. MODELO DE OHIO

Es una colección de modelos que predice ratas de corrosión en flujo multifásico [12].

1.5.12. MODELO ECE

Está basado en el modelo de Waard de 1995, teniendo en cuenta el corte y la composición química del agua ^[12].

2. MODELO DE C. DE WAARD Y U. LOTZ

El modelo desarrollado por Waard y colaboradores ha sido durante varios años el modelo de corrosión por CO₂ más utilizado. La primera versión se publicó en 1975 y se basó solo en la influencia de la temperatura y presión parcial del CO₂. El modelo ha sido revisado varias veces, adicionando diferentes factores de corrección a la ecuación original ^[12].

Desde el trabajo inicial de C. Waard, numerosos estudios se han realizado para predecir la velocidad de corrosión bajo diferentes ambientes operacionales. Uno de los trabajos, es el de Waard y U. Lotz, el cual es un modelo cuantitativo que incluye diversas variables físicas y químicas que afectan la velocidad de corrosión. Incorpora factores de corrección por lo general menores a uno, que reducen las velocidades de corrosión, que de otro modo sobreestimarían los valores reales. Estos factores son entre otros el efecto de la concentración de los iones hierro, el pH, la presión total y el efecto de formación de películas protectoras. El modelo de Waard y U. Lotz es uno de los más completos para el cálculo de la velocidad de la corrosión, es por esto que se escogió como objeto de estudio en este trabajo.

La predicción de la velocidad de corrosión mediante ecuaciones o modelos matemáticos se inició en 1975 con el modelo empírico de Waard y Milliams^[22] que predice la velocidad de corrosión de un acero en ambientes con CO₂; se calcula en función de la presión parcial del CO₂ y de la temperatura, de acuerdo a la ecuación empírica:

Log (Vc) = 5,8 -
$$\left(\frac{1710}{T+273}\right)$$
 + 0,67 Log (pCO₂) (12)

Donde:

Vc = Velocidad de la corrosión (mm/año). T = Temperatura de operación (°C). pCO_2 = Presión parcial del CO₂ (bar)

A temperaturas iguales o superiores a 60°C, la película protectora se supone estable y lo suficientemente protectora, por lo que se incluye un factor de corrección:

$$\mathbf{V} = \mathbf{F}(\mathbf{s}) * \mathbf{V}\mathbf{c} \tag{13}$$

Donde:

V = Velocidad de corrosión ajustada.

F(s) = Factor de corrección por la formación de capa protectora de carbonatos.

Vc = Velocidad de corrosión calculada con la ecuación original de Waard y Milliams; ecuación (12) [22].

La ecuación original de Waard y Milliams se aplica solo para bajas presiones parciales de CO_2 (< 1 bar). A altas presiones debe corregirse por la fugacidad. La fugacidad del CO_2 se calcula multiplicando la presión parcial del CO_2 por el coeficiente de fugacidad. La fugacidad del CO_2 se calcula de la siguiente forma:

$$f_{CO_2} = a * pCO2$$

(14)

Donde: f_{CO_2} = fugacidad del CO₂. a = coeficiente de fugacidad. pCO₂ = Presión parcial del CO₂ (bar).

El coeficiente de fugacidad se calcula con la siguiente ecuación:

$$Log(a) = P total \left(0,0031 - \frac{1.4}{T + 273}\right)$$
(15)

Donde: P = Presión total (bar). T = Temperatura (°C).

La velocidad de corrosión está dada por:

$$Log(v_c) = 5,8 - \frac{1710}{T + 273} + 0,67 Log(f_{CO_2})$$
(16)

2.1. EVALUACIÓN DE LA VELOCIDAD DE CORROSIÓN MEDIANTE LA CORRELACIÓN DE C. DE WAARD Y U. LOTZ

Desde 1993, en la ecuación original de C. Waard y Milliams se han incluido diversos factores de corrección que consideran algunas variables físicas que inciden sobre la velocidad de corrosión. Waard y Lotz propusieron la siguiente ecuación para predecir la corrosión de acero al carbono^[23]:

$$V_{cor} = \frac{1}{\frac{1}{c * V_{mass}} + \frac{1}{V_{react}}}$$
(17)

Donde:

V_{cor} = Velocidad de la corrosión (mm/año). V_{mass} = Velocidad de corrosión controlada por la transferencia de masa. V_{react} = Velocidad de corrosión controlada por la reacción (mm/año).

La ecuación para calcular el parámetro c de la ecuación 17 es la siguiente:

$$c = Re^2 + 2,62 * 10^6$$

(18)

Donde: Re = Numero de Reynolds.

El término "c" de la ecuación 17 es constante (2,62*10⁶) para pozos con velocidades de flujo relativamente bajas.

2.1.1. CÁLCULO DE LA VELOCIDAD DE CORROSIÓN CONTROLADA POR LA REACCIÓN (Vreact)

$$Log(V_{react}) = 5.8 - \frac{1710}{T + 273} + 0.67 Log(f_{CO_2}) * F_{pH}$$
(19)

Donde:

T = Temperatura (°C). f_{CO_2} = fugacidad del CO₂. F_{PH} = Factor de corrección debido al pH.

2.1.2. CÁLCULO DE LA VELOCIDAD DE CORROSIÓN CONTROLADA POR LA TRANSFERENCIA DE MASA (V_{mass})

$$V_{mass} = 0,023 * \frac{D^{0,7} U^{0,8}}{v^{0,5} d^{0,2}} * [H_2 CO_3]$$
⁽²⁰⁾

Donde: D = Coeficiente de difusión. v = Viscosidad cinemática (m²/sec). U = Caudal de líquido (m/s). d = Diámetro hidráulico (m). [H₂CO₃] = Concentración del ácido carbónico (M).

La concentración del [H₂CO₃] se calcula usando la siguiente ecuación:

$$[H_2CO_3] = f_{CO_2}(10^{LogK_H})$$
(21)

Donde:

 f_{CO_2} = fugacidad del CO₂. K_H = Constante de Henry (M/bar). Para calcular de la constante de Henry se emplea la siguiente ecuación:

• Para temperaturas entre 0 °C – 80 °C:

$$K_{H} = 55,5484 * e^{-\left(4,8 + \frac{3934,4}{T+273} - \frac{941290,2}{(T+273)^{2}}\right)} * 10^{-\left(1,790 * 10^{-4} * P + 0,107 * I\right)}$$
(22)

• Para temperaturas entre 80 °C – 200 °C:

$$K_{H} = 55,5484 * e^{-\left(\frac{1713,63*\left(1-\frac{T+273}{647}\right)^{\left(\frac{1}{3}\right)}}{T+273}+3,875+\frac{3680,09}{T+273}-\frac{1198506,1}{(T+273)^{2}}\right)}*10^{-\left(1,790*10^{-4}*P+0,107*I\right)}$$
(23)

Donde: K_H = Constante de Henry (M/bar). T = Temperatura (°C). P= Presión total del sistema (bar) I = Fuerza iónica (M).

Para calcular la viscosidad cinemática se emplea la siguiente ecuación:

$$Log v = \frac{1,3272(20-T) - 0,001053(T-20)^2}{(T+105)\rho_f} - 6$$
(24)

Donde:

v = Viscosidad cinemática (m²/sec). T = Temperatura (°C). $\rho_f =$ Densidad de la fluido (kg/m³⁾.

Para calcular el coeficiente de difusión D de la ecuación 20 se emplea la siguiente ecuación:

$$D \simeq \frac{T}{\mathring{U}} * 10^{-17}$$
(25)

Donde $\mathring{U} = V$ iscosidad corregida (m²/sec). T = Temperatura (°C).

Una nueva viscosidad cinemática ů se calcula con la ecuación 26 y es corregida Ů con la ecuación 27, para su uso en la ecuación 25.

$$\mathbf{\hat{u}} = \mathbf{1} * \mathbf{10^6} * \mathbf{v} * \boldsymbol{\rho_f}(0, 0625) \boldsymbol{\rho_w}$$
(26)

Donde:

$$\mathring{\mathrm{U}} = \frac{\mathring{\mathrm{U}}}{1 * 10^{6*} \rho_f} \tag{27}$$

Donde:

 $\begin{array}{l} \mathring{U} = Viscosidad \ corregida \ (m^2/sec). \\ \mathring{u} = Viscosidad \ nueva \ (m^2/sec). \\ \rho_f = Densidad \ de \ la \ fluido(kg/m^3). \end{array}$

La densidad del fluido se expresa como:

$$\rho_f = \rho_l * \lambda + \rho_g * (1 - \lambda) \tag{28}$$

$$\rho_l = \varphi * \rho_w + \rho_0 * (\lambda - \varphi)$$
⁽²⁹⁾

$$\rho_g = 2,7 * 14,5 * 16,018 * P * \frac{Gravedad específica}{Z} * (460 + T_f)$$
(30)

Donde:

 ρ_f = Densidad del fluido (kg/m³⁾.

 ρ_l = Densidad del líquido (kg/m³).

 λ = Fracción de líquido.

 ρ_g = Densidad del gas (kg/m³).

 Φ = Corte de agua.

 ρ_w = Densidad del agua (kg/m³).

 ρ_{o} = Densidad del crudo (kg/m³).

P = Presión total del sistema (bar).

Z = Factor de compresibilidad del gas

 $T_f = Temperatura (°F).$

La fracción de líquido se obtiene con la siguiente expresión:

$$\lambda = \frac{Q_l}{Q_l + Q_g} \tag{31}$$

Donde:

 Q_1 = Flujo volumétrico de líquido (crudo y agua) (Sm³/d).

 $Q_g = Flujo volumétrico de gas (MSm³/d).$

Para calcular el factor de compresibilidad Z, Meehan presenta un procedimiento usando el método de Wichert-Aziz; conociendo la composición de los componentes no hidrocarburos N₂, H₂S y CO₂ presentes en la mezcla, se calculan la temperatura y presión seudocríticas corregidas, siguiendo el procedimiento.

 a) Se calcula la gravedad específica de los componentes hidrocarburos puros presentes en la mezcla, eliminando los efectos de los componentes no hidrocarburos.

$$\gamma_{ghc} = \frac{y_g - 0,967y_{N_2} - 1,52y_{CO_2} - 1,18y_{H_2S}}{1 - y_{N_2} - y_{CO_2} - y_{H_2S}}$$
(32)

Donde:

 γ_{ghc} = Gravedad específica de los componentes hidrocarburos puros de la mezcla.

 γ_g = Gravedad específica del gas.

 y_{N_2} = Fracción molar del nitrógeno en el gas.

 y_{CO_2} = Fracción molar del dióxido de carbono en el gas.

 y_{H_2S} = Fracción molar del sulfuro de hidrógeno en el gas.

b) Determinar la presión y temperatura seudocríticas, Psch y Tsch, de la mezcla de componentes hidrocarburos puros con las ecuaciones propuestas por Standing en 1977^[24].

Para gases condensados o asociados:

$$Psc_{h} = 706 - 51, 7(\gamma_{ghc}) - 11, 1(\gamma_{ghc})^{2}$$
(33)

$$Tsc_{h} = 187 + 330(\gamma_{ghc}) - 71, 5(\gamma_{ghc})^{2}$$
(34)

2

c) Standing en 1977, presentó las siguientes ecuaciones que permiten determinar la temperatura y presión seudocríticas de la mezcla total.

$$Psc = (1 - y_{N_2} - y_{CO_2} - y_{H_2S})Psc_h + 493(y_{N_2}) + 1071(y_{CO_2}) + 1306(y_{H_2S})$$
(35)

$$Tsc = (1 - y_{N_2} - y_{CO_2} - y_{H_2S})Tsc_h + 227, 6(y_{N_2}) + 547, 9(y_{CO_2}) + 672, 7(y_{H_2S})$$
(36)

d) Con la temperatura y presión corregidas anteriormente, Psc y Tsc, se aplica el método de Wichert-Aziz^[24].

$$\epsilon = 120(A^{0,9} - A^{1,6}) + 15(B^{0,5} - B^4)$$
(37)

$$A = y_{CO_2} + y_{H_2S} \tag{38}$$

$$B = Y_{H_2S} \tag{39}$$

Donde:

 ϵ = Factor de corrección (R). $y_{CO_2} + y_{H_2S}$ = Fracciones molares del CO₂ y H₂S respectivamente.

Con lo anterior:

$$Tsc^* = Tsc - \epsilon \tag{40}$$

$$Psc^* = \frac{(Psc)(Tsc^*)}{Tsc + Y_{H_2S}(1 - Y_{H_2S})\epsilon}$$
(41)

e) Con la temperatura y presión seudocríticas, Tsc^* Y Psc^* , se calcula la presión y temperatura seudorreducidas, Psr y Tsr.

$$Psr = \frac{P}{Psc^*} \tag{42}$$

$$Tsr = \frac{T}{Tsc^*}$$
(43)

Donde:

P = Presión del sistema (psia).T = Temperatura del sistema (R).

 f) Para el cálculo del factor de compresibilidad, se utilizan las siguientes expresiones propuestas por diferentes investigadores:

• Papay

Presiones seudorreducidas entre [0,2 - 15] Temperaturas seudorreducidas entre [1,2 - 3,0]

$$Z = 1 - \left(\frac{3,53 * Psr}{10^{0,9813 * Tsr}}\right) + \left(\frac{0,274 * Psr^2}{10^{0,8157 * Tsr}}\right)$$
(44)

• Beggs y Brill

Presiones seudorreducidas entre [0,0 - 5,0] Temperaturas seudorreducidas entre [1,3 - 1,7]

$$Z = A + \frac{1-A}{e^B} + C * Psr^D$$
(45)

$$A = 1,39(Tsr - 0,92)^{0,5} - 0,36 * Tsr - 0,1$$
(46)

$$B = (0, 62 - 0, 23 * Tsr)Psr + \left[\frac{0, 066}{Tsr - 0, 86} - 0, 037\right]Psr^2 + \frac{0, 32}{10^{9(Tsr - 1)}} * Psr^6$$
(47)

$$C = 0,132 - 0,32 * Log(Tsr)$$
(48)

$$D = antiLog(0, 3106 - 0, 49 * Tsr + 0, 182 * Tsr^{2})$$
(49)

2.1.3. FACTOR DE CORRECCIÓN DEBIDO AL pH TOTAL

La corrosión del acero, pueden conducir a la formación de FeCO₃ o Fe₃O₄, dependiendo de la temperatura y la presión parcial del CO₂. La contaminación de la solución de CO₂ con productos de corrosión reduce las velocidades de corrosión. Este efecto se describe mediante la correlación:

$$LogF_{pH} = 0,31(pH_{sat} - pH_{act})$$
(50)

Donde: F_{pH} = Factor de corrección por el pH. pH_{sat} = pH de la solución saturada. pH_{act} = pH de la solución actual.

El pH de la solución saturada se calcula a partir de la siguiente ecuación:

$$pH_{sat} = 5, 4 - 0, 66Log(f_{CO_2})$$
(51)

Donde: $pH_{sat} = pH$ de la solución saturada. $f_{CO_2} =$ fugacidad del CO₂.

El pH de la solución actual se calcula a partir de la siguiente ecuación: $pH_{act} = 3,71 + 4,71 * 10^{-3} * T - 0,5 * Log(f_{CO_2})$ (52)

Donde: $pH_{act} = pH$ actual. T = Temperatura del sistema (°C). $f_{CO_2} = fugacidad del CO_2.$ Los gases no se pueden considerar como ideales a altas presiones. Por ello, la presión parcial de un gas se multiplica por una constante de fugacidad. La presión real del CO₂ se expresa con la ecuación 14; Para calcular el coeficiente de fugacidad del gas (a), se emplean las siguientes ecuaciones:

• Si la presión total del sistema es menor o igual a 250 bar, se tiene que:

$$a = 10^{P*(0,0031 - \frac{1,4}{T+273})}$$
(54)

• Si la presión total del sistema es mayor a 250 bar, se tiene que:

$$a = 10^{250*\left(0,0031 - \frac{1,4}{T+273}\right)}$$
(55)

Donde:

T = Temperatura (°C).

P = Es la presión total del sistema (bar).

La presión parcial del CO₂ se halla mediante las ecuaciones 54 o 55:

$$pCO_2 = \%$$
 molar de CO2 en la fase gaseosa * P (56)

$$pCO_2 = \frac{flujo \ masico \ del \ CO2 \ en \ la \ fase \ gaseosa \ (kmol/h)}{flujo \ masico \ total \ en \ la \ fase \ gaseosa \ (kmol/h)} * P$$
(57)

Donde:

P = Presión total del sistema (bar).

2.1.4. FACTOR DE CORRECCIÓN DEBIDO AL EFECTO DE LA FORMACIÓN DE LA CAPA PROTECTORA

El factor de corrección debido al efecto de la formación de la capa protectora F_{protec} se multiplica por el resultado de la ecuación de la corrosión general (ecuación 17), y disminuye la cantidad de corrosión que se ha predicho, por el efecto que tiene la capa protectora.

$$\log F_{protec} = \frac{2400}{T + 273} - 0,6 * \log(f_{CO_2}) - 6,7$$
(58)

Donde: f_{CO_2} = fugacidad del CO₂. T = Temperatura (°C). El F_{protec} es un factor general de corrección que está entre 0,0 y 1,0.

Las capas protectoras formadas por la depositación de minerales han sido reconocidas ampliamente que reducen o eliminan la corrosión en las tuberías.

2.1.5. FACTOR DE CORRECCIÓN DEBIDO AL CORTE DE AGUA

El modelo de Waard y Lotz considera que existe agua libre en contacto con la tubería, lo que se traduce en condiciones más severas de corrosión. Por esta razón se incluyó un factor de corrección que varía dependiendo del porcentaje de agua presente en el sistema y se determina con la siguiente ecuación:

 $Fw = WC^{0,6}$

(59)

Donde: Ew = facto

Fw = factor de corrección por corte de agua.WC = Corte de agua.

Luego de determinar el factor Fw, éste se debe multiplicar por la velocidad de corrosión calculada con la ecuación 17.

2.1.6. CÁLCULO DEL TIPO DE CORROSIÓN PREDOMINANTE

El modelo determina el mecanismo de corrosión predominante antes de calcular la velocidad de corrosión en el sistema, debido a que en los procesos de medios de transporte que contengan CO₂ en presencia de agua, ocasiona deterioros severos en los equipos e instalaciones del área de producción y la combinación de ambos puede acelerar o disminuir la velocidad del daño esperado.

De acuerdo con la norma RP0775^[26] de la Asociación Nacional de Ingeniería de Corrosión (N.A.C.E.), la velocidad de corrosión puede ser clasificada de acuerdo a la siguiente categorización cualitativa:

TIPO DE CORROSIÓN	mm/año	mpy
Baja	< 0,025	< 1,0
Moderada	0,025 – 0,12	1,0-4,9
Alta	0,13-0,25	5,0 - 10
Severa	> 0,25	> 10

Tabla 6. Tipo de corrosión predominante.

Fuente^[26]

3. DISEÑO Y FUNCIONAMIENTO DEL SOFTWARE CORROSIONSUITE 1.0

La programación del software de cómputo "CORROSIONSUITE 1.0" se realizó utilizando el lenguaje Visual Basic.Net con el programa Visual Basic 2010 Express; este lenguaje es una versión avanzada del lenguaje Basic, el cual presenta la misma base de lenguaje de programación, pero esta versión presenta muchas más aplicaciones que hacen de la programación una actividad más agradable y amena a través de un nuevo entorno gráfico.

El software CORROSIONSUITE 1.0 consta de una herramienta gráfica que integra los efectos de una serie de parámetros complejos encontrados en el medio ambiente y que provee una velocidad de corrosión real basada en un extenso número de datos de laboratorio y de campo.

Entre las características que presenta este software se encuentra las siguientes:

- Desempeña una rigurosa evaluación del medio ambiente corrosivo y provee una predicción de la velocidad máxima potencial de corrosión.
- Permite la determinación de parámetros como el pH, velocidad de corrosión y tipo de corrosión.
- Consta de un portal para la entrada de datos y gráficos.
- Determina perfiles de corrosión a lo largo de la tubería.
- Tiene facilidades para el cálculo de velocidades superficiales del líquido y del gas y también determina los patrones de flujo.
- Este simulador es compatible con Microsoft Windows, por lo tanto puede usarse en cualquier computadora personal.
- Genera un reporte auxiliar que permite guardar y recuperar un caso particular en cualquier momento y es de fácil aplicación.

El algoritmo se inicia con la entrada de los datos, los cuales son temperatura, presión del sistema, presión parcial del CO₂, caudal de líquido, caudal de gas, BSW, densidad del líquido, densidad del gas, densidad del agua, diámetro de la tubería, fuerza iónica; posteriormente se calcula la velocidad de corrosión con el modelo de Waard y Lotz.

Para una mayor comprensión y entendimiento del algoritmo, sus modelos y procesos, éste se presenta a continuación en las figuras 12a y 12b.

Figura 12a. Algoritmo del programa "CORROSIONSUITE 1.0"

Figura 12b. Continuación del algoritmo del programa "CORROSIONSUITE 1.0"

3.1. INSTALACIÓN DEL PROGRAMA

Para el correcto funcionamiento del programa "CORROSIONSUITE 1.0" se debe ejecutar el instalador del programa que corresponde al "Setup.exe"

Figura 13. Archivo de instalación del software CORROSIONSUITE 1.0

Al ejecutar el archivo setup.exe comienza el proceso de instalación del programa y de forma continua se verán las ventanas mostradas a continuación:

Figura 14. Ventana de instalación del software CORROSIONSUITE 1.0

谩 CorrosionSuite	
Éste es el Asistente para instalación de CorrosionSuite	
El instalador le guiará a través de los pasos necesarios para instalar CorrosionSu	iite en el equipo.
Advertencia: este programa está protegido por las leyes de derechos de autor y internacionales. La reproducción o distribución ilícitas de este programa, o de cu mismo, está penada por la ley con severas sanciones civiles y penales, y será ol acciones judiciales que correspondan.	otros tratados ualquier parte del bjeto de todas las
Cancelar < Atrás] Siguiente >

Figura 15. Ruta de instalación del software CORROSIONSUITE 1.0

谩 CorrosionSuite	
Seleccionar carpeta de instalación	
El instalador instalará CorrosionSuite en la siguiente carpeta.	
Para instalarlo en esta carpeta haga clic en "Siguiente". Para instalarlo en u clic en "Examinar".	na carpeta distinta haga
<u>C</u> arpeta:	
C:\Program Files\CorrosionSuite\	Examinar
	Espacio en disco
Instalar CorrosionSuite sólo para este usuario o para todos los usuarios de	este equipo:
Para todos los usuarios	
Sólo para este usuario	
Cancelar < Atrás	Siguiente >

Figura 16. Confirmación de instalación del software CORROSIONSUITE 1.0

Confirmar instalación
El instalador está listo para instalar CorrosionSuite en el equipo. Haga clic en "Siguiente" para iniciar la instalación.
Haga clic en "Siguiente" para iniciar la instalación.
Cancelar < Atrás Siguiente >

Figura 17. Instalación del software CORROSIONSUITE 1.0

Figura 18. Instalación terminada del software CORROSIONSUITE 1.0

谩 CorrosionSuite	
Instalación completada	
CorrosionSuite se ha instalado correctamente.	
Haga clic en "Cerrar" para salir.	
Utilice Windows Update para comprobar cualquier actualización importante de	.NET Framework.
Cancelar < Atrás	Cerrar

Una vez terminada la instalación del software CORROSIONSUITE 1.0, automáticamente el paquete de instalación crea un acceso directo en el escritorio y un acceso en el menú de programas de inicio (figura 19 y figura 20):

Figura 19. Software CORROSIONSUITE 1.0 en el escritorio.

Figura 20. Software CORROSIONSUITE 1.0 en el menú de programas de inicio.

3.2. EJECUCIÓN DEL PROGRAMA

Al ejecutarse el programa "CORROSIONSUITE 1.0" se despliega la pantalla de presentación (figura 21), donde el usuario puede conocer la aplicación del programa.

Figura 21. Ventana principal del software CORROSIONSUITE 1.0

Luego de la presentación del programa, se muestra el menú principal, donde se pueden apreciar las diferentes opciones para la predicción de la corrosión por dióxido de carbono (figura 22).

Figura 22. Menú principal del software CORROSIONSUITE 1.0.

El primer comando corresponde al de resultados, donde se despliegan las opciones para calcular la corrosión puntual o nodal, además tiene un ejemplo de aplicación por defecto y una opción para salir del programa. Al activar cualquiera de los comandos, aparece el formulario para ingresar los diferentes datos necesarios para la predicción de la corrosión por dióxido de carbono (figura 23), como la densidades, caudales de líquido (crudo y agua), caudal de gas y datos de presión y temperatura de la locación evaluada. En este formulario además aparecen los botones calcular, limpiar y salir del formulario.

Realistations Realistations Realistations Image: a constrained in the second of	CorrosionSuite 1.0 - [Corro	osión Puntuall			
Period Period Period Period Caudal de líquido 6424367.04 m3/d . Cate de agua 100 kg/m3 .	S	Shorr antalij			
Datas de entrada: Presión 102.992 9F • Presión 1068 Psi •	Resultados Acerca de				
Datos de entrada: Temperatura 102.992 9F Presión 1068 Psi Presión 1068 Psi Presión 1068 Psi Presión 1068 Psi Presión 0.27793 Calcular Caudal de líquido 6424367.04 m3/d PH Caudal de líquido 654808.32 Mm3/d Impi Caudal de líquido 654808.32 Mm3/d Impi Corte de agua 10 % Velocidad de corrosión Densidad del agua 1000 kg/m3 Impi Densidad del gas 68.064 kg/m3 Carcular Diámebo de tuber/a 0.1541 m Calcular Limpiar Salir				Universidad Surcolombiana	crups de Investigación COFA
Temperatura 102.992 9F • Presión 1068 Psi • presión Parcial CO2 1.31 9kmolar • Fuerza iónica 0.27793 Calcular PH caudal de líquido 6424367.04 m3/d PH caudal de líquido 6424367.04 m3/d 3.93305 caudal de líquido 654808.32 Mm3/d Impercián corte de agua 10 % Velocidad de corrosión Densidad del agua 1000 kg/m3 Iz.18225 Densidad del gas 68.064 kg/m3 Corrosión moderada Diámeiro de tuber/a 0.1541 m Calcular Limpiar Salir	Datos de entrada:				
Presión 1068 Psi Presión Parcial CO2 1.31 %molar Fuerza iónica 0.27793 Calcular Caudal de líquido 6424367.04 m3/d Caudal de líquido 6424367.04 m3/d Caudal de líquido 654808.32 Mm3/d 3.93305 Carte de agua 10 % Velocidad de corrosión Densidad del agua 1000 kg/m3 12.18225 mpy Densidad del gas 68.064 kg/m3 Corrosión Corrosión Densidad del gas 68.064 kg/m3 Corrosión moderada Diámeiro de tubeira 0.1541 m Calcular Limpiar Salir	Temperatura	102.992	°F ▼		
Presión Parcial CO2 1.31 96molar Fuerza iónica 0.27793 Calcular Caudal de líquido 6424367.04 m3/d 9H Caudal de líquido 654808.32 Mm3/d 3.93305 Caudal de gas 654808.32 Mm3/d 12.18225 Densidad de líquido 720.14 kg/m3 12.18225 Densidad de líquido 720.14 kg/m3 Corrosión Densidad de líquido 0.1541 m Calcular Limpiar Diámeto de tuber/a 0.1541 m Calcular Limpiar Salir	Presión	1068	Psi 👻		
Fuerza iónica 0.27793 Calcular Caudal de líquido 6424367.04 m3/d Caudal de líquido 6424367.04 m3/d Caudal de líquido 654808.32 Mm3/d Caudal de líquido 654808.32 Mm3/d Corte de agua 10 % Velocidad de corrosión Densidad del agua 1000 kg/m3 Densidad del gas 68.064 kg/m3 Diámeto de tuber/a 0.1541 m Calcular	Presión Parcial CO2	1.31	%molar 👻		
caudal de líquido 6424367.04 m3/d pH Caudal de gas 654808.32 Mm3/d Image: Control of the second sec	Fuerza iónica	0.27793	Calcular		
Caudal de gas 654808.32 Mm3/d Imm3/d Corte de agua 10 % Velocidad de corrosión Densidad del agua 1000 kg/m3 I2.18225 mpy Densidad del gas 68.064 kg/m3 Tipo de corrosión Densidad del gas 68.064 kg/m3 Corrosión moderada Diámetro de tubería 0.1541 m Calcular Limpiar	Caudal de líquido	6424367.04	m3/d ▼	PH 3.93305	
Corte de agua 10 % Velocidad de corrosión Densidad del agua 1000 kg/m3 I2.18225 mpy Densidad del iguido 720.14 kg/m3 Tipo de corrosión Densidad del gas 68.064 kg/m3 Corrosión moderada Didmetro de tuber/a 0.1541 m Calcular Limpiar	Caudal de gas	654808.32	Mm3/d ▼		
Densidad del agua 1000 kg/m3 I2.18225 mpy Densidad del gas 68.064 kg/m3 IDensidad del gas 68.064 kg/m3 Diámeto de tubería 0.1541 m Calcular Limpiar Salir	Corte de agua	10	%	Velocidad de corrosión	
Densidad de liquido 720.14 kg/m3 Tipo de corrosión Densidad del gas 68.064 kg/m3 Corrosión moderada Diámetro de tubería 0.1541 m Calcular Limpiar	Densidad del agua	1000	kg/m3 👻	12.18225 MPY	
Densidad del gas 68.064 kg/m3 - Corrosión moderada Diámetro de tubería 0.1541 m - Calcular Limpiar Salir	Densidad de liquido	720.14	kg/m3 ►	Tipo de corrosión	
Diámetro de tubería 0.1541 m - Calcular Limpiar Salir	Densidad del gas	68.064	kg/m3 ▼	Corrosión moderada	
	Diámetro de tubería	0.1541	<i>m</i> •	Calcular Limpiar Salir	

Figura 23. Cálculo de la corrosión puntual.

Para facilidad del usuario, es posible ingresar la temperatura en $^{\circ}$ F o $^{\circ}$ C (figura 24), la presión en psi o bar (figura 25), la presión parcial del CO₂ en psi, bar o porcentaje molar (figura 26).

Figura 24. Ingreso de la temperatura al software en diferentes unidades.

🅵 CorrosionSu	uite 1.0 - [Corrosión Puntual]				
19					_ 8 ×
Resultados	Acerca de				
		S	Universidad Surcold	ombiana	
Datos d	e entrada:]	
Tempera	atura	● F			
Presión		<u>°C</u>		Tanaartum	<u>۲</u>
Presión P	Parcial CO2	Psi 🗸		remperatura	
Fuerza ió	ónica	Calcular			٥F
Caudal de	e líquido	m3/d	рН		or
Caudal de	e gas	Mm3/d			
Corte de	agua	%	Velocidad de corrosión		
Densidad	l del agua	kg/m3	тру		
Densidad	l de liquido 720,14	kg/m3	Tipo de corrosión		
Densidad	l del gas 68,064	kg/m3			
Diámetro	de tubería 0,1541	m	Calular Limpiar Salir		

S CorrosionSuite 1.0 - [Corrosión Puntual]				
Resultados Acerca de				_ 8' ×
	ß	Universitikad Surcole	ombiana	
Datos de entrada:				
Temperatura	°F •			
Presión	Psi -		Presión	
Presión Parcial CO2	Bar			Dei
Fuerza iónica	Calcular			751
Caudal de líquido	m3/d	рн		Bar
Caudal de gas	Mm3/d			
Corte de agua	%	Velocidad de corrosión mpy		
Densidad del agua	kg/m3			
Densidad de liquido 720,14	kg/m3	Tipo de corrosión		
Densidad del gas 68,064	kg/m3			
Diámetro de tubería 0,1541	m	C <u>a</u> lular <u>L</u> impiar <u>S</u> alir		

Figura 25. Ingreso de la presión al software en diferentes unidades.

Figura 26. Ingreso de la presión parcial del CO₂ al software en diferentes unidades.

S CorrosionSuite 1.0 - [Corrosión Puntual]				
Resultados Acerca de				_ 8 ×
		Universitiand Surcolo	ന്നിന്നു	COFA
Datos de entrada:				
Temperatura	°F 🔹			
Presión	Psi 👻			
Presión Parcial CO2	Psi 👻		Presión Parcial CO2	<u>Psi</u> 🔻
Fuerza iónica	Bar %molar			A.
Caudal de líquido	m3/d	рН		PSI
Caudal de gas	Mm3/d			Bar
Corte de agua	%	Velocidad de corrosión		%molar
Densidad del agua	kg/m3	тру		
Densidad de liquido 720,14	kg/m3	Tipo de corrosión		
Densidad del gas 68,064	kg/m3			
Diámetro de tubería 0,1541	m	Calular Limpiar Salir		

Otro dato requerido para calcular la velocidad de la corrosión es la fuerza iónica, si no se tiene se puede calcular con la concentración de los diferentes iones presentes en el agua (figura 27).

Sodio	(mg/L)	Sulfato	(mg/L)
Magnesio	(mg/L)	Bicarbonato	(mg/L)
Calcio	(mg/L)	Carbonato.	(mg/L)
Potasio	(mg/L)	Hidroxido	(mg/L)
Manganeso	(mg/L)	Borato	(mg/L)
Estroncio	(mg/L)	Bromuro	(mg/L)
Bario	(mg/L)	Fosfato	(mg/L)
Hierro +2	(mg/L)		Ť
Hierro +3	(mg/L)	Fuerza ion	ica
Cloruro	(mg/L)		

Figura 27. Cálculo de la fuerza iónica.

Los resultados obtenidos por el software son la velocidad de la corrosión en mpy, además da a conocer el tipo de corrosión presente, para tomar medidas preventivas o correctivas.

La segunda opción del primer comando corresponde al cálculo de la corrosión nodal, que corresponde al perfil de la corrosión a lo largo de la tubería (figura 28). Es necesario tener un análisis nodal a lo largo de la tubería, que permite conocer la presión y la temperatura a diferentes profundidades, para generar el perfil de corrosión en la tubería.

7			T	Ju	niversidad Surcol	ombiana		COFA
imero de punt	os *	Dato número:				- Datos de entrada:		
ata: Debe ing	resar las presion Psi	ves y las tempe	raturas en los	puntos es	specificos.	Presión del sistema	1068	Psi
moeratura	eF				_	Presión Parcial CO2	1,31	%molar •
fundidad	R	jngresar Dato	Linpiar	Cglcular		Fuerza iónica	0,27793	Galculor
n	Presion 718	Temperatura 169	Ficlunddad •	Co	mosion • 39535132511	Caudal de líquido **	74,3561	m3/s
	804	179	1080	30.	25400857234		7.6393	-
	893	190	1520	22	00652963363	Caudal de gas	7,5788	Mm3/s
	505	200	2160	16.	59428961886	Corte de agua	01	%
	1083	211	2700	12	40580465610	Densidad del agua	1000	 kg/m3
Terperatura	Profundidad	Ducalda				Densidad de líquido ***	720,14	 kg/m3
w	orrosion vs	Presion		_		Densidad del gas	68,064	- kg/m3
42.386361						Diametro de tuberia	0,1541	m
20	A RECOM	8				* El número de punto largo de la tubería, presitin, la temper generar	s hace referenc donde se es n atura y la profu el pertil de com ** Caudal d	cia a los nodos a l ecesario conocer i ndidud, para pode osión en la tuberi le crudo más agua

Figura 28. Cálculo de la corrosión nodal.

Se pueden ingresar directamente los datos de presión, temperatura y profundidad al programa o se pueden cargar desde una base de datos Access, ubicada en la ruta C:\Program Files\CorrosionSuite\datac, en esta base de datos se puede editar uno o todos los datos que sean necesarios para calcular la corrosión por dióxido de carbono (figura 29).

A . O - O - ↓ Archivo Inicio Crear Dato	os externos Herramientas de base de dato	Herramientas de tabla datac : Base de datos s Campos Tabla	(Formato de archivo de Acc	ess 2002 - 2003) - Microsoft Access	– d X ^ (2
Ver Pegar Copiar	Y Ascendente Y Selección + Filtro A↓ Descendente Y Avanzadas + A↓ Ouitar orden Y Alternar filtro	Image: Nuevo Σ Totales Guardar Φ Guardar Actualizar ★ Eliminar * Mas r	Buscar Buscar busca	Calibri (Detalle) 11 ★ 11 ↓ 11 N K S A ★ ★ ▲ ★ ↓	∉ ит• ⊞• ≞•
Vistas Portapapeles 12	Ordenar y filtrar	Registros	Buscar	Formato de texto	a l
Tablas 🕥 🕊	Tdata				×
Buscar. Q	n Presion Te	nperatura 🛪 Profundidad 🗸			
	719 16	540			
	804 17	1080			
	893 19) 1620			
	986 20	2160			
	1083 21	L 2700			
	1184 22	L 3240			
	1288 23	2 3780			
	1396 24	2 4320			
	1454 24	7 4590			
	1629 26	3 5400			
	1629 21	2. 5400			
	1650 21	3 5500			
	法				
	_				
	_				
	_				
	_				
	_				
	_				
	-				
	Registro: H 4 1 de 12 🕨 H 🛌 🕅 S	in filtro Buscar			
Vista Hoja de datos					Bloq Num 🔳 🕮 🔐 🖄

Una vez que los datos se ingresan al programa, en la parte superior izquierda, se encuentra una casilla donde se debe ingresar el número de puntos, que hace referencia a los nodos a lo largo de la tubería, y se debe conocer la presión, la temperatura y la profundidad, que también son ingresados al programa (figura 23). Se debe indicar el número de puntos, luego se ingresa la presión, temperatura y profundidad, y se presiona el botón Ingresar Dato. Al presionar el botón aparece una ventana informando que los valores fueron ingresados correctamente, y pide que se ingresen nuevos valores.

	Universidad Surcolor	nbiana		COFA
ímero de puntos " 👔 Dato númer	0:	-Datos de entrada:		
ta: Debe ingresar las presiones y las ten	nperaturas en los puntos específicos.	Presión del sistema	1068	Psi
mperatura 169 °F		Presión Parcial CO2	1,31	Psi •
fundidad 540 Ft Ingresar Da	Limpiar C <u>a</u> lcular	Fuerza iónica	0,27793	Galcular
n Presion Temperatura	Profundidad Corrosion *	Caudal de líquido **	74,3561	m3/s
	corrosion	Caudal de gas	7,5788	Mm3/s
	Valores ingresados correctamente, ingrese nuevos	valores Corte de agua	10	96
	Aceptar	Densidad del agua	1000	kg/m3
[temperatura] Protuncicad		Densidad de líquido ***	720,14	kg/m3
		Densidad del gas	68,064	kg/m3
		Diametro de tuberia	0,1541	m
		* El número de puntos largo de la tuberia, presión, la tempera generar e	hace referenci tonde se es nec tura y la profun I perfil de corro 	a a los nodos a l cesario conocer l Ididad, para pode sión en la tuberí crudo más agua " Crudo más agu

Figura 30. Datos ingresados al programa por el usuario.

El programa muestra el número de datos que se van a ingresar y los datos que se han ingresado. Al terminar de ingresar todos los datos muestra una ventana confirmando que ya se ha terminado (figura 31) y automáticamente carga los datos ingresados a la tabla.

CorrosionSuite 1.0	- (Corrosión	Nodal]							-
Basultadas Access	da								-
				ľ	J	ersidad Surcolombiana			COFA
Número de pur	tos =	12	Dato número: 1	11			- Datos de entrada:		
Nota: Debe in Presión	gresar las 1650	presio Psi •F	nes y las tempel	raturas en los	s puntos espec	cos.	Presión del sistema Presión Parcial CO2	1068	Psi Psi •
Profundidad	5500	Ft	Ingresar Dato	Limpiar	C <u>a</u> lcular		Fuerza iónica	0,27793	Calcular
n	Presion		Temperatura	Profundidad	* Corrosio	rrosion X	Caudal de líquido **	74,3561	m3/s
						Ya ingreso todos los valores correspondientes	Caudal de gas	7,5788	 Mm3/s
						Aceptar	Corte de agua	10	%
	-	_					Densidad del agua	1000	 kg/m3
esión Temperatura	Profundidad	1					Densidad de líquido ***	720,14	kg/m3
							Densidad del gas	68,064	 kg/m3
							Diametro de tuberia	0,1541	m
							El número de punto: largo de la tuberla, presión, la tempera generar o	s hace referen donde se es n tura y la profu el perfil de corr ** Caudal d	cia a los nodos a le cesario conocer la indidad, para podei osión en la tubería le crudo más agua. ** Crudo más agua

Figura 31. Datos ingresados correctamente.

Al dar clic en el botón calcular, genera los datos de corrosión para cada una de las presiones, temperatura y profundidad anteriormente ingresadas (figura 32).

A CONTRACTOR OF				ľ		Universidad Sure	olombiana			COFA
Vúi	nero de punt	os *	Dato número:					-Datos de entrada:		
io re	t a: Debe ingi sión mperatura	resar las presi Psi •F	ones y las tempe	raturas en los	punt	os específicos.		Presión del sistema Presión Parcial CO2	1068 1,31	Psi %molar •
-0	fundidad	Ft	Ingresar Dato	Limpiar	Ca	Icular		Fuerza iónica	0,27793	Calcular
	n 1	Presion 719	Temperatura 169	Profundidad 4 540		Corrosion + 42,38635130511		Caudal de líquido **	74,3561	m3/s
	2	804	179	1080	-	30,26400857234		Caudal de gas	7,5788	 Mm3/s
	4	986	200	2160		16,59428961886		Corte de agua	10	%
		1000	211	12700	•	12,43300405310		Densidad del agua	1000	kg/m3
	Temperatura	Profundidad				1		Densidad de líquido ***	720,14	kg/m3
								Densidad del gas	68,064	kg/m3
								Diametro de tuberia	0,1541	m
								* El número de punto: largo de la tuberia, presión, la tempera generar d	s hace referend donde se es no tura y la profu al perfil de corr ** Caudal d	cia a los nodos a l ecesario conocer l ndidad, para pode osión en la tuberi e crudo más agua
									**	* Crudo más a

Figura 32. Datos de corrosión generados.

Al dar clic en el botón graficar genera tres gráficas en la parte inferior izquierda de la ventana, donde muestra el comportamiento de la corrosión respecto a la presión, temperatura y profundidad (figura 33).

1 Universidad Surcolombiana 2 COFA 1068 Pro Ps al coo 1,31 Limpiar Ingresar Dato Calcular Calcular R 0,27793 Contexon 42,38535130511 30,25400857234 74,3561 m3/s de limido 179 7,5788 Mm3/s 893 190 1520 22.00652963363 16 59428961886 10 1083 2700 12,43580469510 d del aqua 1000 ka/m3 ra Profunddad tad de líquido * 720,14 kg/m3 Corrosión vs Presión idad del gas 68,064 kg/m3 etro de tuberia 0.1541 m --- Crudo más. Presión (Psi) Graficar Salir

Figura 33. Gráficas generadas por el programa.

En el botón generar reporte, se muestra un informe que contiene todos los datos con sus respectivas gráficas. El informe puede ser impreso directamente o puede ser guardado en Excel, PDF y Word (figura 34).

I of 3? I I Temperatura (°F) Corr 169 251. 179 178. 190 129. 200 97.6 211 73.0 221 56.4 232 43.4 242 23.2 213 46.7 El siguiente grafico muest corrosión.	Image: Second Surcelombiana Image: Second	Find Next	
Temperatura (°F) Corr 169 251. 179 178. 190 129. 200 97.6 211 73.0 221 56.4 232 43.4 242 34.4 247 30.7 263 219. 212 48.2 213 46.7 Storrosión. Storrosión.	Driversidad Surcolombiana Desión (mpy) 3919 9013 6650 562 307 243 819 223 187 973 71		
Temperatura (°F) Corr 169 251. 179 178. 190 129. 200 97.6 211 56.4 232 43.4 242 34.4 247 30.7 263 21.9 212 46.7 213 46.7 213 46.7	hiversidad Surcolombiana asión (mpy) 3919 9013 6650 665 562 307 243 819 253 187 973 71	COFA	
Temperatura (°F) Corri 169 251. 179 178. 190 129. 200 97.6 221 56.4 232 43.4 242 34.4 247 30.7 263 21.9 212 48.2 213 46.7 al siguiente grafico muestorrosión.	Iniversidad Surcolombiana bsión (mpy) 3919 39013 665 65507 665 5622 307 2243 819 2253 187 973 71	COFA	
Temperatura (°F) Corri 169 251. 179 178. 190 129. 100 97.6 211 56.4 222 43.4 242 34.4 247 30.7 263 21.9 212 48.2 213 46.7 I siguiente grafico muestorrosión.	bsión (mpy) 3919 9013 66507 6665 562 243 807 2243 819 2253 187 973 71	COFA	
Temperatura (°F) Corr 69 251. 79 178. 90 129. 00 97.6 11 73.0 21 56.4 32 43.4 42 34.4 47 30.7 63 21.9 12 48.2 13 46.7 siguiente grafico muestorrosión. stational destructional destruction de	<i>hsión (mpy)</i> 3919 39013 66507 6665 6665 662 307 243 809 253 187 197 371		
Femperatura (°F) Corr 169 251. 179 178. 90 129. 100 97.6 11 73.0 121 56.4 132 43.4 147 30.7 163 21.9 112 48.2 113 46.7 'siguiente grafico muestorrosión.	bsión (mpy) 3919 39013 6607 6665 6662 307 243 819 253 819 253 187 771		
Temperatura (°F) Corr 169 251. 179 178. 190 129. 200 97.6 211 73.0 221 56.4 232 43.4 242 34.4 247 30.7 263 21.9 212 48.2 213 46.7 H siguiente grafico muestorrosión.	bsión (mpy) 3919 9013 6607 6665 662 307 243 819 253 187 87 973 71		
Temperatura (°F) Corr 169 251. 179 178. 190 129. 200 97.6 211 73.0 221 56.4 232 43.4 242 34.4 247 30.7 263 21.9 212 48.2 213 46.7 Il siguiente grafico muestorrosión.	ssión (mpy) 3919 3013 6650 665 562 307 243 819 223 819 253 187 71		
169 251. 179 178. 190 129. 200 97.6 211 73.0 221 56.4 232 43.4 242 34.4 247 30.7. 263 21.9 212 48.2 213 46.7 I siguiente grafico muest orrosión.	3919 9013 6660 6666 662 3007 243 8019 2253 8019 2253 8019 73 71		
179 178. 190 129. 200 97.6 211 73.0 221 56.4 232 43.4 242 34.4 247 30.7 263 21.9 212 48.2 213 46.7 1 siguiente grafico muest orrosión.	9013 6607 6665 662 243 8019 253 187 1973 711		
190 129. 200 97.6 211 73.0 221 56.4 232 43.4 242 34.4 247 30.7 263 21.9 212 48.2 213 46.7 'I siguiente grafico muestorrosión.	6607 665 562 307 243 819 253 187 71		
200 97.6 211 73.0 221 56.4 232 43.4 242 34.4 247 30.7 263 21.9 212 48.2 213 46.7 El siguiente grafico muestorrosión.	666 562 243 819 253 187 973 771		
211 73.0 221 56.4 232 43.4 242 34.4 247 30.7 263 21.9 212 48.2 213 46.7 51 siguiente grafico muest porrosión.	562 307 243 819 253 187 973 771		
221 56.4 232 43.4 242 34.4 247 30.7 263 21.9 212 48.2 213 46.7 El siguiente grafico muestorrosión.	307 243 819 253 187 973 711		
232 43.4 242 34.4 247 30.7 263 21.9 212 48.2 213 46.7 El siguiente grafico muestrorrosión.	243 819 253 187 973 711		
242 34.4 247 30.7 263 21.9 212 48.2 213 46.7 El siguiente grafico muest corrosión.	819 253 187 973 711		
247 30.7. 263 21.9. 212 48.2 213 46.7 El siguiente grafico muestorrosión.	253 187 973 711		
263 21.9 212 48.2 213 46.7 Il siguiente grafico muestorrosión.	187 973 711		
212 48.2 213 46.7 El siguiente grafico muest corrosión.	973		
213 46.7 El siguiente grafico muesi corrosión.	711		
El siguiente grafico muesi corrosión.			
	ra el efecto de la temperatura sobre la veloc	cidad de la	
	Corrosión vs temperatura		
300		Corrosion	
250 - 200 - 99 150 - 100 -			
8 50- 7-	Marrie Marrie		
	the state which a she which she		

Figura 34. Ventana de reporte.

El segundo comando corresponde a la función acerca de... En él se encuentra información del modelo de Waard y Lotz, los diferentes factores que influyen en la corrosión por dióxido de carbono, los tipos de corrosión por dióxido de carbono e información del software y sus programadores (figura 35 y figura 36).

Conceindente 10

Recitation
Accessed acc.

Madeliad de Waardy Lotet
Factores quelifingen
Tipes de conceiñe
Accessed s Calification
Accessed s Calification

Figura 35. Función ayuda del software.

Figura 36. Acerca del CORROSIONSUITE 1.0.

Acerca de CorrosionSuite 2.1	
	CorrosionSuite
	Versión 1.0
	Copyright (c) pyright (c) 2013
	Universidad Surcolombiana Ingeniería de Petróleos
	Descripción: Diseñado para la predicción de la rata de corrosión por dióxido de carbono en sistemas de producción.
	Diseñado por: Diego Andrés Gil Suárez Harold Iván Mantilla Córdoba
	Salir

4. VALIDACIÓN DEL SOFTWARE CORROSIONSUITE

La validación del software se hizo con base en datos experimentales tomados de fuentes secundarias, puesto que en la sala CPIP no hay programas que calculen las tasas de corrosión; tampoco se tiene información completa de datos de campo. En la literatura no se encuentra información completa para validar el software y comparar los resultados de las velocidades de la corrosión.

Los resultados de corrosión usados corresponden al campo Quiriquire [26] ubicado al oriente de Venezuela, el cual consta de catorce (14) pozos productores, dieciséis (16) líneas de flujo y dos (2) estaciones recaudadoras de llegada del flujo (W-9mix) y (W-16mix). De las dieciséis líneas de flujo se cuenta con alguna información como la presión, temperatura, porcentaje molar del CO2, caudal de gas, caudal de crudo, caudal de agua, densidad del gas, densidad del crudo; pero fue necesario calcular otros datos como fuerza iónica (que se asumió como constante para todas las líneas de flujo), el pH, densidad del agua, corte de agua; todos estos datos necesarios para ingresarlos al software y calcular la velocidad de la corrosión.

4.1. DESCRIPCIÓN DE LAS VARIABLES OPERACIONALES DE CADA LINEA DE FLUJO EN EL PROCESO

En la tabla 7 se observan las concentraciones de dióxido de carbono CO₂ y las presiones promedios en cada tramo de las 16 líneas, representadas por W-1 a W-16.

Pozo	Presión (psia)	% molar de CO ₂
W-1	1082.70	1.31
W-2	1090.70	1.32
W-3	1121.70	1.33
W-4	1168.70	1.35
W-5	1168.70	1.35
W-6	1081.70	1.34
W-7	1135.70	1.33
W-8	1139.70	1.35
W-9	1080.23	1.33
W-10	1168.70	1.34
W-11	1169.70	1.33
W-12	1203.70	1.34
W-13	1140.70	1.17
W-14	1155.70	1.35
W-15	1183.70	1.35
W-16	1106.60	1.34

Tabla 7. Presiones de operación y contenido de CO₂ en cada pozo.

Fuente^[25]

En la tabla 8 se encuentra cada una de las presiones parciales reportadas para cada pozo, pudiéndose observar que los valores son muy similares en los 16 pozos.

Pozo	Presión (psia)	% molar de CO2	PpCO ₂
			(psia)
W-1	1082.70	1.31	14.18337
W-2	1090.70	1.32	14.39724
W-3	1121.70	1.33	14.91861
W-4	1168.70	1.35	15.77745
W-5	1168.70	1.35	15.77745
W-6	1081.70	1.34	14.49478
W-7	1135.70	1.33	15.10481
W-8	1139.70	1.35	15.38595
W-9	1080.23	1.33	14.36705
W-10	1168.70	1.34	15.66058
W-11	1169.70	1.33	15.55701
W-12	1203.70	1.34	16.12958
W-13	1140.70	1.17	13.34619
W-14	1155.70	1.35	15.60195
W-15	1183.70	1.35	15.97995
W-16	1106.60	1.34	14.82844

Tabla 8. Presiones parciales de CO2 para cada pozo.

Fuente [25]

4.2. APLICACIÓN DEL SOFTWARE CORROSIONSUITE 1.0

Considerando todos los parámetros requeridos por el software, se determinaron las velocidades de corrosión en cada pozo en estudio, utilizando el modelo predictivo CORROSIONSUITE 1.0.

En las siguientes tablas se muestran las condiciones de operación de cada pozo y las condiciones del flujo de gas y del flujo de hidrocarburos, respectivamente.

Pozo	Presión (psia)	Temperatura (°F)	% molar de CO ₂	Q _{Gas} [Mm^3/Día]	Q _{Agua} [Bbls/Día]	Q _{Crudo} [Bbls/Día]
W-1	1082.70	103.0	1.31	7.68783	14.06708	467.70
W-2	1090.70	104.0	1.32	10.21907	19.08111	494.70
W-3	1121.70	98.0	1.33	4.53340	8.47539	249.90
W-4	1168.70	100.9	1.35	8.71636	17.28124	398.00
W-5	1168.70	101.0	1.35	5.86678	11.60815	267.40
W-6	1081.70	95.0	1.34	7.85864	13.44702	464.90
W-7	1135.70	101.0	1.33	5.20810	10.09972	282.20
W-8	1139.70	92.0	1.35	8.33296	14.79169	423.80
W-9	1080.23	97.4	1.33	60.61203	109.50655	3105.60
W-10	1168.70	94.0	1.34	3.84600	7.22272	193.20
W-11	1169.70	94.0	1.33	5.99990	11.14301	342.50
W-12	1203.70	105.0	1.34	12.47525	26.45111	678.70
W-13	1140.70	88.0	1.17	0.86186	1.44086	160.10
W-14	1155.70	97.0	1.35	6.82608	12.87022	350.70
W-15	1183.70	95.0	1.35	8.54565	16.32004	420.30
W-16	1106.60	93.0	1.34	39.92097	71.58565	2256.70

Tabla 9. Condiciones de operación de cada pozo.

Fuente [25]

Pozo	$oldsymbol{ ho}$ Gas	$oldsymbol{ ho}$ Crudo	$oldsymbol{ ho}$ Agua	Q Liquido	Q _{Gas}	BSW [%]
	[Kg/m^3]	[Kg/m^3]	[Kg/m^3]	[m^3/Día]	[Mm^3/Día]	
W-1	68.0785	720.1900	999.4628	73.03951	7.68783	2.92
W-2	67.4377	730.7621	992.2500	77.25603	10.21907	3.71
W-3	70.0007	720.5103	993.4888	39.02624	4.53340	3.28
W-4	70.6414	754.3093	992.8964	62.15464	8.71636	4.16
W-5	70.6414	754.4695	992.8779	41.75917	5.86678	4.16
W-6	65.9961	745.8195	994.0800	72.60224	7.85864	2.81
W-7	70.4812	722.4325	992.8779	44.07045	5.20810	3.46
W-8	70.4812	743.2565	994.6511	66.18376	8.33296	3.37
W-9	66.4766	736.4968	993.6112	484.99356	60.61203	3.41
W-10	72.6597	744.6982	994.2760	30.17155	3.84600	3.60
W-11	71.4423	743.0964	994.2760	53.48734	5.99990	3.15
W-12	73.8451	733.3251	992.0316	105.99083	12.47525	3.75
W-13	71.4423	833.9210	995.3748	25.00241	0.86186	0.89
W-14	71.1220	742.1353	993.6904	54.76792	6.82608	3.54
W-15	72.8840	750.1445	994.0800	65.63717	8.54565	3.74
W-16	70.0007	744.8584	994.4663	352.42303	39.92097	3.07

Tabla 10. Condiciones del flujo de gas y del flujo de hidrocarburos para cada pozo.

Fuente^[25]

Con base en las velocidades de la corrosión generadas por el programa, se elaboraron gráficas con respecto a la temperatura, presión parcial del CO₂, pH, corte de agua, caudal de líquido y caudal de gas, con el objetivo de observar la influencia de las diferentes variables sobre las velocidades de corrosión, en donde se puede apreciar que los resultados obtenidos por el software CORROSIONSUITE 1.0, reflejan que muchos factores, como los cambios en la temperatura y la presión perturban muchos parámetros, incluyendo el comportamiento de la fase del agua que afecta las tasas de corrosión de ciertos puntos debido a la condensación del agua.
De los resultados obtenidos por el software CORROSIONSUITE 1.0, se aprecia que en los pozos donde se refleja mayor velocidad de corrosión es en el W-4, W-9 y W-12, debido a que estos pozos tienen mayor caudal de gas y alto caudal de líquido.

En la figura 37 se muestran las velocidades de corrosión obtenidas por el software CORROSIONSUITE 1.0 de cada uno de los pozos evaluados, considerando como los más críticos el pozo W-4, W-9 y W-12, observándose que se encuentran por encima del límite máximo permisible (5 mpy), corrosión alta, establecido para el control y monitoreo de corrosión por NACE según la norma RP0775 ^[26]; por encima de este valor se considera que los daños por corrosión y pérdidas de metal serán severos en la industria del petróleo.

Fuente: Autores.

Es un buen indicio considerar confiables los resultados generados por el programa CORROSIONSUITE 1.0, debido a que éste considera la formación de capas protectoras, tiene en cuenta la composición química del agua, la relación hidrocarburo/agua, incluye un factor de corrección debido al pH e incluye otros factores que simulan la realidad de estos sistemas en tuberías.

4.3. DETERMINACIÓN DEL TIPO DE CORROSIÓN PREDOMINANTE

En la tabla 11 se observan las velocidades de corrosión de los pozos, calculadas con el software CORROSIONSUITE 1.0, donde la mayoría se encuentran en el rango de corrosión moderada establecido por la norma RP0775^[26] descrita en el capítulo dos.

POZO	VELOCIDAD DE	TIPO DE CORROSIÓN
	CORROSION [mpy]	PREDOMINANTE
W-1	4.02413	Moderada
W-2	4.90073	Alta
W-3	3.63382	Moderada
W-4	5.38461	Alta
W-5	4.78098	Moderada
W-6	3.58723	Moderada
W-7	4.10732	Moderada
W-8	4.05089	Moderada
W-9	5.24219	Alta
W-10	3.58597	Moderada
W-11	3.86072	Moderada
W-12	6.30313	Alta
W-13	1.04815	Moderada
W-14	4.40422	Moderada
W-15	4.75841	Moderada
W-16	4.57052	Moderada

 Tabla 11. Tipo de corrosión predominante en los pozos.

Fuente: Autores.

Figura 38. Corrosión predominante en los pozos, según los rangos establecidos por la Norma RP0775.

Fuente: Autores.

4.4. ANÁLISIS COMPARATIVOS DE LOS CÁLCULOS DE VELOCIDAD DE CORROSIÓN A PARTIR DE CORRELACIONES EMPÍRICAS UTILIZADAS Y EL SOFTWARE CORROSIONSUITE 1.0.

Se determinaron las velocidades de corrosión usando los modelos matemáticos De Waard, De Waard & Milliams y el software predictivo CORROSIONSUITE 1.0. En la tabla 12 se muestran los resultados de las velocidades de corrosión reportados por los modelos matemáticos y el software desarrollado CORROSIONSUITE 1.0.

Pozo	Velocidad de Corrosión por Correlación De Waard & Milliams [mpy]	Velocidad de Corrosión por Correlación de C. de Waard [mpy]	Velocidad de Corrosión por Software CORROSIONSUITE 1.0 [mpy]
W-1	9.464107087	10.949080620	4.02413
W-2	10.045545370	11.305858790	4.90073
W-3	6.042479470	10.147150590	3.63382
W-4	9.255870928	11.216880580	5.38461
W-5	6.744906316	11.241483800	4.78098
W-6	9.617324977	9.339316442	3.58723
W-7	6.740960160	10.921293040	4.10732
W-8	9.480241493	9.061463280	4.05089
W-9	8.543146612	9.786142285	5.24219
W-10	5.165477318	9.567897179	3.58597
W-11	20.265348490	9.517313949	3.86072
W-12	14.461502330	12.411355230	6.30313
W-13	4.155478970	7.405493810	1.04815
W-14	8.274227287	10.222652190	4.40422
W-15	9.783690175	9.916814103	4.75841
W-16	6.836879490	9.080111537	4.57052

Tabla 12. Cuadro Comparativo de las Velocidades de Corrosión.

Fuente [25]

En la Figura 39 se aprecia que los valores generados por las correlaciones y el programa CORROSIONSUITE 1.0 difieren entre sí, sin embargo, se puede apreciar que la corrosión calculada con las correlaciones y el programa CORROSIONSUITE 1.0 son más cercanos, siendo la de De Waard & Milliams la que más se aproxima a los valores obtenidos con el simulador; también se observa que la velocidades de corrosión calculadas con el programa

CORROSIONSUITE 1.0 siempre dan menores a las calculadas con las correlaciones, lo que era de esperarse, debido a que el programa desarrollado tiene en cuenta factores de corrección debido al pH, a la capa protectora y al corte de agua que hacen que la velocidad de corrosión por CO2 no se sobrestime.

Figura 39. Cuadro comparativo de las velocidades de corrosión por las correlaciones empíricas y el simulador CORROSIONSUITE 1.0.

Fuente: Autores.

Figura 40. Velocidad de corrosión en función de la temperatura para cada uno de los pozos en estudio.

Fuente: Autores.

En la figura 40 se observa que a temperaturas por encima de 90 °F la velocidad de la corrosión es más alta, esto se debe a que el incremento en la temperatura favorece enormemente el aumento en la velocidad de la corrosión. En la figura 42 se observa la relación existente entre la corrosión y la presión parcial del CO₂, a medida que aumenta la presión parcial del CO₂ aumenta la velocidad de corrosión, siendo este uno de los factores más influyentes; en la figura 43 se observa que a cortes de agua bajos la corrosión es moderada, ésto se debe a que el agua no moja la tubería, comportamiento que valida los datos generados por el programa, pues éste es uno de los factores más importante en el cálculo de la velocidad de corrosión. En la figura 41 se espera que a medida que el pH aumenta, disminuya la velocidad de corrosión. Esto se debe a que la velocidad de la corrosión está siendo influenciada por múltiples factores incluido el pH, lo que hace que este no sea solo quien determine si la corrosión es alta o baja. Se puede observar en la figura 44 y 45, que a medida que el caudal aumenta, incrementa la velocidad de la corrosión, puesto que la velocidad de flujo se incrementa afectando la composición de las capas protectoras que se forman, debido a que este aumento provoca remoción de la película de carbonato de hierro que se ha formado.

Figura 41. Velocidad de corrosión en función del pH para cada uno de los pozos en estudio.

Fuente: Autores.

Figura 42. Velocidad de corrosión en función de la presión parcial de CO₂ para cada uno de los pozos en estudio.

Fuente: Autores.

Figura 43. Velocidad de corrosión en función del corte de agua para cada uno de los pozos en estudio.

Fuente: Autores.

Figura 44. Velocidad de corrosión en función del caudal de líquido para cada uno de los pozos en estudio.

Fuente: Autores.

Figura 45. Velocidad de corrosión en función del caudal de gas para cada uno de los pozos en estudio.

Fuente: Autores.

El software CORROSIONSUITE 1.0, es una excelente herramienta para predecir problemas de corrosión en presencia de CO_2 , puesto que incluye diversas variables físicas y químicas que afectan la velocidad de corrosión. Además incorpora factores de corrección que reducen las velocidades de corrosión, que de otro modo sobreestimarían los valores reales. El software CORROSIONSUITE 1.0, fue diseñado con base en el modelo de Waard y U. Lotz, siendo este uno de los modelos más completos para el cálculo de la velocidad de la corrosión. Una de las limitaciones del software es que funciona correctamente para pozos con temperaturas entre 0 - 200 °C, siendo esta la única limitación del software.

CONCLUSIONES

- Se desarrolló un modelo de corrosión que permite calcular las tasas de corrosión en tuberías de producción en sistemas con presencia de CO₂ con base en el modelo de Waard y Lotz.
- Se diseñó el programa computacional CORROSIÓNSUITE 1.0 que permite calcular la velocidad de corrosión de manera puntual y generar el perfil de corrosión a lo largo de la tubería.
- Según la validación de los datos realizada, se obtuvo que el programa CORROSIÓNSUITE 1.0 calcula velocidades de corrosión menores a las obtenidas con las correlaciones de Waard & Milliams y la de C. de Waard, pues el programa introduce factores de corrección que reducen la velocidad de corrosión, con el objeto de modelar el proceso real.
- Las velocidades de corrosión en la mayoría de los pozos es moderada, comportamiento que está relacionado con los bajos cortes de agua; éste es uno de los parámetros más importantes en el estudio de la corrosión por dióxido de carbono.
- Las velocidades de corrosión calculadas con el programa CORROSIÓNSUITE 1.0 aumentan con el incremento de la presión parcial del CO₂.

RECOMENDACIONES

- Continuar con la actualización del programa a medida que se realicen nuevas investigaciones y nuevos modelos.
- Es necesario medir en campo la velocidad de corrosión ya sea mediante la colocación de probetas de resistencia eléctrica o con cupones de pérdida de peso para poder comparar las velocidades de corrosión reales con los modelos predictivos.
- Es necesario contar con datos reales de cupones, que permitan validar el programa CORROSIÓNSUITE 1.0.

BIBLIOGRAFÍA

- 1. BIOMORGI MUZATTIZ, Jose Gregorio, et al. "evaluación de los mecanismos de corrosión presentes en las líneas de producción de crudo y gas ubicadas en el noreste de Venezuela (evaluation of corrosion mechanisms present in gas and oil pipelines at northeastern venezuela)". *Revista latinoamericana de metalurgia y materiales*, 2011, p. 96-106.
- 2. GÓMEZ TORREGROSA, Roberto; LANA VILLARREAL, Teresa. Tema 11. "Corrosión en la industria química". *Corrosión*, 2008.
- 3. KERMANI, M. B.; HARR, D. "The impact of corrosion on oil and gas industry". En *Giornata di studio IGF S. Donato Milanese 1996*. 2008.
- 4. KERMANI, M. B.; MORSHED, A. "Carbon dioxide corrosion in oil and gas production-a compendium". Corrosion, 2003, vol. 59, no 8, p. 659-683.
- 5. NYBORG, Rolf; DUGSTAD, Arne. "Understanding and prediction of mesa corrosion attack". *CORROSION 2003*, 2003.
- NEŠIĆ, SRDJAN. "Key issues related to modelling of internal corrosion of oil and gas pipelines-A review". *Corrosion Science*, 2007, vol. 49, no 12, p. 4308-4338.
- E. DAYALAN, G. VANI, J. R. SHADLEY, S. A. SHIRAZI, E. F. RYBICKI, "Modeling CO₂ Corrosión of Carbon Steel in Pipe Flow", Corrosión 95, paper no. 118, NACE.
- 8. LOPEZ, D. A.; PEREZ, T.; SIMISON, S. N. "The influence of microstructure and chemical composition of carbon and low alloy steels in CO₂ corrosion. A state-of-the-art appraisal". *Materials & design*, 2003, vol. 24, no 8, p. 561-575.
- VEGA TRIANA, Juan Pablo, et al. "modelo de corrosión para aceros de bajo carbono en ambientes acuosos con co2". *Revista fuentes*, 2013, vol. 10, no 1.
- 10. ZHAO, J. M.; LU, Y.; LIU, H. X. "Corrosion and control of P110 oil tube steel in CO₂-saturated solution". *Corrosion Engineering, Science and Technology*, 2008, vol. 43, no 4, p. 313-319.

- 11. BERNARDUS, F. M.; US, Shell Global Solutions." Prediction of Corrosion Rates of the Main Corrosion Mechanisms in Upstream Applications". 2005.
- 12. NYBORG, Rolf. "Overview of CO₂ corrosion models for wells and pipelines". *CORROSION 2002*, 2002.
- 13. ISMAIL, M.C. "Prediction Equation of CO₂ Corrosion With the Presence of Acetic Acid". SPE, paper no. 02233. Manchester U K. 1 de junio del 2006.
- 14. SCHMITT, Guenter; HORSTEMEIER, Michaela. "Fundamental aspects of CO₂ metal loss corrosion-Part II: Influence of different parameters on CO₂ corrosion mechanisms". *CORROSION 2006*, 2006.
- 15. SRINIVASAN, Sridhar; KANE, Russell D. "Prediction of corrosivity of CO₂/H₂S Production Environments". *CORROSION 96*, 1996.
- M.F.Suhor, M.F.Mohamed, A.Muhammad Nor, M.Singer, S.Nesic. "Corrosion of Mild Steel In High CO₂ Environment: Effect of the FeCO₃ Layer". Corrosion 2012. Paper -1434.
- 17. NESIC, S.; LUNDE, L. "Carbon dioxide corrosion of carbon steel in twophase flow". *Corrosion*, 1994, vol. 50, no 9, p. 717-727.
- 18. VALDES, Alberto, et al. "The effect of small amounts of H₂S on CO₂ corrosion of a carbon steel". *CORROSION 98*, 1998.
- 19. http://lh3.ggpht.com/nelsoncobba/SFAUaWIBMEI/AAAAAAAAAAMo/ZdSKKq AJ5Z8/s1600-h/corrosion%5B11%5D.jpg
- 20. S. Papavinasam, A. Doiron, J. Li, D. Park, and P. Liu, "SOUR AND SWEET CORROSION OF CARBON STEEL: GENERAL OR PITTING OR LOCALIZED OR ALL OF THE ABOVE?" CORROSION 2010.
- 21. KVAREKVAL, Jon; DUGSTAD, Arne. "Pitting Corrosion in CO₂/H₂S Containing Glycol Solutions under Flowing Conditions". *CORROSION 2005*, 2005.
- 22. De Waard, C., & Milliams, D. E. (1975). Carbonic acid corrosion of steel. Corrosion, 31(5), 177-181.
- 23. J. E. Oddo, M. B. Thomson. "The Prediction of Scale and CO2 Corrosion in Oil Fields Systems". CORROSION 99, paper No. 41, NACE.
- 24. DE FERRER, Magdalena París. "Fundamentos de Ingeniería de Yacimientos". Ediciones Astro Data SA, Maracaibo, Venezuela, 2009.

- 25. Peraza, R., & Villalta, R. (2009). Evaluación de corrosión por CO₂ y erosión en líneas de flujos de pozos ubicados en campo Quiriquire en el oriente de Venezuela.
- 26. RP0775, N. S. (2005). Preparation, installation, analysis and interpretation of corrosion coupons in oilfield operations. Houston, Texas, USA.

Modelamiento de Corrosión por Dióxido de Carbono en Sistemas de Producción (Tuberías) de Crudo Con Base en el Modelo de Waard y Lotz.

Carbon Dioxide Corrosion Modeling in Oil Production Systems (Pipes) Based on Waard and Lotz Model.

Carmen Pinzón Torres.¹, Diego Andrés Gil S.² y Harold Iván Mantilla C.³

Resumen

En este documento se presentan las reacciones químicas involucradas en la corrosión por dióxido de carbono en tuberías de producción de hidrocarburos y los parámetros más importantes que deben ser tenidos en cuenta para determinar la velocidad de corrosión y los factores de corrección que se deben aplicar para no sobrestimar este fenómeno. Se mencionan también los modelos más comunes para calcular la velocidad de corrosión por dióxido de carbono, haciendo énfasis en el modelo propuesto por WAARD Y LOTZ; Con base en este modelo se diseñó el programa "CORROSIONSUITE 1.0", que permite calcular la velocidad de corrosión de manera puntual y estimar si la corrosión que se presenta es leve, moderada o severa; además predice la velocidad de corrosión a lo largo de la tubería de producción y realiza un perfil de corrosión que facilita determinar cuál es la zona de corrosión más crítica en la tubería. La validación del programa se hizo con datos tomados de la literatura y se corroboró que el programa creado proporciona datos confiables.

Palabras claves: Corrosión, CO₂, presión parcial del CO₂, Waard y Lotz, modelos.

Abstract

In this paper we present the chemical reactions involved in carbon dioxide corrosion in oil production pipelines and the most important parameters to be taken into account to determine the corrosion rate and the correction factors to be applied to non- overestimate this phenomenon. Also mentioned are the most common models to calculate the carbon dioxide corrosion rate, with emphasis on the model proposed by WAARD AND LOTZ ; Based on this model, it was designed the " CORROSIONSUITE 1.0 ", which allows to calculate the corrosion rate punctually and estimate whether the corrosion that occurs is mild, moderate or severe, also predicts the corrosion rate along the production tubing and execute a corrosion profile that makes it easier to determinate which is the most critical area in the pipe. The program validation data were taken from the literature and it was confirmed that the program provides a reliable data set. The blocks and producer sands according to the proposed model made by ECOPETROL SA, and finally possible recommendations were made.

Keywords: Corrosion, CO₂, CO₂ partial pressure, Waard and Lotz, models.

¹ Ingeniera Química. Universidad Surcolombiana. Av. Pastrana Borrero carrera 1ª Neiva. carmen.pinzon@usco.edu.co

² Ingeniero de Petróleos. Universidad Surcolombiana. Av. Pastrana Borrero carrera 1ª Neiva. Diegoandresgil17@hotmail.com

³ Ingeniero de Petróleos. Universidad Surcolombiana. Av. Pastrana Borrero carrera 1ª Neiva. Ivan-cordoba@hotmail.es

1. Introducción

Es frecuente encontrar pozos con altas concentraciones de CO₂, las cuales generan problemas de corrosión asociadas con el agua. La necesidad de reducir costos originados por la corrosión, ha llevado a las operadoras, institutos de investigación y compañías de servicios, a intensificar los estudios para conocer los mecanismos de la formación de corrosión por CO₂, los cuales han permitido el desarrollo de diversos modelos para la predicción de la corrosión.

El modelamiento de la corrosión interna de tuberías de petróleo y gas de acero al carbono debe incluir las reacciones electroquímicas, composición química del agua, formación de capas protectoras, temperatura, tipo de flujo, tipo de acero, concentración de glicol / metanol y ataque localizado, entre los muchos factores que inciden en la corrosión por CO₂.

Los modelos desarrollados presentan metodologías para estimar la velocidad de corrosión en la producción de petróleo y gas, algunos de estos modelos son mecanísticos y otros son empíricos.

2. Modelo de Corrosion de Waard y U. Lotz

El modelo desarrollado por Waard y colaboradores ha sido durante varios años el modelo de corrosión por CO_2 más utilizado. La primera versión se publicó en 1975 y se basó solo en la influencia de la temperatura y presión parcial del CO_2 . El modelo ha sido revisado varias veces, adicionando diferentes factores de corrección a la ecuación original ^[1].

Desde el trabajo inicial de C. Waard, numerosos estudios se han realizado para predecir la velocidad de corrosión bajo diferentes ambientes operacionales. Uno de los trabajos, es el de Waard y U. Lotz, el cual es un modelo cuantitativo que incluye diversas variables físicas y químicas que afectan la velocidad de corrosión. Incorpora factores de corrección por lo general menores a uno, que reducen las velocidades de corrosión, que de otro modo sobreestimarían los valores reales. Estos factores son entre otros el efecto de la concentración de los iones hierro, el pH, la presión total y el efecto de formación de películas protectoras ^[1].

La predicción de la velocidad de corrosión mediante ecuaciones o modelos matemáticos se inició en 1975 con el modelo empírico de Waard y Milliams^[2] que predice la velocidad de corrosión de un acero en ambientes con CO₂; se calcula en función de la presión parcial del CO₂ y de la temperatura, de acuerdo a la ecuación empírica:

$$Log (Vc) = 5.8 - \left(\frac{1710}{T+273}\right) + 0.67 Log (pCO_2)$$
(1)

Donde:

Vc = Velocidad de la corrosión (mm/año).T = Temperatura de operación (°C). pCO₂ = Presión parcial del CO₂ (bar)

A temperaturas iguales o superiores a 60°C, la película protectora se supone estable y lo suficientemente protectora, por lo que se incluye un factor de corrección:

 $V = F(s) * Vc \tag{2}$

Donde:

V = Velocidad de corrosión ajustada.

F(s) = Factor de corrección por la formación de capa protectora de carbonatos.

Vc = Velocidad de corrosión calculada con la ecuación original de Waard y Milliams; ecuación (12)^[2].

La ecuación original de Waard y Milliams se aplica solo para bajas presiones parciales de CO_2 (< 1 bar). A altas presiones debe corregirse por la fugacidad.

La fugacidad del CO_2 se calcula multiplicando la presión parcial del CO_2 por el coeficiente de fugacidad. La fugacidad del CO_2 se calcula de la siguiente forma:

$$f_{CO_2} = a * pCO_2 \tag{3}$$

Donde:

$$\begin{split} f_{CO_2} &= fugacidad \; del \; CO_2. \\ a &= coeficiente \; de \; fugacidad. \\ pCO_2 &= Presión \; parcial \; del \; CO_2 \; (bar). \end{split}$$

El coeficiente de fugacidad se calcula con la siguiente ecuación:

$$Log(a) = P \ total \left(0,0031 - \frac{1.4}{T + 273} \right) \tag{4}$$

Donde: P = Presión total (bar). T = Temperatura (°C).

La velocidad de corrosión está dada por:

$$Log(v_c) = 5.8 - \frac{1710}{T + 273} + 0.67 Log(f_{CO_2})$$
(5)

2.1. Evaluación de la Velocidad de Corrosión mediante la Correlación de c. de Waard y u. Lotz

Desde 1993, en la ecuación original de C. Waard y Milliams se han incluido diversos factores de corrección que consideran algunas variables físicas que inciden sobre la velocidad de corrosión. Waard y Lotz propusieron la siguiente ecuación para predecir la corrosión de acero al carbono^[3]:

$$V_{cor} = \frac{1}{\frac{1}{c*V_{mass}} + \frac{1}{V_{react}}}$$
(6)

Donde:

$$\begin{split} V_{cor} &= Velocidad \; de \; la \; corrosión \; (mm/año). \\ V_{mass} &= Velocidad \; de \; corrosión \; controlada \; por \; la \; transferencia \; de \; masa. \\ V_{react} &= Velocidad \; de \; corrosión \; controlada \; por \; la \; reacción \; (mm/año). \end{split}$$

La ecuación para calcular el parámetro c de la ecuación 6 es la siguiente:

$$c = Re^2 + 2,62 * 10^6 \tag{7}$$

Donde: Re = Numero de Reynolds.

El término "c" de la ecuación 7 es constante (2,62*10⁶) para pozos con velocidades de flujo relativamente bajas.

2.1.1 Cálculo de la Velocidad de Corrosión Controlada por la Reacción (V_{react})

$$Log(V_{react}) = 5.8 - \frac{1710}{T + 273} + 0.67 Log(f_{CO_2}) * F_{pH}$$
(8)

Donde: T = Temperatura (°C). $f_{CO_2} = fugacidad del CO_2.$ $F_{pH} = Factor de corrección debido al pH.$

2.1.2 Cálculo de la Velocidad de Corrosión Controlada por la Transferencia de Masa (V_{mass})

$$V_{mass} = 0.023 * \frac{D^{0.7} U^{0.8}}{v^{0.5} d^{0.2}} * [H_2 C O_3]$$
⁽⁹⁾

Donde: D = Coeficiente de difusión. v = Viscosidad cinemática (m²/sec). U = Caudal de líquido (m/s). d = Diámetro hidráulico (m). [H₂CO₃] = Concentración del ácido carbónico (M).

La concentración del [H₂CO₃] se calcula usando la siguiente ecuación:

$$[H_2 CO_3] = f_{CO_2}(10^{LogK_H}) \tag{10}$$

Donde: $f_{CO_2} =$ fugacidad del CO₂. $K_H =$ Constante de Henry (M/bar).

Para calcular de la constante de Henry se emplea la siguiente ecuación:

• Para temperaturas entre $0 \degree C - 80 \degree C$:

$$K_{H} = 55,5484 * e^{-\left(4,8 + \frac{3934,4}{T+273} - \frac{941290,2}{(T+273)^{2}}\right)} * 10^{-\left(1,790 * 10^{-4} * P + 0,107 * I\right)}$$
(11)

• Para temperaturas entre 80 °C – 200 °C:

$$K_{H} = 55,5484 * e^{-\left(\frac{1713,63*\left(1-\frac{T+273}{647}\right)^{\left(\frac{1}{3}\right)}}{T+273}+3,875+\frac{3680,09}{T+273}-\frac{1198506,1}{(T+273)^{2}}\right)} * 10^{-(1,790*10^{-4}*P+0,107*I)}$$
(12)

Donde: K_H = Constante de Henry (M/bar). T = Temperatura (°C). P= Presión total del sistema (bar) I = Fuerza iónica (M).

Para calcular la viscosidad cinemática se emplea la siguiente ecuación:

$$Log v = \frac{1,3272(20-T) - 0,001053(T-20)^2}{(T+105)\rho_f} - 6$$
(13)

Donde:

$$\label{eq:v} \begin{split} v &= Viscosidad \ cinemática \ (m^2/sec). \\ T &= Temperatura \ (^{\circ}C). \\ \rho_f &= Densidad \ de \ la \ fluido \ (kg/m^3). \end{split}$$

Para calcular el coeficiente de difusión D de la ecuación 9 se emplea la siguiente ecuación:

$$D \simeq \frac{T}{\dot{U}} * 10^{-17} \tag{14}$$

Donde \mathring{U} =Viscosidad corregida (m²/sec). T = Temperatura (°C).

2.1.3 Factor de Corrección Debido al ph Total

La corrosión del acero, pueden conducir a la formación de FeCO₃ o Fe₃O₄, dependiendo de la temperatura y la presión parcial del CO₂. La contaminación de la solución de CO₂ con productos de corrosión reduce las velocidades de corrosión. Este efecto se describe mediante la correlación ^[4]:

$$LogF_{pH} = 0.31(pH_{sat} - pH_{act})$$
⁽¹⁵⁾

Donde: F_{pH} = Factor de corrección por el pH. pH_{sat} = pH de la solución saturada. pH_{act} = pH de la solución actual.

El pH de la solución saturada se calcula a partir de la siguiente ecuación:

$$pH_{sat} = 5.4 - 0.66Log(f_{CO_2}) \tag{16}$$

Donde: $pH_{sat} = pH$ de la solución saturada. $f_{CO_2} =$ fugacidad del CO₂.

El pH real de la solución se calcula a partir de la siguiente ecuación:

$$pH_{act} = 3,71 + 4,71 * 10^{-3} * T - 0,5 * Log(f_{CO_2})$$
⁽¹⁶⁾

Donde: $pH_{act} = pH$ real. T = Temperatura del sistema (°C). $f_{CO_2} =$ fugacidad del CO₂.

Los gases no se pueden considerar como ideales a altas presiones. Por ello, la presión parcial de un gas se multiplica por una constante de fugacidad. La presión real del CO_2 se expresa con la ecuación 3; Para calcular el coeficiente de fugacidad del gas (a), se emplean las siguientes ecuaciones:

• Si la presión total del sistema es menor o igual a 250 bar, se tiene que:

$$a = 10^{P*\left(0,0031 - \frac{1.4}{T+273}\right)} \tag{17}$$

• Si la presión total del sistema es mayor a 250 bar, se tiene que:

$$a = 10^{250*\left(0,0031 - \frac{1,4}{T+273}\right)} \tag{18}$$

Donde: T = Temperatura (°C). P = Es la presión total del sistema (bar).

2.1.4 Factor de Corrección Debido al Efecto de la Formación de la Capa Protectora

El factor de corrección debido al efecto de la formación de la capa protectora F_{protec} se multiplica por el resultado de la ecuación de la corrosión general (ecuación 6), y disminuye la cantidad de corrosión que se ha predicho, por el efecto que tiene la capa protectora.

$$\log F_{protec} = \frac{2400}{T+273} - 0.6 * \log(f_{CO_2}) - 6.7 \tag{19}$$

Donde:

 f_{CO_2} = fugacidad del CO₂. T = Temperatura (°C).

El F_{protec} es un factor general de corrección que está entre 0,0 y 1,0.

Las capas protectoras formadas por la depositación de minerales han sido reconocidas ampliamente que reducen o eliminan la corrosión en las tuberías.

2.1.5 Factor de Corrección Debido al Corte de Agua

El modelo de Waard y Lotz considera que existe agua libre en contacto con la tubería, lo que se traduce en condiciones más severas de corrosión. Por esta razón se incluyó un factor de corrección que varía dependiendo del porcentaje de agua presente en el sistema y se determina con la siguiente ecuación:

 $Fw = WC^{0,6}$

(20)

Donde:

Fw = factor de corrección por corte de agua.WC = Corte de agua.

Luego de determinar el factor Fw, éste se debe multiplicar por la velocidad de corrosión calculada con la ecuación 6.

3. Resultados

Considerando todos los parámetros requeridos por el software, se determinaron las velocidades de corrosión en cada pozo en estudio, utilizando el modelo predictivo CORROSIONSUITE 1.0.

Con base en las velocidades de la corrosión generadas por el programa, se elaboraron gráficas con respecto a la temperatura, presión parcial del CO₂, pH, corte de agua, caudal de líquido y caudal de gas, con el objetivo de observar la influencia de las diferentes variables sobre las velocidades de corrosión, en donde se puede apreciar que los resultados obtenidos por el software CORROSIONSUITE 1.0, reflejan que muchos factores, como los cambios en la temperatura y la presión perturban muchos parámetros, incluyendo el comportamiento de la fase del agua que afecta las tasas de corrosión de ciertos puntos debido a la condensación del agua.

De los resultados obtenidos por el software CORROSIONSUITE 1.0, se aprecia que en los pozos donde se refleja mayor velocidad de corrosión es en el W-4, W-9 y W-12, debido a que estos pozos tienen mayor caudal de gas y alto caudal de líquido.

Fig 1. Velocidades de corrosión reportadas por el programa CORROSIONSUITE 1.0 para cada pozo en estudio.

En la figura 1 se muestran las velocidades de corrosión obtenidas por el software CORROSIONSUITE 1.0 de cada uno de los pozos evaluados, considerando como los más críticos el pozo W-4, W-9 y W-12, observándose que se encuentran por encima del límite máximo permisible (5 mpy), corrosión alta, establecido para el control y monitoreo de corrosión por NACE según la norma RP0775^[5]; por encima de este valor se considera que los daños por corrosión y pérdidas de metal serán severos en la industria del petróleo.

Es un buen indicio considerar confiables los resultados generados por el programa CORROSIONSUITE 1.0, debido a que éste considera la formación de capas protectoras, tiene en cuenta la composición química del agua, la relación hidrocarburo/agua, incluye un factor de corrección debido al pH e incluye otros factores que simulan la realidad de estos sistemas en tuberías.

3.1 Análisis Comparativos de los Cálculos de Velocidad de Corrosión a Partir de Correlaciones Empíricas Utilizadas y el Software Corrosionsuite 1.0.

Se determinaron las velocidades de corrosión usando los modelos matemáticos De Waard, De Waard & Milliams y el software predictivo CORROSIONSUITE 1.0. En la tabla 12 se muestran los resultados de las velocidades de corrosión reportados por los modelos matemáticos y el software desarrollado CORROSIONSUITE 1.0.

Pozo	Velocidad de Corrosión por Correlación De Waard & Milliams [mpy]	Velocidad de Corrosión por Correlación de C. de Waard [mpy]	Velocidad de Corrosión por Software CORROSIONSUITE 1.0 [mpy]
W-1	9.464107087	10.949080620	4.02413
W-2	10.045545370	11.305858790	4.90073
W-3	6.042479470	10.147150590	3.63382
W-4	9.255870928	11.216880580	5.38461
W-5	6.744906316	11.241483800	4.78098
W-6	9.617324977	9.339316442	3.58723
W-7	6.740960160	10.921293040	4.10732
W-8	9.480241493	9.061463280	4.05089
W-9	8.543146612	9.786142285	5.24219
W-10	5.165477318	9.567897179	3.58597
W-11	20.265348490	9.517313949	3.86072
W-12	14.461502330	12.411355230	6.30313
W-13	4.155478970	7.405493810	1.04815
W-14	8.274227287	10.222652190	4.40422
W-15	9.783690175	9.916814103	4.75841
W-16	6.836879490	9.080111537	4.57052

Tabla 1. Cuadro Comparativo de las Velocidades de Corrosión.

En la Figura 2 se aprecia que los valores generados por las correlaciones y el programa CORROSIONSUITE 1.0 difieren entre sí, sin embargo, se puede apreciar que la corrosión calculada con las correlaciones y el programa CORROSIONSUITE 1.0 son más cercanos, siendo la de De Waard & Milliams la que más se aproxima a los valores obtenidos con el simulador; también se observa que la velocidades de corrosión calculadas con el programa CORROSIONSUITE 1.0 siempre dan menores a las calculadas con las correlaciones, lo que era de esperarse, debido a que el programa desarrollado tiene en cuenta factores de corrección debido al pH, a la capa protectora y al corte de agua que hacen que la velocidad de corrosión por CO_2 no se sobrestime.

Fig 2. Cuadro comparativo de las velocidades de corrosión por las correlaciones empíricas y el simulador CORROSIONSUITE 1.0.

Fig 3. Velocidad de corrosión en función de la temperatura para cada uno de los pozos en estudio.

En la figura 3 se observa que a temperaturas por encima de 90 °F la velocidad de la corrosión es más alta, esto se debe a que el incremento en la temperatura favorece enormemente el aumento en la velocidad de la corrosión. En la figura 4 se observa la relación existente entre la corrosión y la presión parcial del CO₂, a medida que aumenta la presión parcial del CO₂ aumenta la velocidad de corrosión, siendo este uno de los factores más influyentes; en la figura 5 se observa que a cortes de agua bajos la corrosión es moderada, ésto se debe a que el agua no moja la tubería, comportamiento que valida los datos generados por el programa, pues éste es uno de los factores más importante en el cálculo de la velocidad de corrosión. En la figura 4 se espera que a medida que el pH

aumenta, disminuya la velocidad de corrosión. Esto se debe a que la velocidad de la corrosión está siendo influenciada por múltiples factores incluido el pH, lo que hace que este no sea solo quien determine si la corrosión es alta o baja. Se puede observar en la figura 7, que a medida que el caudal aumenta, incrementa la velocidad de la corrosión, puesto que la velocidad de flujo se incrementa afectando la composición de las capas protectoras que se forman, debido a que este aumento provoca remoción de la película de carbonato de hierro que se ha formado.

Fig 4. Velocidad de corrosión en función del pH para cada uno de los pozos en estudio.

Fig 5. Velocidad de corrosión en función de la presión parcial de CO₂ para cada uno de los pozos en estudio.

Fig 6. Velocidad de corrosión en función del corte de agua para cada uno de los pozos en estudio.

Fig 7. Velocidad de corrosión en función del caudal de líquido para cada uno de los pozos en estudio.

4. Conclusiones

Se desarrolló un modelo de corrosión que permite calcular las tasas de corrosión en tuberías de producción en sistemas con presencia de CO_2 con base en el modelo de Waard y Lotz.

Se diseñó el programa computacional CORROSIÓNSUITE 1.0 que permite calcular la velocidad de corrosión de manera puntual y generar el perfil de corrosión a lo largo de la tubería.

Según la validación de los datos realizada, se obtuvo que el programa CORROSIÓNSUITE 1.0 calcula velocidades de corrosión menores a las obtenidas con las correlaciones de Waard & Milliams y la de C. de Waard, pues el programa introduce factores de corrección que reducen la velocidad de corrosión, con el objeto de modelar el proceso real.

Las velocidades de corrosión en la mayoría de los pozos es moderada, comportamiento que está relacionado con los bajos cortes de agua; éste es uno de los parámetros más importantes en el estudio de la corrosión por dióxido de carbono.

Las velocidades de corrosión calculadas con el programa CORROSIÓNSUITE 1.0 aumentan con el incremento de la presión parcial del CO_2 .

5. Referencias bibliográficas

- **1. NYBORG, ROLF**. Overview of CO₂ corrosion models for wells and pipelines. Corrosion 2002. Paper No. 202.
- 2. WAARD, C., y MILLIAMS, D. E. Carbonic acid corrosion of steel. Corrosion 1977. Paper No. 181.
- **3.** J. E. ODDO, M. B. THOMSON. The Prediction of Scale and CO₂ Corrosion in Oil Fields Systems. Corrosion 1999. Paper No. 41.
- **4.** M.F.SUHOR, M.F.MOHAMED, A.MUHAMMAD NOR, M.SINGER, S.NESIC. Corrosion of mild steel in high CO₂ environment: effect of the FeCO₃ layer. Corrosion 2012. Paper No.1434.
- 5. **RP0775**, **N. S**. Preparation, installation, analysis and interpretation of corrosion coupons in oilfield operations. Houston, Texas, USA. 2005