

UNIVERSIDAD SURCOLOMBIANA

GESTIÓN SERVICIOS BIBLIOTECARIOS

 CARTA DE AUTORIZACIÓN

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 2

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

Neiva, 15 de febrero de 2021

Señores

CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN

UNIVERSIDAD SURCOLOMBIANA

Ciudad

El (Los) suscrito(s):

David Ernesto Reina Munar______________________, con C.C. No. 1026591813____________,

Karen Yulieth Cerón Manrique____________________, con C.C. No. 1075314515____________,

__, con C.C. No. ______________________,

__, con C.C. No. ______________________,

Autor(es) de la tesis y/o trabajo de grado o __

titulado Sistema de detección y evasión de obstáculos en un ambiente controlado, realizado con AR.Drone 2.0

mediante ROS y Python___

__
presentado y aprobado en el año __2021___ como requisito para optar al título de

Ingeniero Electrónico___;

Autorizo (amos) al CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN de la Universidad Surcolombiana para
que, con fines académicos, muestre al país y el exterior la producción intelectual de la Universidad
Surcolombiana, a través de la visibilidad de su contenido de la siguiente manera:

• Los usuarios puedan consultar el contenido de este trabajo de grado en los sitios web que administra la
Universidad, en bases de datos, repositorio digital, catálogos y en otros sitios web, redes y sistemas de
información nacionales e internacionales “open access” y en las redes de información con las cuales tenga
convenio la Institución.

• Permita la consulta, la reproducción y préstamo a los usuarios interesados en el contenido de este trabajo,
para todos los usos que tengan finalidad académica, ya sea en formato Cd-Rom o digital desde internet,
intranet, etc., y en general para cualquier formato conocido o por conocer, dentro de los términos
establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y
demás normas generales sobre la materia.

• Continúo conservando los correspondientes derechos sin modificación o restricción alguna; puesto que, de
acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso
conlleva la enajenación del derecho de autor y sus conexos.

http://www.usco.edu.co/

UNIVERSIDAD SURCOLOMBIANA

GESTIÓN SERVICIOS BIBLIOTECARIOS

 CARTA DE AUTORIZACIÓN

CÓDIGO AP-BIB-FO-06 VERSIÓN 1 VIGENCIA 2014 PÁGINA 2 de 2

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina
351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores” , los cuales son irrenunciables,
imprescriptibles, inembargables e inalienables.

EL AUTOR/ESTUDIANTE: EL AUTOR/ESTUDIANTE:

Firma: ___________________________ Firma: ___________________________

EL AUTOR/ESTUDIANTE: EL AUTOR/ESTUDIANTE:

Firma: ___________________________ Firma: ___________________________

http://www.usco.edu.co/

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN SERVICIOS BIBLIOTECARIOS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 4

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

TÍTULO COMPLETO DEL TRABAJO: Sistema de detección y evasión de obstáculos en un ambiente
controlado, realizado con AR.Drone 2.0 mediante ROS y Python

AUTOR O AUTORES:

Primero y Segundo Apellido Primero y Segundo Nombre

Cerón Manrique

Reina Munar

Karen Yulieth

David Ernesto

DIRECTOR Y CODIRECTOR TESIS:

Primero y Segundo Apellido Primero y Segundo Nombre

Robayo Betancourt

Faiber Ignacio

ASESOR (ES):

Primero y Segundo Apellido Primero y Segundo Nombre

PARA OPTAR AL TÍTULO DE: Ingeniero Electrónico

FACULTAD: Ingeniería

PROGRAMA O POSGRADO: Electrónica

CIUDAD: Neiva AÑO DE PRESENTACIÓN: 2021 NÚMERO DE PÁGINAS: 60

TIPO DE ILUSTRACIONES (Marcar con una X):

Diagramas___ Fotografías___ Grabaciones en discos___ Ilustraciones en general_X_ Grabados___
Láminas___ Litografías___ Mapas___ Música impresa___ Planos___ Retratos___ Sin ilustraciones___ Tablas
o Cuadros_X_

about:blank

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN SERVICIOS BIBLIOTECARIOS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 4

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

SOFTWARE requerido y/o especializado para la lectura del documento: Word

MATERIAL ANEXO:

PREMIO O DISTINCIÓN (En caso de ser LAUREADAS o Meritoria):

PALABRAS CLAVES EN ESPAÑOL E INGLÉS:

Español Inglés Español Inglés

1. Visión por computador Computer vision 6. UAV UAV

2. Algoritmo Algorithm 7. ROS ROS

3. Python Python 8. OpenCV OpenCV

4. Dron Drone 9. AR.Drone 2.0 AR.Drone 2.0

5. VANT VANT

RESUMEN DEL CONTENIDO: (Máximo 250 palabras)

En este trabajo se desarrolla e implementa un algoritmo escrito en lenguaje de programación Python, con el

fin de realizar la detección y evasión de obstáculos de color rojo. Este algoritmo se basado en el uso de

OpenCV para realizar la detección de obstáculos teniendo en cuenta la característica del color del objeto, así

como también el uso de Robot System Operating (ROS) como entorno de desarrollo de programación para

realizar el intercambio de datos entre el dron y la estación en tierra, y el uso de Python como lenguaje de

programación en estas dos herramientas.

Una finalidad importante de este trabajo es contribuir con el desarrollo tecnológico de la región mediante el

uso de drones, así como también sentar las bases para futuras investigaciones y proyectos no sólo con

drones sino con cualquier robot que pueda ser programado con ROS, ya que la lógica del algoritmo

desarrollado funciona de manera similar para todos, brindando así una amplia utilidad y flexibilidad a las

personas que quieran adentrarse en esta área.

about:blank

 UNIVERSIDAD SURCOLOMBIANA
GESTIÓN SERVICIOS BIBLIOTECARIOS

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07 VERSIÓN 1 VIGENCIA 2014 PÁGINA 1 de 4

Vigilada Mineducación
La versión vigente y controlada de este documento, solo podrá ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestión de Calidad. La copia o impresión diferente a la publicada, será considerada como documento no controlado y su uso

indebido no es de responsabilidad de la Universidad Surcolombiana.

ABSTRACT: (Máximo 250 palabras)

In this work a python algorithm was developed, in order to carry out the detection and avoidance of red

obstacles. This algorithm is based on the use of OpenCV to perform obstacle detection taking into account

the color characteristic of the object, as well as the use of Robot System Operating (ROS) as programming

development environment in order to data exchange between the drone and the ground station, and the use

of Python as programming language in these two tools.

An important purpose of this work is to contribute to the technological development of the region by using
drones, as well as to blaze the way for future research and projects not only with drones but with any robot
that can be programmed with ROS because logic of the developed algorithm works in a similar way for every
robot, thus providing a wide utility and flexibility to people who want go deeper into this area.

APROBACION DE LA TESIS

Nombre Presidente Jurado:

Firma:

Nombre Jurado: Diego Fernando Sendoya Losada

Firma:

Nombre Jurado: José de Jesús Salgado Patrón

Firma:

about:blank

SISTEMA DE DETECCIÓN Y EVASIÓN DE OBSTÁCULOS EN UN
AMBIENTE CONTROLADO, REALIZADO CON AR.DRONE 2.0 MEDIANTE

ROS Y PYTHON.

DAVID ERNESTO REINA MUNAR
KAREN YULIETH CERÓN MANRIQUE

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

PROGRAMA DE INGENÍERIA DE ELECTRÓNICA
NEIVA HUILA

2021

SISTEMA DE DETECCIÓN Y EVASIÓN DE OBSTÁCULOS EN UN
AMBIENTE CONTROLADO, REALIZADO CON AR.DRONE 2.0 MEDIANTE

ROS Y PYTHON.

DAVID ERNESTO REINA MUNAR
KAREN YULIETH CERÓN MANRIQUE

Trabajo de grado presentado como requisito para optar al Título de
Ingeniero Electrónico.

Director
ING. FAIBER ROBAYO BETANCOURT, MSc.

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERÍA

PROGRAMA DE INGENÍERIA DE ELECTRÓNICA
NEIVA HUILA

2021

Primero que nada, quiero dar gracias a Dios por permitirme
lograr esta meta, guiar mi camino siempre y mostrarme
que, aunque a veces parezca difícil el camino,
con Él de la mano se aligeran las cargas.

En segundo lugar, quiero agradecer a mis padres quienes
han sido fundamentales en este proceso por brindarme
su amor y apoyo incondicional, además de inculcarme

los valores que me hacen la persona que soy hoy en día

así como también enseñarme que sin Dios nada es posible.

Quiero agradecer también a mis hermanos porque a pesar
de la distancia siempre me han apoyado y ayudado
en mi formación personal, así como también porque

siempre han sido un ejemplo a seguir.

David

En primer lugar, doy gracias a Dios y a la Virgen
por estar a mi lado en todo momento ofreciéndome

lo mejor y presentándome el camino correcto durante
mi carrera sin importar las circunstancias.

A mis padres por todos sus sacrificios y esfuerzos,

por darme una carrera para mi futuro,
por todo el amor y comprensión a lo largo de este

largo camino, siempre tuvieron una palabra de

aliento para seguir adelante.

A mi hermano por su cariño y apoyo durante todo

este proceso, quien siempre con sus palabras

me hace sentir orgullosa de lo que soy.

Karen

AGRADECIMIENTOS

Agradecemos a los docentes del programa de Ingeniería Electrónica de la
Universidad Surcolombiana, por compartir sus conocimientos durante la
preparación de nuestra profesión, en especial al ingeniero Faiber Robayo
director de nuestro proyecto de grado, quien, con su conocimiento, enseñanza y
tiempo dedicado a nosotros, contribuyó al desarrollo de este proyecto.

A nuestros compañeros Luisa, Marylin, Yimmi, Camilo, Sebastián, Maicol y David

que caminaron con nosotros durante todo este proceso, compartiendo no sólo
alegrías sino tristezas, dándonos su apoyo incondicional, aportando su granito
de arena para culminar nuestra meta propuesta.

RESUMEN

TÍTULO:

SISTEMA DE DETECCIÓN Y EVASIÓN DE OBSTÁCULOS EN UN AMBIENTE
CONTROLADO, REALIZADO CON AR.DRONE 2.0 MEDIANTE ROS Y
PYTHON.

AUTORES:

DAVID ERNESTO REINA MUNAR
KAREN YULIETH CERÓN MANIQUE

PALABRAS CLAVES:

Visión por computador, Algoritmo, Python, Dron, VANT, UAV, ROS, OpenCV,
AR.Drone 2.0.

DESCRIPCIÓN:

En este trabajo se desarrolla e implementa un algoritmo escrito en lenguaje de
programación Python, con el fin de realizar la detección y evasión de obstáculos
de color rojo. Este algoritmo se basado en el uso de OpenCV para realizar la
detección de obstáculos teniendo en cuenta la característica del color del objeto,
así como también el uso de Robot System Operating (ROS) como entorno de
desarrollo de programación para realizar el intercambio de datos entre el dron y
la estación en tierra, y el uso de Python como lenguaje de programación en estas
dos herramientas.

Una finalidad importante de este trabajo es contribuir con el desarrollo
tecnológico de la región mediante el uso de drones, así como también sentar las
bases para futuras investigaciones y proyectos no sólo con drones sino con
cualquier robot que pueda ser programado con ROS, ya que la lógica del
algoritmo desarrollado funciona de manera similar para todos, brindando así una
amplia utilidad y flexibilidad a las personas que quieran adentrarse en esta área.

ABSTRACT

TITLE:

OBSTACLE DETECTION AND AVOIDANCE SYSTEM IN A CONTROLLED
ENVIRONMENT WITH AR.DRONE 2.0 USING ROS AND PYTHON.

AUTHORS:

DAVID ERNESTO REINA MUNAR
KAREN YULIETH CERÓN MANRIQUE

KEYWORDS:

Computer vision, Algorithm, Python, Drone, VANT, UAV, ROS, OpenCV,
AR.Drone 2.0.

DESCRIPTION:

In this work a python algorithm was developed, in order to carry out the detection
and avoidance of red obstacles. This algorithm is based on the use of OpenCV
to perform obstacle detection taking into account the color characteristic of the
object, as well as the use of Robot System Operating (ROS) as programming
development environment in order to data exchange between the drone and the
ground station, and the use of Python as programming language in these two
tools.

An important purpose of this work is to contribute to the technological
development of the region by using drones, as well as to blaze the way for future
research and projects not only with drones but with any robot that can be
programmed with ROS because logic of the developed algorithm works in a
similar way for every robot, thus providing a wide utility and flexibility to people

who want go deeper into this area.

CONTENIDO
 Pág.

1. CAPÍTULO UNO: FUNDAMENTOS BÁSICOS ... 144

1.1. DRONES .. ¡ERROR! MARCADOR NO DEFINIDO.4
1.2. ROBOT OPERATING SYSTEM (ROS) .. ¡ERROR! MARCADOR NO DEFINIDO.4
1.3. OPEN SOURCE COMPUTER VISION (OPENCV) .. ¡ERROR! MARCADOR NO

DEFINIDO.5
1.4. PYTHON... 155

1.5. AR.DRONE 2.0 ¡ERROR! MARCADOR NO DEFINIDO.6

2. CAPÍTULO DOS: TRANSFERENCIA DE DATOS MEDIANTE ROS 177

2.1. ROS TOPIC. ... ¡ERROR! MARCADOR NO DEFINIDO.7
2.2. ROS PUBLISHER NODE. ¡ERROR! MARCADOR NO DEFINIDO.7
2.3. ROS SUBSCRIBER NODE ¡ERROR! MARCADOR NO DEFINIDO.7

3. CAPÍTULO TRES: ALGORITMO DE DETECCIÓN Y EVASIÓN DE
OBSTÁCULOS DE COLOR ROJO. .. 18

3.1. LIBRERÍAS. .. 18
3.2. ALGORITMO DE DETECCIÓN DE OBSTÁCULOS DE COLOR ROJO.
 1818
3.2.1. CREACIÓN DE LA CLASE Y DEFINICIÓN DE FUNCIONES 18
3.2.2. ESTABLECIMIENTO DE LOS RANGOS DE COLOR EN FORMATO HSV PARA LA

DETECCIÓN DE OBSTÁCULOS ¡ERROR! MARCADOR NO DEFINIDO.19
3.2.3. CONVERSIÓN DE TIPO DE IMAGEN Y CREACIÓN DE MÁSCARAS ¡ERROR!
MARCADOR NO DEFINIDO.21
3.2.4. UNIFICACIÓN DE MÁSCARAS Y OPERACIONES MORFOLÓGICAS.............. ¡ERROR!
MARCADOR NO DEFINIDO.21
3.2.5. CREACIÓN DEL CONTORNO ¡ERROR! MARCADOR NO DEFINIDO.2

3.2.6. OBTENCIÓN DE LAS COORDENADAS DEL OBSTÁCULO .. ¡ERROR! MARCADOR NO

DEFINIDO.2
3.2.7. VISUALIZACIÓN DEL BORDE DEL CIRCULO Y EL CENTROIDE ¡ERROR! MARCADOR

NO DEFINIDO.3
3.2.8. OBTENCIÓN DE COORDENADAS NEGATIVAS ¡ERROR! MARCADOR NO

DEFINIDO.23
3.2.9. DETECCIÓN DE ERROR EN LA CONVERSIÓN DE IMAGEN ¡ERROR! MARCADOR NO

DEFINIDO.4
3.2.10. PUBLICACIÓN DE LA IMAGEN FINAL ¡ERROR! MARCADOR NO DEFINIDO.4
3.2.11. PUBLICACIÓN DE LA IMAGÉN FINAL CONVERTIDA A FORMATO TIPO ROS Y LA

COORDENADA X ... ¡ERROR! MARCADOR NO DEFINIDO.4
3.2.12. DEFINICIÓN DE LA FUNCIÓN PRINCIPAL (MAIN) ¡ERROR! MARCADOR NO

DEFINIDO.4

3.2.13. INICIADOR DE LA FUNCIÓN PRINCIPAL (MAIN) ¡ERROR! MARCADOR NO

DEFINIDO.5
3.3. ALGORITMO DE EVASIÓN DE OBSTÁCULOS DE COLOR ROJO.
 ¡ERROR! MARCADOR NO DEFINIDO.5
3.3.1. CREACIÓN DE LA CLASE Y SU CONSTRUCTOR ¡ERROR! MARCADOR NO

DEFINIDO.5
3.3.2. DEFINICIÓN DE LA FUNCIÓN DE ACCIÓN DE CONTROL ... ¡ERROR! MARCADOR NO

DEFINIDO.5
3.3.3. CONDICIÓN PARA REALIZAR LA ACCIÓN DE CONTROL ... ¡ERROR! MARCADOR NO

DEFINIDO.26

3.3.4. PUBLICACIÓN DE LAS VELOCIDADES Y VISUALIZACIÓN DE LOS

TERMPORIZADORES ... ¡ERROR! MARCADOR NO DEFINIDO.7
3.3.5. ATERRIZAJE DEL DRON DE ACUERDO CON LOS TEMPORIZADORES ¡ERROR!
MARCADOR NO DEFINIDO.27
3.3.6. INICIADOR DE LA FUNCIÓN PRINCIPAL ¡ERROR! MARCADOR NO DEFINIDO.27

4. RESULTADOS Y DISCUSIONES ... 2929

5. CONCLUSIONES ... 5353

6. RECOMENDACIONES…………………………………………………………...55

BIBLIOGRAFÍA ... 5656

ANEXOS ... 5757

ALGORITMO DE DETECCIÓN DE OBSTÁCULOS DE COLOR ROJO ... ¡ERROR!
MARCADOR NO DEFINIDO.59
ALGORITMO DE EVASIÓN DE OBSTÁCULOS DE COLOR ROJO 60

LISTA DE TABLAS

 Pág.

TABLA 1 CARACTERÍSTICAS AR.DRONE 2.0 NUEVO Y USADO 30
TABLA 2 CONVENCIÓN PARA LOS OBSTÁCULOS UTILIZADOS 30
TABLA 3 CONVENCIÓN PARA LAS PRUEBAS REALIZADAS. ... 30

LISTA DE FIGURAS

 Pág.

FIGURA 1. AR.DRONE 2.0 CON PROTECCIÓN PARA INTERIORES .. ¡ERROR! MARCADOR

NO DEFINIDO.6
FIGURA 2. INTERCAMBIO DE DATOS MEDIANTE ROS ¡ERROR! MARCADOR NO

DEFINIDO.7
FIGURA 3. LIBRERÍAS DE PYTHON USADAS PARA EL DESARROLLO DEL ALGORITMO EN EL

NODO PUBLISHER ... 1818
FIGURA 4. LIBRERÍAS DE PYTHON USADAS PARA EL DESARROLLO DEL ALGORITMO EN EL

NODO SUBSCRIBER ... 208
FIGURA 5. CONSTRUCTOR DE LA CLASE “IMAGE_CONVERTER” ¡ERROR! MARCADOR NO

DEFINIDO.19
FIGURA 6. REPRESENTACIÓN DEL FORMATO DE COLOR HSV 2520
FIGURA 7. ESTABLECIMINETO DE LOS RANGOS PARA DETECCIÓN DE OBTÁCULOS .. 2520
FIGURA 8. VISTA DE LOS COMPONENTES HSV ... 21
FIGURA 9. CONVERSIÓN TIPO DE IMAGEN Y CERACIÓN DE MÁSCARAS 21
FIGURA 10. UNIFICACIÓN DE MÁSCARAS Y OPERACIONES MORFOLÓGICAS 262
FIGURA 11. CREACIÓN DEL CONTORNO ¡ERROR! MARCADOR NO DEFINIDO.2
FIGURA 12. OBTENCIÓN DE LAS COORDENADAS DEL OBSTÁCULO 2723
FIGURA 13. VISUALIZACIÓN DEL BORDE DEL CIRCULO Y EL CENTROIDE 273
FIGURA 14. OBTENCIÓN DE COORDENADAS NEGATIVAS 2823
FIGURA 15. DETECCIÓN DE ERROR EN LA CONVERSIÓN DE IMAGEN ¡ERROR!

MARCADOR NO DEFINIDO.24
FIGURA 16. PUBLICACIÓN DE LA IMAGEN FINAL ... ¡ERROR! MARCADOR NO DEFINIDO.24
FIGURA 17. PUBLICACIÓN DE LA IMAGEN FINAL CONVERTIDA A FORMATO TIPO ROS Y DE

LA COORDENADA X ¡ERROR! MARCADOR NO DEFINIDO.24
FIGURA 18. DEFINICIÓN DE LA FUNCIÓN PRINCIPAL (MAIN) ¡ERROR! MARCADOR NO

DEFINIDO.25

FIGURA 19. INICIADOR DE LA FUNCIÓN PRINCIPAL (MAIN) ¡ERROR! MARCADOR NO

DEFINIDO.25
FIGURA 20. CREACIÓN DE LA CLASE Y SU CONSTRUCTOR 25
FIGURA 21. DEFINICIÓN DE LA FUNCIÓN DE ACCIÓN DE CONTROL . ¡ERROR! MARCADOR

NO DEFINIDO.6
FIGURA 22. CONDICIONAL PARA REALIZAR LA ACCIÓN DE CONTROL ¡ERROR!

MARCADOR NO DEFINIDO.6
FIGURA 23. PUBLICACIÓN DE LAS VELOCIDADES Y VISUALIZACIÓN DE LOS

TEMPORIZADORES .. 27
FIGURA 24. ATERRIZAJE DEL DRON DE ACUERDO A LOS TEMPORIZADORES 27

FIGURA 25. INICIADOR DE LA FUNCIÓN PRINCIPAL¡ERROR! MARCADOR NO DEFINIDO.28
FIGURA 26. AR.DRONE 2.0 CON SUS RESPECTIVOS EJES. ¡ERROR! MARCADOR NO

DEFINIDO.31
FIGURA 27. DIRECCIÓN DE GIRO DEL DRON RESPECTO DEL EJE Z (YAW) ¡ERROR!

MARCADOR NO DEFINIDO.31
FIGURA 28. GRÁFICA DE ORIENTACIÓN VS TIEMPO PARA PRUEBA 1 ¡ERROR!

MARCADOR NO DEFINIDO.32
FIGURA 29. GRÁFICA DE ORIENTACIÓN VS TIEMPO PARA PRUEBA 2 ¡ERROR!

MARCADOR NO DEFINIDO.33
FIGURA 30. GRÁFICA DE ORIENTACIÓN VS TIEMPO PARA PRUEBA 3 ¡ERROR!

MARCADOR NO DEFINIDO.34
FIGURA 31. GRÁFICA DE ORIENTACIÓN VS TIEMPO PARA PRUEBA 4. ¡ERROR!

MARCADOR NO DEFINIDO.35
FIGURA 32. GRÁFICA DE ORIENTACIÓN VS TIEMPO PARA PRUEBA 5 ¡ERROR!

MARCADOR NO DEFINIDO.36
FIGURA 33. GRÁFICA DE ORIENTACIÓN VS TIEMPO PARA PRUEBA 6 ¡ERROR!

MARCADOR NO DEFINIDO.37
FIGURA 34. GRÁFICA DE ORIENTACIÓN VS TIEMPO PARA PRUEBA 7 ¡ERROR!

MARCADOR NO DEFINIDO.38
FIGURA 35. GRÁFICA DE ORIENTACIÓN VS TIEMPO PARA PRUEBA 8 ¡ERROR!

MARCADOR NO DEFINIDO.39
FIGURA 36. GRÁFICA DE ORIENTACIÓN VS TIEMPO PARA PRUEBA 9. ¡ERROR!

MARCADOR NO DEFINIDO.40

FIGURA 37. GRÁFICA DE ALTURA VS TIEMPO PARA PRUEBA 1 . ¡ERROR! MARCADOR NO

DEFINIDO.41
FIGURA 38. GRÁFICA DE ALTURA VS TIEMPO PARA PRUEBA 2 . ¡ERROR! MARCADOR NO

DEFINIDO.42
FIGURA 39. GRÁFICA DE ALTURA VS TIEMPO PARA PRUEBA 3 . ¡ERROR! MARCADOR NO

DEFINIDO.43
FIGURA 40. GRÁFICA DE ALTURA VS TIEMPO PARA PRUEBA 4 . ¡ERROR! MARCADOR NO

DEFINIDO.44
FIGURA 41. GRÁFICA DE ALTURA VS TIEMPO PARA PRUEBA 5. ¡ERROR! MARCADOR NO

DEFINIDO.45
FIGURA 42. GRÁFICA DE ALTURA VS TIEMPO PARA PRUEBA 6 . ¡ERROR! MARCADOR NO

DEFINIDO.46
FIGURA 43. GRÁFICA DE ALTURA VS TIEMPO PARA PRUEBA 7 . ¡ERROR! MARCADOR NO

DEFINIDO.47

FIGURA 44. GRÁFICA DE ALTURA VS TIEMPO PARA PRUEBA 8 . ¡ERROR! MARCADOR NO

DEFINIDO.48
FIGURA 45. GRÁFICA DE ALTURA VS TIEMPO PARA PRUEBA 9 . ¡ERROR! MARCADOR NO

DEFINIDO.49
FIGURA 46. IMAGEN CONGELADA DEL AR.DRONE 2.0 POR EXCEDER ALCANCE DE SU

RED WIFI .. ¡ERROR! MARCADOR NO DEFINIDO.50
FIGURA 47. ESCENARIO COMPLETO DE IMAGEN CONGELADA DEL AR.DRONE 2.0 POR

EXCEDER ALCANCE DE SU RED WIFI ¡ERROR! MARCADOR NO DEFINIDO.50
FIGURA 48. TRAYECTORIA REALIZADA POR AR.DRONE 2.0 ¡ERROR! MARCADOR NO

DEFINIDO.51

FIGURA 49. SIMULACIÓN DE ESCENARIO DE DETECCIÓN DE OBSTÁCULO CON

AR.DRONE 2.0 MEDIANTE GAZEBO ¡ERROR! MARCADOR NO DEFINIDO.52
FIGURA 50. DETECCIÓN DE OBSTÁCULO CON AR.DRONE 2.0 EN TIEMPO REAL ¡ERROR!

MARCADOR NO DEFINIDO.52

1. CAPÍTULO UNO: FUNDAMENTOS BÁSICOS

1.1. DRONES

Según Hernández et al: “Un dron se puede definir como un vehículo aéreo no
tripulado por sus siglas VANT o por sus siglas en inglés UAV (Unmanned Aerial
Vehicle). Existen varios tipos y formas de VANT’s que pueden desarrollar
diversos tipos de tareas…”1

Los drones son vehículos aéreos de talla reducida, menos caros y más simples
de construir que un avión. También son más discretos y su pérdida no es tan
sensible o costosa como la de un vehículo convencional. El tamaño de los drones
puede variar (desde algunos centímetros hasta varios metros), al igual que su
forma y su tipo de propulsión, por ejemplo, algunos están equipados de reactores,
otros de hélices o rotores, etc. Las aplicaciones de los drones son varias, las
cuales abarcan desde las civiles hasta las militares, siendo estas últimas las más
empleadas o conocidas. Los drones han sido en su mayor parte desarrollados en
los conflictos militares. Dentro de sus aplicaciones civiles, las más deseables,
tenemos la vigilancia de tráfico de carreteras, las operaciones de búsqueda aérea
y salvamento, la recolección de información para la predicción meteorológica, la
vigilancia de bosques o detección de fuegos, etc2.

1.2. ROBOT OPERATING SYSTEM (ROS)

Ortego define el entorno de desarrollo ROS de la siguiente manera:

Robot Operating System también conocido como ROS es una colección de
frameworks para el desarrollo de software de robots. ROS se desarrolló
inicialmente en 2007 bajo el nombre de switchyard por el Laboratorio de
Inteligencia Artificial de Stanford para dar soporte al proyecto del Robot con
Inteligencia Artificial de Stanford (STAIR2). Desde 2008, el desarrollo continuó
principalmente en Willow Garage, un instituto de investigación robótico con más
de veinte instituciones colaborando en un modelo de desarrollo federado3.

Núñez, León y Cárdenas afirman que: “Aunque su nombre es la sigla para
sistema operativo, en realidad ROS es un meta-sistema operativo, ya que,

1 HERNÁNDEZ, Christian, et al. Dron polinizador de cultivos. Tecnologías aplicadas, para
alternativas sustentables. En: Revista Mexicana de Ciencias Agrícolas [en línea]. Acapulco:
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, febrero de 2015. vol.1,
p. 67-71. [Consultado: 24 de marzo de 2020]. Disponible en
https://www.redalyc.org/pdf/2631/263139243009.pdf. ISSN: 2007-0934.
2 CASTILLO, Pedro, et al. Modelado y estabilización de un helicóptero con cuatro rotores. En:
Revista Iberoamericana de Automática e Informática Industrial [en línea]. Valencia: Universidad
Politécnica de Valencia, enero de 2007. vol.4, p. 41-57 [Consultado: 24 de marzo de 2020].
Disponible en https://polipapers.upv.es/index.php/RIAI/article/view/8176/8319. ISSN: 1697-7912.
3 ORTEGO, Daniel. Qué es ROS (Robot Operating System) [blog]. OpenWebinars. 21 de
septiembre de 2017. [Consultado: 15 de diciembre 2019]

aunque ofrece las funciones de un sistema operativo debe ser instalado sobre la
base de otro sistema operativo –basado en UNIX-“4

1.3. OPEN SOURCE COMPUTER VISION (OPENCV)

Según lo plantea el equipo de redacción de Cheblender5 OpenCV es una
biblioteca de visión artificial libre desarrollada por Intel, que emplea todo tipo de
aplicaciones que requieren incorporar el reconocimiento de objetos desde el año
1999.

OpenCV quiere decir “Open Source Computer Vision Library”, que se puede
entender como una librería para el procesamiento de imágenes que tienen como
propósito aplicaciones de visión en tiempo real. Es importante resaltar que,
aunque esta biblioteca está escrita en códigos C y C++, también existen librerías
como opencv-python que permite utilizar todas sus características en el lenguaje
de programación Python. OpenCV es multiplataforma, es decir, está disponible
para sistemas operativos como Linux, Mac OS X, Windows, Android y iOS.

1.4. PYTHON

Robledano plantea que Python: “Es un lenguaje de programación versátil

multiplataforma y multiparadigma que se destaca por su código legible y limpio.

Una de las razones de su éxito es que cuenta con una licencia de código abierto

que permite su utilización en cualquier escenario. Esto hace que sea uno de los

lenguajes de inclinación de muchos programadores siendo impartido en

escuelas y universidades de todo el mundo”6

Por otro lado, Álvarez afirma lo siguiente: “Python es un lenguaje de scripting

independiente de plataforma y orientado a objetos, preparado para realizar

cualquier tipo de programa, desde aplicaciones Windows a servidores de red o

incluso, páginas web. Es un lenguaje interpretado, lo que significa que no se

necesita compilar el código fuente para poder ejecutarlo, lo que ofrece ventajas

como la rapidez de desarrollo e inconvenientes como una menor velocidad”7

4 NUÑEZ, Manuel; LEÓN, Carlos y CÁRDENAS, Pedro. Congreso Internacional de Electrónica y
Tecnología de Avanzada [en línea]. En: (10: 26-28, marzo, 2014: Pamplona, Colombia). ROS
Sistema operativo para robótica, nociones y aplicaciones. En: Revista Colombiana de
Tecnologías de Avanzada. Pamplona: Universidad de Pamplona, marzo de 2014. p.1-7.
[Consultado: 24 de marzo de 2020]. Disponible en:
http://www.unipamplona.edu.co/unipamplona/portalIG/home_79/recursos/01general/06052014/
memorias.jsp.
5 ¿Qué es OpenCV? [blog]. Cheblender. 12 de marzo de 2018. [Consultado: 15 de diciembre
2019] Disponible: https://www.cheblender.org/que-es-opencv/.
6 ROBLEDANO, Ángel. Que es Python: Características, evolución y futuro [blog]. OpenWebinars.
23 de septiembre de 2019, 2. [Consultado: 15 de diciembre de 2019]. Disponible en:
https://openwebinars.net/blog/que-es-python/.
7 Álvarez, Miguel. Qué es Python [blog]. Desarrollo Web. 19 de noviembre de 2003, 2.
[Consultado: 15 de diciembre de 2019]. Disponible: https://desarrolloweb.com/articulos/1325.php

1.5. AR.DRONE 2.0

Es un vehículo aéreo no tripulado fabricado por la empresa francesa Parrot.

Posee una autonomía de 12 minutos, un alcance de 50 metros, cámara de alta

definición de 720p a 30fps que además de tomar fotos permite grabar videos

también, el pilotaje se realiza a través de su aplicación diseñada para

Smartphone o tabletas, posee un procesador ARM Cortex A8 de 32 bits a 1 GHz

con video DSP a 800 MHz TMS320DMC64x, también cuenta con un sistema

operativo Linux 2.6.32, así mismo cuenta con sensores abordo como

acelerómetro, magnetómetro, barómetro, sensor de altura ultrasónico, y

giroscopio.

Albornoz y Calahorrano afirman: “Debido al abaratamiento de los componentes

electrónicos en los últimos años ha sido posible que estos aparatos lleguen al

mercado como equipos para el ocio y recreación”8

Figura 1. AR.Drone 2.0 con protección para interiores

Fuente: Parrot, AR.Drone 2.0 elite edition [imagen]. Francia: 2017. [Consultado: 15 de

diciembre de 2019]. Disponible en: https://www.parrot.com/es/drones/parrot-ardrone-

20-elite-edition

8 ALBORNOZ, Michael y CALAHORRANO, Darwin. Seguimiento de objetos basado en visión
artificial para cuadrirrotor parrot AR.Drone 2.0 [en línea]. Proyecto previo a la obtención del titulo
de ingeniero en electrónica y control. Quito: Escuela politécnica nacional. Facultad de ingeniería
eléctrica y electrónica. 124 p. [Consultado: 24 de marzo 2020]. Disponible en:
https://bibdigital.epn.edu.ec/bitstream/15000/16978/1/CD-7555.pdf

2. CAPÍTULO DOS: TRANSFERENCIA DE DATOS MEDIANTE ROS

2.1. ROS TOPIC

El término topic en ROS hace referencia a los buses sobre los cuales se

intercambian mensajes. Un robot tiene muchos topics como por ejemplo de
velocidad, de odometría, de sensores como la cámara, entre otros. Los topics

son muy importantes ya que al permitir el intercambio de mensajes no sólo hacen
posible la visualización en tiempo real de los datos del robot, sino que también
permiten realizar una acción de control mediante el uso de los llamados nodos.

2.2. ROS PUBLISHER NODE

El nodo Publisher es un término usado en ROS para referirse a un archivo
ejecutable (en este caso escrito en lenguaje Python) que contiene información
como procesamiento de imágenes, redes neuronales o simplemente una cadena
de caracteres y que envía esta información mediante un topic específico, esto
con el fin de realizar una acción de control mediante el nodo Subscriber.

2.3. ROS SUBSCRIBER NODE

Al igual que el nodo Publisher el nodo Subscriber es un archivo ejecutable que
realiza la suscripción (de ahí deriva su nombre) a un topic deseado para obtener
los datos en tiempo real que están siendo publicados en dicho topic. Este nodo
Subscriber es muy importante ya que en este proyecto es el encargado de
obtener los datos y realizar una acción de control basado en el valor de estos
datos obtenidos.

Figura 2. Intercambio de datos mediante ROS

Fuente: MathWorks, Exchange Data with ROS Publishers and Subscribers

[imagen].Estados Unidos: 2018. [Consultado: 24 de marzo 2020]. Disponible
en: https://es.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-

and-subscribers.html

En la figura 2 se muestra el diagrama de funcionamiento de los nodos Publisher-
Subscriber, los cuales permiten la configuración en tiempo real de las
velocidades angulares (para el giro del robot) y lineales (para el avance del
robot).

3. CAPÍTULO TRES: ALGORITMO DETECCIÓN Y EVASIÓN DE
OBSTÁCULOS DE COLOR ROJO.

3.1. LIBRERÍAS.

Para la implementación del algoritmo propuesto en este trabajo de grado fue
necesario realizar algunas operaciones como establecer el color (rango en

formato Hue Saturation Value - HSV) del objeto que será determinado como
obstáculo, la obtención de la imagen en tiempo real del AR.Drone 2.0, y la

obtención de coordenadas del obstáculo.

Figura 3. Librerías de Python usadas para el desarrollo del algoritmo en el nodo

Publisher.

Figura 4. Librerías de Python usadas para el desarrollo del algoritmo en el nodo
Subscriber.

3.2. ALGORITMO DE DETECCIÓN DE OBSTÁCULOS DE COLOR ROJO.

El algoritmo realizado consta de dos códigos (Publisher y Subscriber). Por una
parte, el código Publisher es el encargado de obtener la imagen del AR.Drone
2.0 en tiempo real y realizar el procesamiento de dicha imagen para determinar
si hay un obstáculo presente y así conocer sus coordenadas. Por otro lado, el
código Subscriber es el encargado de realizar las acciones de control pertinentes
sobre el dron basado en el valor de las coordenadas obtenidas por el código
Publisher.

3.2.1 Creación de la clase y definición de funciones

En el código Publisher (llamado CvBridge.py) se crea una clase llamada
“image_converter” en la cual se definen dos funciones. La primera la función es
el constructor de la clase “__init__”, esta función permite la creación de los
publicadores, tanto de coordenadas en x e y, así como también el publicador

import sys
import rospy
import cv2
from std_msgs.msg import String, Empty, Float32
from sensor_msgs.msg import Image
from collections import deque
from cv_bridge import CvBridge, CvBridgeError
import numpy as np

import rospy
from std_msgs.msg import Float32, Empty
from geometry_msgs.msg import Twist

para el aterrizaje del dron; además de esto se realiza en esta función la
suscripción al topic de la cámara del dron para obtenerla en tiempo real, y se
crea el objeto “CvBridge” que permite la conversión del tipo de imagen obtenida
en ROS al tipo de imagen usada en OpenCV.

Figura 5. Constructor de la clase “image_converter”.

La segunda función utilizada en esta clase es “callback” la cual se detalla a fondo
en el siguiente ítem.

3.2.2 Establecimiento de los rangos de color en formato HSV para la

detección de obstáculos

Para establecer el color que se usa como referente para determinar un obstáculo
es necesario utilizar la librería “numpy”, ya que permite crear los arreglos que
contienen los valores de los rangos en formato HSV (Hue Saturation Value), este
tipo de formato de color está compuesto de las siguientes tres características:

Hue (Tono): Se debe concebir como un círculo de colores que varía desde el
color rojo (0º) a rojo nuevamente (360º), pasando por colores como el verde
(120º), el azul (240º) y los demás colores “puros” como el amarillo, cian, morado,
entre otros.

Saturation (Saturación): Esta característica indica qué tanta cantidad de color

escogido en el valor Hue aparecerá en la mezcla. Tiene un rango que varía entre
0 y 100%.

Value (Valor): La componente Value varía desde 0 a 100% y representa la
cantidad de negro presente en el color escogido en la componente Hue (donde
0% es completamente negro y 100% es el color en su brillo máximo).

class image_converter:
def _init(self):
self.image_pub = rospy.Publisher("image_topic_2",Image,queue_size=10)
self.pub=rospy.Publisher('Coordenadas_Y',Float32,queue_size=1)

self.pub1=rospy.Publisher('Coordenadas_X',Float32,queue_size=1)
self.pub3=rospy.Publisher('Aterrizaje',Float32,queue_size=1)
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber("/ardrone/front/image_raw",Image,self.callback)

Figura 6. Representación del formato de color HSV (py2py).

Fuente: Py2py, HSV Model [imagen]. We already have RGB so why we nees HSV?.
2019. Disponible en: https://py2py.com/we-already-have-rgb-so-why-we-need-hsv/

En la figura 7 se muestra la primera sección de la función “callback”, esta función
recibe como argumento la variable “data”, que es la imagen obtenida en tiempo
real por la función “__init__” con el fin de realizar su conversión a tipo de imagen
usada en OpenCV para también realizar el procesamiento de esta, y así mismo,
llevar a cabo la detección de los obstáculos presentes en la imagen de la cámara.
Para esto, en primer lugar, usando la librería “numpy” se definen los rangos de
color en los cuales debe estar el objeto de la imagen para ser detectado como
un obstáculo.

Figura 7. Establecimiento de los rangos para detección de obstáculos.

Cabe aclarar que para el software OpenCV las características Saturation y Value
mencionadas anteriormente tienen un rango de posibles valores entre 0 y 255,
mientras que la característica Hue abarca un rango desde 0 hasta 179. El color
rojo en el formato HSV está presente dos veces como se muestra en la figura 8,
por lo que es necesario realizar dos rangos diferentes.

def callback(self, data):
Lower = np.array([0, 100, 20],np.uint8)

Upper = np.array([5, 255, 255],np.uint8)
Lower1 = np.array([175, 100, 20],np.uint8)
Upper1 = np.array([179, 255, 255],np.uint8)

Figura 8. Vista de los componentes HSV.

Fuente: Solano, Gabriela. Vista de los componentes HSV [imagen]. Detección de

colores OpenCV - Pyhton (En 4 pasos). 2019. [Consultado: 24 de marzo de 2020].
Disponible en: https://omes-va.com/deteccion-de-colores/

3.2.3 Conversión de tipo de imagen y creación de las máscaras

En la segunda sección de la función “callback” se realiza la conversión de tipo
de imagen ROS a tipo de imagen OpenCV, para esto se utiliza el módulo
“CvBrige” importado de la clase “cv_bridge” junto con la funcionalidad

“imgmsg_to_cv2”. Esta conversión proporciona una imagen OpenCV en formato
bgr8, la cual posteriormente es convertida al formato HSV explicado
anteriormente, con ayuda de la librería de OpenCV para Python conocida como

“cv2”. Seguidamente se realiza la creación de las máscaras para cada rango de
la figura 9 con la ayuda de la función “inRange”, la cual tiene como parámetros

la imagen sobre la cual se realizará la detección de color, así como el rango
inferior y superior del color que se desea detectar. Como era de esperarse, se
realizan dos máscaras debido a que son dos rangos de color rojo diferentes para

el formato HSV.

Figura 9. Conversión tipo de imagen y creación de máscaras.

3.2.4 Unificación de máscaras y operaciones morfológicas

Luego de la creación de las máscaras se realiza la unificación de estas para

trabajar con una sola máscara que contenga los dos rangos establecidos
anteriormente, para esto es necesario el uso de la función “add”, cuyos
parámetros en este caso son las máscaras mostradas en la figura 9.

Posteriormente, se hace uso de los operadores morfológicos “erode” (erosión) y
“dilate” (dilatación) para completar la totalidad de la máscara.

try:
cv_image = self.bridge.imgmsg_to_cv2(data, “bgr8”)
hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
mask1 = cv2.inRange(hsv, Lower, Upper)
mask2 = cv2.inRange(hsv, Lower1, Upper1)

Figura 10. Unificación de máscaras y operaciones morfológicas.

3.2.5 Creación del contorno

Para poder visualizar el contorno del obstáculo detectado se hace uso de la

función “findContours” de la librería “cv2”. Esta característica recibe como
parámetros la máscara binaria obtenida anteriormente, el modo de recuperación
del contorno y el método de aproximación del contorno.

Figura 11. Creación del contorno.

3.2.6 Obtención de las coordenadas del obstáculo

Inicialmente se crea la variable “center” pero no se le asigna ningún valor
momentáneamente. Luego se crea un ciclo “if” que permite realizar las siguientes
acciones si la variable “cnts” (el contorno) es mayor que cero: obtener el contorno
más grande presente en la imagen mediante la función “max” de Python, obtener
el centro (coordenada x, coordenada y) y radio del círculo más pequeño posible
que encierre el obstáculo detectado. Seguido de esto se calcula los momentos
de la imagen mediante la función “moments” de OpenCV, esta función permite
calcular ciertas propiedades de una imagen como por ejemplo el radio, el área,
el centroide, entre otras. Teniendo esta función se calcula el centroide del círculo
que encierra el obstáculo. Seguido de esto, se crean dos variables “b” y “a”, las
cuales contienen las coordenadas x e y respectivamente del círculo que encierra
al obstáculo detectado. Posteriormente, mediante la librería “rospy” se imprime
en el terminal de Linux las debidas coordenadas x e y del obstáculo. Por último,
se utiliza la función “sleep” de la librería “rospy” la cual permite ejecutar el ciclo
a una velocidad o tasa determinada (en este caso especificada en la variable
“rate”).

mask = cv2.add(mask1, mask2)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)

cnts = cv2.findContours(mask.copy(),
cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[-2]

Figura 12. Obtención de las coordenadas del obstáculo.

3.2.7 Visualización del borde del circulo y el centroide

Para poder mostrar el borde del círculo y su centroide se tiene en cuenta el
tamaño del radio obtenido por la función “minEnclosingCircle” almacenado en la
variable “radius”; si este valor es mayor a 10 pixeles (10px) se crea un círculo
con la ayuda de la función “circle” de la librería “cv2” a la cual se le pasa como
parámetros la imagen de entrada (cv_image), las coordenadas del círculo, el
radio del círculo, el color deseado (en formato BGR) y el espesor para el borde
del círculo. Para visualizar el centroide se procede del mismo modo, utilizando
como parámetros la misma imagen de entrada, el centroide obtenido por la
función “moments”, el radio del círculo, el color deseado y el espesor.

Figura 13. Visualización del borde del circulo y el centroide.

3.2.8 Obtención de coordenadas negativas

Las siguientes líneas de código tienen como finalidad conocer cuándo no hay
presencia de obstáculos. Si la longitud de la variable “cnts” es menor que cero,
indica que no hay obstáculo y por tanto no hay contorno ni coordenadas
detectadas, por lo que es necesario que las variables “b” y “a” (coordenadas del
centroide) tengan valores negativos, para poder realizar las acciones de control
cuando no haya obstáculo.

Figura 14. Obtención de coordenadas negativas.

if radius > 10:
cv2.circle(cv_image, (int(x), int(y)), int(radius),(0, 255, 255), 2)
cv2.circle(cv_image, center, 5, (0, 0, 255), -1)

else:
a=(int(-1))
b=(int(-2))

center = None
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
a=(int(M["m01"] / M["m00"]))
b=(int(M["m10"] / M["m00"]))
rospy.loginfo('%i %s %i', int(M["m10"] / M["m00"]),",",int(M["m01"] / M["m00"]))

rate.sleep()

3.2.9 Detección de error en la conversión de imagen

Con el fin de detectar un error en el proceso de conversión de imagen tipo ROS
a imagen tipo OpenCV (BGR) se utiliza la declaración “except” y se publica en el
terminal.

Figura 15. Detección de error en la conversión de imagen.

3.2.10 Publicación de la imagen final

Mediante la función “imshow” de la librería “cv2” se realiza la publicación de la
imagen final, la cual recibe como parámetros el nombre de la ventana que
mostrará la imagen y la imagen final.

Figura 16. Publicación de la imagen final.

3.2.11 Publicación de la imagen final convertida a formato tipo ROS y de la

coordenada X

Utilizando la función “publish” así como la función “CvBrige” se realiza la
conversión de formato OpenCV (BGR) a formato tipo ROS y se realiza tanto la
publicación de esta imagen como la coordenada X del obstáculo.

Figura 17. Publicación de la imagen final convertida a formato tipo ROS y de la

coordenada X.

3.2.12 Definición de la función principal (main)

En esta función se realiza la ejecución de la clase “image_converter”. Además,
utilizando la función “spin” de la librería “rospy” permite ejecutar el nodo hasta
que sea interrumpido, en este caso por interrupción de teclado.

except CvBridgeError as e:
print(e)

cv2.imshow("Image window", cv_image)

try:
self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
self.pub1.publish(b)
except CvBridgeError as e:
print(e)

Figura 18. Definición de la función principal (main).

3.2.13 Iniciador de la función principal (main)

En este condicional se crea el nodo llamado “image_converter” así como también
se declara como global la variable “rate” y se inicializa esta variable mediante la

función “Rate” la cual proporciona la velocidad o tasa de publicación de datos,
por último, se ejecuta la función “main”.

Figura 19. Iniciador de la función principal (main).

3.3. ALGORITMO DE EVASIÓN DE OBSTÁCULOS DE COLOR ROJO.

3.3.1. Creación de la clase y su constructor

En primer lugar, se crea una clase llamada “Detector” y seguidamente su
constructor, esto con el fin que cuando se cree un objeto de esta clase se
inicialicen sus atributos definidos en esta sección, los cuales son
“self.coordenadax” haciendo referencia a la variable que almacena la
coordenada x, así como “self.coordenaday” que hace referencia a la variable

almacenada la coordenada y, en donde ambas son inicializadas con valor
“None”, con el fin de crear las variables pero sin asignarle valor alguno.

Figura 20. Creación de la clase y su constructor.

3.3.2. Definición de la función de acción de control

En este punto se crea la función llamada “coordenadax_callback(self,data)” que

es la encargada de realizar las acciones de control pertinentes dependiendo si

def main():
ic = image_converter()
try:
rospy.spin()
except KeyboardInterrupt:
print("Shutting down")
cv2.destroyAllWindows()

if _name_ == '_main_':
rospy.init_node('image_converter', anonymous=True)
global rate
rate = rospy.Rate(20)
main()

class Detector():
def __init__(self):
self.coordenadax = None
self.coordenaday = None

recibe coordenadas positivas o negativas. Para esto en primer lugar se crean
dos publicadores “pub2” y “pub3” a los topics “/cmd_vel” y “ardrone/land”

respectivamente, esto con el fin de publicar mensajes o enviar datos a estos
topics mencionados anteriormente. Los datos que recibe esta función (data) son
almacenados en la variable “self.coordenadax”.

Figura 21. Definición de la función de acción de control.

3.3.3. Condicional para realizar la acción de control

En esta sección se propone un condicional “if” que es el encargado de evaluar
los valores obtenidos de la coordenada x proveniente del algoritmo de detección
de obstáculos, si el valor recibido es igual a -2 quiere decir que no hay obstáculo
presente, por tanto, la velocidad lineal tendrá un valor diferente de cero, para que
de esta manera el dron avance y la velocidad angular será igual a cero para que
no realice ningún giro. Pero si es diferente de -2 hace referencia a que se detecta
un obstáculo, por tanto, aquí la velocidad lineal se hace igual a cero para que el
dron no avance, y la velocidad angular toma un valor diferente de cero, haciendo
que el dron gire, y de esta manera evadir el obstáculo. Igualmente, en cada parte
del ciclo (if y else) se inicia un conteo para cada variable (i y j), cuyas funciones
se definen en la sección 3.3.5.

Figura 22. Condicional para realizar la acción de control.

def coordenadax_callback(self, data):
global pub2
pub3=rospy.Publisher('ardrone/land',Empty,queue_size=10)
pub2=rospy.Publisher('/cmd_vel',Twist,queue_size=10)
self.coordenadax = data

if data.data == -2:
rospy.loginfo('NO HAY OBSTACULO')
msg.angular.z = 0
msg.linear.x = 0.03
i=0
j=j+1
else:
rospy.loginfo('SI HAY OBSTACULO')
msg.linear.x = 0
msg.angular.z = 0.1
i=i+1
j=0

3.3.4. Publicación de las velocidades y visualización de los temporizadores

Una vez establecidos los valores de las velocidades lineales y angulares, se
procede a publicar en el respectivo nodo (/cmd_vel) dichos valores, con el fin de
que el dron realice las instrucciones dadas en la sección 3.3.3. Además de esto,

se visualiza en el terminal los temporizadores correspondientes al avance y giro
del dron.

Figura 23. Publicación de las velocidades y visualización de los temporizadores.

3.3.5. Aterrizaje del dron de acuerdo con los temporizadores

En la sección 3.3.3 se inicia el conteo de dos variables (i y j), las cuales hacen
las veces de un temporizador que permite al dron aterrizar cuando el conteo de
alguna de las variables llegue al valor establecido, para esto se realiza la
publicación de un mensaje vacío al topic land que es el encargado de llevar a
cabo el aterrizaje del dron.

Figura 24. Aterrizaje del dron de acuerdo a los temporizadores.

3.3.6. Iniciador de la función principal

Se inicializa un nodo llamado “listener” necesario para ejecutar las publicaciones.
Así como también se crea un objeto de la clase “Detector”, se declaran como
globales las variables i y j, se realiza la subscripción al topic de la coordenada X
y de la coordenada Y creados en el algoritmo de detección de obstáculos de
color rojo en la sección 3.2.1.

pub2.publish(msg)
rospy.loginfo('%s %i','Temporizador de giro: ',i)
rospy.loginfo('%s %i','Temporizador de avance: ',j)

if i > 350:
rospy.loginfo('ATERRIZANDO')
pub3.publish(Empty())
if j > 350:
rospy.loginfo('ATERRIZANDO')
pub3.publish(Empty())

Figura 25. Iniciador de la función principal.

if _name_ == '_main_':
rospy.init_node('listener')
detector = Detector()
global i,j
i=0
j=0
rospy.Subscriber('Coordenadas_X', Float32, detector.coordenadax_callback)
rospy.Subscriber('Coordenadas_Y', Float32, detector.coordenaday_callback)
rospy.spin()

4. RESULTADOS Y DISCUSIONES

Antes que nada, es preciso aclarar que el aporte de este proyecto de grado es
de tipo académico, debido a que se usan tecnologías que además de
interesantes son útiles y que en esta región hasta el momento han sido poco
exploradas. En esta sección se presentará los resultados del funcionamiento del
algoritmo propuesto y a su vez se comentará el resultado de su desempeño.

Es necesario resaltar que la manera como está compuesto ROS, es decir, su
arquitectura, proporciona utilidades como la obtención de datos (imágenes y

sensórica) para su posterior procesamiento, así como también la modificación
de valores de variables (velocidades de motores) para realizar acciones de
control deseadas. Es por esto, que los resultados obtenidos al utilizar este
entorno de desarrollo fueron los esperados, permitiendo al dron realizar las
acciones pertinentes en los momentos determinados.

Además de lo dicho anteriormente, se puede destacar la gran ventaja y eficacia
del paquete cv_bridge en cuanto a la obtención de imágenes en tiempo real
sobre otras herramientas como el software ffmpeg y la función VideoCapture de
OpenCV. Es posible realizar esta afirmación debido a que durante todo el
proceso de construcción del algoritmo se realizaron pruebas con estas tres
herramientas encontrando que la obtención de las imágenes por medio de
ffmpeg y VideoCapture tenían un retraso significativo (aproximadamente 15
segundos) que a su vez retrasaban todo el mecanismo de control del sistema
haciéndolo ineficiente, mientras que al usar el paquete cv_bridge la obtención de
la imagen del robot se realiza de inmediato.

Es importante señalar que el uso del software OpenCV para procesamiento de
imágenes proporciona muchas facilidades y funcionalidades que hacen de esta
una librería muy completa, ideal para los diversos casos en donde se requiera
realizar el procesamiento de imágenes. Sin embargo, la eficacia de la detección
de los obstáculos en el algoritmo presentado depende en gran medida del
correcto establecimiento de los rangos de colores a detectar, ya que el ajuste de

un rango muy amplio se traduce en la detección de colores no deseados y, por
el contrario, el ajuste de un rango muy reducido equivaldría a no detectar todas
las posibles gamas del color escogido.

La eficacia del algoritmo se puede ver afectada por el estado del dron, ya que
debido al desgaste de sus componentes puede hacer que haya variaciones en
el desempeño de este y por consiguiente obtener resultados no deseados. Así
como también las condiciones climáticas pueden incurrir en el funcionamiento
del robot y en el rendimiento del algoritmo. En la tabla 1 se realiza una
comparación entre las características del AR.Drone 2.0 nuevo con las del
AR.Drone 2.0 usado en este proyecto de grado, que confirman que el desgaste
en sus componentes afecta el desempeño del algoritmo creado.

Tabla 1. Características AR.Drone 2.0 nuevo y usado.

Características AR.Drone 2.0 nuevo AR.Drone 2.0 usado

Alcance de la red wifi
50 metros

aproximadamente
10 metros

aproximadamente

Altura por defecto
usando ROS

1 metro Menor a 1 metro

Tiempo de carga de
baterías

1 hora y 30 minutos
aproximadamente

2 horas
aproximadamente

Tiempo de vuelo 12-15 minutos 5-7 minutos

Se realizaron un total de nueve (9) pruebas del algoritmo presentado variando el
parámetro de la velocidad lineal respecto al eje x (velocidad de avance del dron),
así como también la forma de los obstáculos y su tamaño.

En la tabla 2 se presenta la convención usada para distinguir los obstáculos
usados en las pruebas.

Tabla 2. Convención para los obstáculos utilizados.

Nombre Área (𝒄𝒎𝟐) Forma

Obstáculo A 875 Rectángulo

Obstáculo B 187 Rectángulo

Obstáculo C 49.2 Rectángulo

Obstáculo D 320.47 Círculo

En la tabla 3 se presenta la convención usada para representar cada una de las
pruebas realizadas.

Tabla 3. Convención para las pruebas realizadas.

Prueba Obstáculo
Velocidad
lineal en x

(m/s)

Velocidad
angular en z

(rad/s)

Temporizadores de
aterrizaje (s)

1 A 0.05 0.1 17.5

2 B 0.01 0.1 17.5

3 B 0.05 0.1 17.5

4 C 0.03 0.1 17.5

5 C 0.03 0.1 17.5

6 C 0.03 0.1 17.5

7 D 0.01 0.1 17.5

8 D 0.03 0.1 17.5

9 D 0.03 0.1 17.5

Con la finalidad de realizar la captura de los datos en cada prueba para su
posterior análisis se hace uso de la funcionalidad “rosbag” de ROS, que a su vez
también permite almacenarlos en un archivo de texto.

Una vez obtenido el archivo de texto para cada prueba, se procede a exportarlos
a Excel con el fin de organizarlos y elegir los datos que se van a analizar, tales

como tiempo y altura. Seguidamente los datos son importados directamente
desde MatLab para poder graficarlos y así tener una mejor perspectiva de estos.

Cabe aclarar que el uso de la herramienta MatLab es sólo para realizar el análisis
de estos datos, es decir, no hace parte del algoritmo realizado.

En la figura 26 se muestran los ejes del dron con sus respectivos nombres.

Figura 26. AR.Drone 2.0 con sus respectivos ejes.

Fuente: Maravall, D., de Lope, J., Fuentes, P.

El algoritmo presentado permite al dron realizar la detección y evasión de
obstáculos de color rojo girando siempre en sentido positivo respecto del eje z
(sentido antihorario). En la figura 27 se pueden apreciar los sentidos de giro
respecto dicho eje.

Figura 27. Dirección de giro del dron respecto del eje z (yaw).

La figura 28 muestra los datos de orientación vs tiempo obtenidos para la Prueba
1. Esta prueba tiene una duración de 55.51 segundos, en donde el dron evade 3
obstáculos y posteriormente aterriza. Para esta prueba el dron registra su
despegue en el segundo 6.73, por lo cual el análisis se realiza a partir de este
punto. Para todas las pruebas realizadas el valor inicial de orientación para el
dron oscila entre los -150° y -130°, y teniendo en cuenta que el giro respecto del
eje z se realiza en sentido positivo es correcto afirmar que los tramos
ascendentes de la curva mostrada en la figura 28 se traduce en la detección de
un obstáculo ya que el dron se encuentra girando, mientras que los tramos
“planos” reflejan los momentos en que el dron se encuentra avanzando en línea

recta. Desde el segundo 31 aproximadamente se coloca de manera intencionada
un obstáculo al frente del dron para que realice el aterrizaje pasados los 17.5
segundos correspondientes al temporizador, por lo que en el segundo 58
aterriza. Por el análisis realizado anteriormente se puede corroborar el correcto
funcionamiento del algoritmo realizado en este proyecto de grado.

Figura 28. Gráfica de orientación vs tiempo para Prueba 1.

En la figura 29 se puede apreciar los datos de orientación respecto del eje z
(yaw) para la Prueba 2. Esta prueba tiene una duración de 102.8 segundos (1
minuto y 43 segundos aproximadamente), en donde el dron evade 3 obstáculos
y seguidamente aterriza. Para esta prueba el dron registra su despegue en el
segundo 14.25, por lo que los datos obtenidos antes de este punto no son
analizados. La orientación inicial para esta prueba es de -140°
aproximadamente. Se puede observar claramente las tres evasiones que realiza

el dron para esta prueba reflejadas en los tramos ascendentes de la curva
mostrada. Desde el segundo 71 hasta el segundo 88 se puede apreciar que la
curva se aplana, por lo que es correcto afirmar que durante este lapso de tiempo
el dron avanza y pasados los 17.5 segundos del temporizador finalmente
aterriza.

Figura 29. Gráfica de orientación vs tiempo para Prueba 2.

De igual forma la figura 30 muestra los datos de orientación respecto del eje z vs
tiempo para la Prueba 3. Este caso tiene una duración de 117.5 segundos, el
dron registra su despegue en el segundo 10.96 y el dron evade 3 obstáculos, sin

embargo, en la figura 4.5 se observan 5 tramos ascendentes, es decir, 5
evasiones realizadas, esto se debe a que al finalizar la segunda evasión el dron
no queda en línea de vista con un obstáculo sino que sigue derecho hacia la
pared del recinto por lo cual es necesario colocar un obstáculo externo para
evitar una colisión, seguido de esto el dron queda en línea de vista con el tercer
obstáculo del recinto y realiza su correspondiente evasión (cuarto tramo
ascendente). Llegando a la parte final de la gráfica 30 es posible visualizar un
quinto tramo ascendente correspondiente a la evasión un obstáculo externo
colocado de manera intencionada porque el dron va a colisionar con una pared
del recinto, sin embargo, el dron ya está muy cerca de la pared y no alcanza a
cambiar de dirección resultando en una colisión reflejada en el pico mostrado al
final de la gráfica 30.

Figura 30. Gráfica de orientación vs tiempo para Prueba 3.

El siguiente análisis corresponde a los datos obtenidos para la Prueba 4, la cual
tiene una duración de 56.5 segundos, el dron tiene una orientación inicial de -
145° aproximadamente, y realiza el despegue en el segundo 8.88, por lo que el
análisis se realizará a partir de este valor. En esta prueba el dron evade dos
obstáculos y aterriza 12 segundos después de la última evasión debido a que el
dron va a sufrir una colisión por lo que es aterrizado de manera remota por un
comando externo al algoritmo ingresado desde la estación en tierra. En la figura
31 se muestran los datos de orientación respecto del eje z vs tiempo para esta
prueba.

Figura 31. Gráfica de orientación vs tiempo para Prueba 4.

La Prueba 5 tiene una duración de 87 segundos, la orientación inicial del dron es
-135° aproximadamente y el despegue se registra en el segundo 6.19. En la
figura 4.7 se plasman los datos obtenidos de orientación respecto del eje z contra
el tiempo para esta prueba. En esta figura se aprecian 6 tramos ascendentes
que corresponden con 6 evasiones realizadas; de estos 6 tramos, el tercero y el
quinto están relacionados con obstáculos colocados de manera intencional para
guiar al dron hacia los obstáculos del recinto (primer, segundo, cuarto y sexto
tramo). Al final de la figura 32 se observa un pico que está ligado a una
perturbación que sufre el dron en una de sus hélices en el momento en que está

realizando la última evasión, por lo cual, después de este suceso se termina la
transmisión de datos de manera automática.

Figura 32. Gráfica de orientación vs tiempo para Prueba 5.

En la figura 33 se muestran los datos obtenidos de orientación respecto del eje
z contra el tiempo para la Prueba 6. Esta prueba tiene una duración de 129
segundos, el dron tiene una orientación inicial de -145° aproximadamente, y
realiza la evasión de 2 obstáculos del recinto; sin embargo, en la figura 33 se
aprecian 5 tramos ascendentes, de los cuales el primero y segundo están
relacionados con obstáculos colocados intencionadamente para guiar el dron
hacia los obstáculos del recinto. El último tramo ascendente hace referencia a la
evasión del obstáculo final para realizar el aterrizaje, no obstante, es necesario
realizar un aterrizaje forzoso, debido a la falta de espacio en el recinto para poder

llevar a cabo el aterrizaje programado 17.5 segundos después de giro o avance
constante; lo anterior se ve reflejado en la parte final de la gráfica mostrada en
la figura 33.

Figura 33. Gráfica de orientación vs tiempo para Prueba 6.

La siguiente prueba tiene una duración de 117.43 segundos, el dron tiene una
orientación inicial de -145° aproximadamente, y registra su despegue en el
segundo 9; en la gráfica 34 se presentan los datos obtenidos para la Prueba 7
de orientación respecto del eje z contra el tiempo. En esta gráfica se puede
observar que justo después del momento del despegue el dron gira en sentido
horario (sentido negativo del eje z), esto se debe a inestabilidad del dron al
momento de despegar, sin embargo, es necesario hacer uso de un obstáculo
externo para redirigirlo hacia los obstáculos del recinto. En la figura 34 se pueden
observar 4 tramos ascendentes, correspondiente a 4 evasiones, sin embargo,

parte del primer tramo corresponde a un obstáculo externo para guiar al dron
hacia el primer obstáculo del recinto, el segundo tramo se ubica entre 60 y 75
segundos aproximadamente, correspondiente a la evasión del segundo
obstáculo. Seguido de esto, el tercer tramo ascendente está relacionado con la
detección y evasión del tercer y cuarto obstáculo del recinto, es decir, el dron al
momento de evadir el tercer obstáculo inmediatamente queda en línea de vista
con el cuarto obstáculo por lo que sigue girando hasta alrededor del segundo 90.
Finalmente, se coloca un obstáculo final al frente del dron por 17.5 segundos
para que realice su respectivo aterrizaje.

Figura 34. Gráfica de orientación vs tiempo para Prueba 7.

En la figura 35 se representan los datos de orientación respecto del eje z versus
el tiempo para la Prueba 8. Esta prueba tiene una duración de 85 segundos, a
su vez el dron tiene una orientación inicial de -145° aproximadamente, presenta
el despegue en el segundo 10, realiza la evasión de los 4 obstáculos del recinto
y finalmente aterriza con ayuda de un obstáculo externo. En la figura 35 se
pueden apreciar 3 tramos ascendentes, el primero de ellos corresponde a la
evasión del primer obstáculo del recinto, el segundo está relacionado con la
evasión del segundo, tercer y cuarto obstáculo del recinto, ya que al terminar de
evadir el segundo queda inmediatamente en línea de vista con el tercer obstáculo

y de igual manera cuando termina de evadir el tercer obstáculo continua en línea
de vista con el último. Concluyendo el análisis de esta prueba, el tercer tramo
ascendente coincide con los 17.5 segundos de evasión de un obstáculo externo
colocado con la intención de realizar el aterrizaje del dron.

Figura 35. Gráfica de orientación vs tiempo para Prueba 8.

Finalmente se presenta la figura 36 que corresponde a la última prueba realizada
donde se plasman los datos de orientación en el eje z respecto del tiempo. Para
este caso la duración es de 95 segundos, el dron tiene una orientación inicial de
-145° aproximadamente, presenta el despegue en el segundo 13 y realiza la
evasión de los 4 obstáculos del recinto. En la figura 36 es posible observar 4
tramos ascendentes, el primero de ellos corresponde a la evasión del primer
obstáculo del recinto, el segundo corresponde a la evasión del segundo y tercer
obstáculo respectivamente, el tercer tramo ascendente corresponde a la evasión
del último obstáculo del recinto y finalmente, el último tramo ascendente

corresponde a los 17.5 segundos de evasión del obstáculo externo para realizar
el aterrizaje.

Figura 36. Gráfica de orientación vs tiempo para Prueba 9.

A continuación, se muestran las gráficas de altura con respecto al tiempo para
cada una de las nueve pruebas realizadas, esto con el fin de realizar un análisis
más completo de estas pruebas. Es importante aclarar que el eje de la altura en
todas las figuras está dado en milímetros.

En la figura 37 se muestran los datos de altura versus tiempo para la Prueba 1.
En esta figura se observan dos tramos en los cuales el valor de altura (eje y) es
cero; el primer tramo corresponde al lapso de tiempo desde el cual se ejecuta el
comando para la grabación de datos, hasta que el momento antes que el dron

despegue, así como el segundo tramo corresponde al intervalo de tiempo desde
que el dron aterriza hasta que es finalizado el comando de grabación de datos.
Estos intervalos no se tienen en cuenta para el análisis debido a que no hacen
parte del rango tiempo durante el cual se ejecuta el algoritmo, por lo que, se
analiza sólo los momentos en los que la altura es diferente de cero. Para esta
prueba la carga inicial de la batería es de 40% y la carga final es de 32%.

El promedio obtenido para la altura de esta prueba teniendo en cuenta sólo el
intervalo de tiempo en el cual la altura es diferente de cero es de 718.91 mm.

Figura 37. Gráfica de altura vs tiempo para Prueba 1.

De igual manera la figura 38 muestra los datos de altura respecto del tiempo para
la Prueba 2. Al igual que en el análisis anterior, no se tienen en cuenta los
intervalos de tiempo para los cuales la altura es cero. En la Prueba 2 la carga
inicial de la batería es de 47% y la carga final es de 18%.

El promedio obtenido para la altura de esta prueba teniendo en cuenta sólo el
intervalo de tiempo en el cual la altura es diferente de cero es de 680.41mm, esto
se debe posiblemente a que el dron en esta prueba tuvo mayor tiempo de vuelo
y, por tanto, mayor desgaste en sus baterías, ocasionando un promedio de altura

menor para esta prueba respecto de la Prueba 1.

Figura 38. Gráfica de altura vs tiempo para Prueba 2.

Los datos de altura vs tiempo obtenidos para la Prueba 3 son mostrados en la
figura 39. Se analiza el intervalo de tiempo en el cual la altura es diferente de
cero, obteniendo que el promedio de altura para esta prueba es de 715.64 mm.

El porcentaje inicial de la carga de la batería para esta prueba es de 66%, y el
porcentaje final es de 58%. Al comparar el promedio de altura de la Prueba 2 con
el de la Prueba 3 se puede concluir que el porcentaje de carga de la batería tiene
efecto sobre la altura directamente, ya que el porcentaje de carga final en la
Prueba 2 es de 18% y el promedio de altura es menor al de la Prueba 3 el cual

tiene un porcentaje final de 58%.

Figura 39. Gráfica de altura vs tiempo para Prueba 3.

La figura 40 contiene la curva que representa los datos de altura referente del
tiempo para la Prueba 4. El análisis que se realiza abarca el rango de tiempo
para el cual la altura es diferente de cero, obteniendo que el promedio de altura
para esta prueba es de 710.22 mm.

El porcentaje inicial de la carga de la batería para esta prueba es de 64%, y el
porcentaje final es de 41%. El promedio de altura de la Prueba 2 sigue siendo el
menor respecto a los promedios de altura mostrados hasta este punto, teniendo
una diferencia que oscila entre los 298 mm y 385 mm.

Figura 40. Gráfica de altura vs tiempo para Prueba 4.

En la figura 41 se presentan los datos de altura en relación con el tiempo para la
Prueba 5. La carga inicial de la batería del dron para esta prueba es de 41% y la
carga final es de 33%.

 En este caso se realiza el análisis para el intervalo de tiempo desde el segundo
6.19 hasta el segundo 86.57, debido a que en este rango los valores de altura
son diferentes de cero, obteniendo que el promedio de altura para esta prueba
es de 730.60 mm. Comparando este promedio con respecto al menor obtenido
hasta ahora se concluye que existe una diferencia de 50.19 mm.

Figura 41. Gráfica de altura vs tiempo para Prueba 5.

Seguidamente se presenta la figura 42 la cual contiene la curva que representa
los datos de altura versus tiempo para la Prueba 6. La carga inicial de la batería
del dron para esta prueba es de 49% y la carga final es de 11%.

El intervalo de tiempo a ser analizado es comprendido desde el segundo 11.78
hasta el segundo 107.78, obteniendo que el promedio de altura para esta prueba
es de 635.60 mm. Al revisar la figura 42 es de esperarse que el promedio de
altura para esta prueba sea muy bajo debido a los valles que presenta la curva,
esto se debe principalmente a la reducción del porcentaje de carga de la batería

del dron durante la prueba.

Figura 42. Gráfica de altura vs tiempo para Prueba 6.

La gráfica que se muestra en la figura 43 la cual contiene la curva que representa
los datos de altura versus tiempo para la Prueba 7. La carga inicial de la batería
del dron para esta prueba es de 28% y la carga final es de 11%.

El análisis para esta prueba se realiza desde el segundo 8.98 hasta el segundo
111.77, obteniendo que el promedio de altura para esta prueba es de 740.43
mm. Debido al porcentaje de carga de las baterías tanto inicial como final en esta
prueba es de esperarse que el promedio esté situado entre uno de los más bajos,
sin embargo, la repercusión que tienen estos porcentajes de carga se ven

reflejados directamente en la figura 4.9, ya que al momento de iniciar el
despegue el dron gira en sentido contrario a lo indicado en el algoritmo, es decir,
realiza un giro de -35°.

Figura 43. Gráfica de altura vs tiempo para Prueba 7.

La figura 44 es una representación gráfica de los datos obtenidos para la Prueba
8 de altura con respecto del tiempo. La carga inicial de la batería del dron para
esta prueba es de 93% y la carga final es de 68%.

El análisis para esta prueba se realiza desde el segundo 11.7 hasta el segundo
74.77, obteniendo que el promedio de altura para esta prueba es de 706.94 mm.
Es de esperarse que debido al alto porcentaje de carga de la batería para esta
prueba sea la que mejor desempeño presenta, no obstante, para esta prueba y
la siguiente (Prueba 9) la batería usada se había puesto a cargar muy poco

tiempo, por lo que no está cargada en su totalidad y, por ende, el dato obtenido
de porcentaje de batería corresponde a una carga falsa, es decir, que para estas
dos últimas pruebas el porcentaje de batería real es menor al obtenido. Por esta
razón, se presenta el valle aproximadamente en el segundo 35, porque la batería
no tiene una carga del 93% sino que en realidad su porcentaje de carga esta
entre 50% y 55%.

Figura 44. Gráfica de altura vs tiempo para Prueba 8.

En la figura 45 se observa la curva representativa de los datos de altura vs tiempo
para la Prueba 9. El porcentaje inicial de carga de la batería es de 68% y el
porcentaje final es de 54%.

El rango de tiempo sobre el cual se realiza el análisis inicia en el segundo 13.07
y finaliza en el segundo 89.98, obteniendo que el promedio de altura para esta
prueba es de 712.52 mm. Al igual que en la Prueba 8 para esta prueba la batería
usada se había puesto a cargar muy poco tiempo, por lo que no está cargada en
su totalidad y, por ende, el dato obtenido de porcentaje de batería corresponde

a una carga falsa. Por esta razón, se presenta el valle aproximadamente en el
segundo 68, porque la batería no tiene una carga del 68% sino que en realidad
su porcentaje de carga oscila alrededor del 30%.

Figura 45. Gráfica de altura vs tiempo para Prueba 9.

Este algoritmo es una representación simple y sencilla de todo un conjunto de
herramientas útiles, que sirven de base para llevar a cabo futuros proyectos, el
cual es uno de los resultados de mayor importancia, porque de este modo se
incentiva a las personas interesadas en este campo a hacer uso de las nuevas
tecnologías y así mismo incurrir en el desarrollo de estas, así como a su vez
lograr tener un aporte académico a la región.

Al realizar las diferentes pruebas del sistema se tiene como resultado que la
distancia entre el dron y la estación en tierra es de gran importancia, debido a

que esto logra influir en el correcto funcionamiento y, por tanto, en el desempeño
del sistema, ya que al alejarse demasiado el dron, la imagen que se obtiene
desde este a la base en tierra se congela, y por tanto no es posible el
procesamiento de la imagen en tiempo real, y a su vez no se logra realizar la
detección del obstáculo y por ende no es posible que se tomen las acciones de
control para realizar una evasión correcta. Lo anterior se puede apreciar en las
figuras 46 y 47; en esta última figura se observa al dron encerrado en un óvalo
de color negro detectando al obstáculo encerrado en un círculo de color rojo, sin
embargo, la imagen observada en la estación en tierra en la figura 46 ya se
encuentra congelada debido a la distancia de alcance de la red wifi creada por
el AR.Drone 2.0.

Figura 46. Imagen congelada del AR.Drone 2.0 por exceder alcance de su red wifi.

Figura 47. Escenario completo de imagen congelada del AR.Drone 2.0 por exceder

alcance de su red wifi.

Finalmente, al llevar el algoritmo al campo y realizar algunas pruebas se puede
apreciar el correcto funcionamiento del sistema, es decir, que logra percibir un
objeto de color rojo, y según las pruebas realizadas con el obstáculo de mayor
tamaño es capaz de reconocerlo hasta a una distancia más o menos de dos
metros y medio, para posteriormente evadirlo mediante las acciones control
implementadas en el algoritmo tales como la variación de la velocidad angular
hasta que el obstáculo se encuentre fuera del rango visual del dron para
modificar así la velocidad lineal y seguir un trayectoria recta, hasta que detecta
otro obstáculo de color rojo en su camino. Es preciso aclarar que como medida

de seguridad implementada para el sistema se establecen unos tiempos límites
que al ser sobrepasados hacen posible que se genere un aterrizaje seguro del
dron. Al estar el dron girando durante 17.5 segundos seguidos, este aterriza de
manera satisfactoria en las pruebas realizadas. De igual manera al continuar en
línea recta durante este mismo periodo de tiempo el dron realiza su aterrizaje de
forma correcta.

Figura 48. Trayectoria realizada por AR.Drone 2.0.

En la figura 49 se evidencia la simulación del escenario de detección de
obstáculo con AR.Drone 2.0 mediante Gazebo, el cual es una herramienta que
permite simular entornos en tres dimensiones para estimar el comportamiento
de un robot en un entorno virtual. En el costado izquierdo de la figura se observa
al dron y al obstáculo frente a él, mientras que en el costado derecho de la figura
se evidencia la detección del obstáculo, así como en la parte inferior las
coordenadas x e y de su centro.

Figura 49. Simulación de escenario de detección de obstáculo con AR.Drone 2.0
mediante Gazebo.

Figura 50. Detección de obstáculo con AR.Drone 2.0 en tiempo real.

La figura 50 ratifica la detección de obstáculos en tiempo real usando el
AR.Drone 2.0. Esta figura se puede dividir en dos escenarios, el primero de ellos
es el dron con el obstáculo ubicado en frente de él, y el segundo la estación en
tierra obteniendo la imagen de la cámara frontal del dron con su respectiva
detección.

Con lo dicho anteriormente es posible concluir que los resultados obtenidos
fueron los esperados, logrando implementar satisfactoriamente un sistema de
detección y evasión de obstáculos haciendo uso de herramientas de fuente
abierta bajo condiciones específicas.

5. CONCLUSIONES

• Se logró desarrollar un algoritmo de detección y evasión de obstáculos de
color rojo utilizando el lenguaje de programación Python en conjunto con
el entorno de desarrollo Robot Operating System (ROS) y la librería para
procesamiento de imágenes OpenCV, teniendo la gran ventaja de ser
asequible a cualquier persona ya que las herramientas mencionadas
anteriormente son de código abierto.

• Se encontraron varios factores que influyeron negativamente en el
desempeño del algoritmo, los cuales son externos a este, tales como el
estado del dron (aspas, motores y baterías) que dificultaron ver el
rendimiento esperado del algoritmo realizado.

• Es de suma importancia tener en cuenta la cobertura (alcance) de la red
WiFi creada por el AR.Drone 2.0 al momento de ser energizado, ya que
al sobrepasar este alcance se pierde la comunicación entre el dron y la
estación en tierra (computador), generando que se pierdan los paquetes
de la transmisión del video y esta manera no se pueda seguir realizando
las acciones control para el dron.

• La estructura de ROS ofrece una gran cantidad de ventajas entre las
cuales cabe resaltar la adquisición de datos en tiempo real del robot en
estudio (AR.drone 2.0), como la obtención de imágenes de las cámaras,
datos de sensores, así como también su gran comunidad existente que
provee información de gran utilidad en la web.

• Se utilizaron dos métodos para la obtención de imágenes en tiempo real
(mediante ROS realizando la suscripción al topic
“/ardrone/front/image_raw” y mediante OpenCV utilizando la función
“VideoCapture”) encontrando que las imágenes obtenidas mediante
OpenCV tienen un tiempo de retardo considerable, mientras que las
imágenes por medio de ROS si se obtenían en tiempo real, verificando

una de las ventajas de este entorno de desarrollo.

• Al tener que definir unos rangos de colores en formato HSV es de suma
importancia tener en cuenta la luminosidad del entorno ya que la última
característica de este formato (Value) indica qué tanto brillo debe tener el
color para ser detectado, por tanto, no todos los rojos serán detectados
como obstáculos.

• Este proyecto de grado sienta las bases en un tema muy poco conocido
en la región que es de gran utilidad como lo es el uso de ROS para la
implementación de algoritmos en robots, debido a que el algoritmo
presentado proporciona información útil y funciona como guía para futuros
proyectos o investigaciones, además de que la lógica del algoritmo

funciona con mucha similitud en otros robots no solo aéreos sino también
terrestres y acuáticos.

6. RECOMENDACIONES

• Con el fin de mejorar la eficacia del sistema se recomienda utilizar una
herramienta alternativa en cuanto a la detección de los obstáculos como
las redes neuronales, debido a que estas pueden reconocer objetos tanto
de diferentes formas y colores, gracias a su proceso de entrenamiento.

• Dependiendo de la aplicación en la que se vaya a incurrir, se recomienda
ajustar las acciones de control (velocidades angulares y lineales), así
como también los tiempos para el aterrizaje seguro.

• Al momento de realizar las pruebas del sistema, se recomienda estar
seguro de que las baterías se encuentren con más del 80% de carga,
debido que a la alta cantidad de corriente que necesitan los motores del
dron generan un desgaste alto en un corto tiempo en las baterías,
limitando así el tiempo de uso, el número de ejecuciones y el rendimiento
del sistema.

Bibliografía

Bradski, Gary. (2000). The OpenCV Library. Dr. Dobb's Journal of Software
Tools.

Mihelich, P., Bowman, J. 2012. cv_bridge: package to convert between ROS Im-
age messages and OpenCV images.

Monajjemi, M., et al. 2012. ardrone_autonomy: a ROS driver for AR.Drone 1.0 &

2.0.

ROS.org. Converting between ROS images and OpenCV images (Python). [en
línea]. http://wiki.ros.org/cv_bridge/Tutorials/ConvertingBetweenROSImagesAn-
dOpenCVImagesPython. 24 de marzo de 2020

ROS.org. Topics. [en línea]. http://wiki.ros.org/Topics. 24 de marzo de 2020.

ROS.org. Writing a Simple Publisher and Subscriber (Python). [en línea].
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29. 24
de marzo de 2020.

SOLANO, Gabriela. DETECCION DE COLORES en OPENCV [en 4 Pasos] –
Parte1 [video]. Ecuador: Youtube. (2 de marzo de 2019). 7:11 minutos. [Consul-
tado: 24 de marzo de 2020]. Disponible en
https://www.youtube.com/watch?v=giwtDYcIXKA.

Stanford Artificial Intelligence Laboratory et al. (2018). Robotic Operating Sys-
tem. Disponible en https://www.ros.org.

ANEXOS

ALGORITMO DE DETECCIÓN DE OBSTÁCULOS DE COLOR ROJO
#!/usr/bin/env python2

import sys
import rospy
import cv2
from std_msgs.msg import String, Empty, Float32
from sensor_msgs.msg import Image

from collections import deque
from cv_bridge import CvBridge, CvBridgeError
import numpy as np

class image_converter:

 def _init(self):
 self.image_pub = rospy.Publisher("image_topic_2",Image,queue_size=10)
 self.pub=rospy.Publisher('Coordenadas_Y',Float32,queue_size=1)
 self.pub1=rospy.Publisher('Coordenadas_X',Float32,queue_size=1)
 self.pub3=rospy.Publisher('Aterrizaje',Float32,queue_size=1)
 self.bridge = CvBridge()
 self.image_sub = rospy.Subscriber("/ardrone/front/image_raw",Im-
age,self.callback)

 def callback(self,data):
 Lower = np.array([0, 150, 20],np.uint8)
 Upper = np.array([1, 255, 255],np.uint8)
 Lower1 = np.array([178, 150, 20],np.uint8)
 Upper1 = np.array([179, 255, 255],np.uint8)
 pts = deque(maxlen=64)
 try:
 cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")

 hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
 mask1 = cv2.inRange(hsv, Lower, Upper)
 mask2 = cv2.inRange(hsv, Lower1, Upper1)
 mask = cv2.add(mask1,mask2)
 mask = cv2.erode(mask, None, iterations=2)
 mask = cv2.dilate(mask, None, iterations=2)
 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTER-
NAL,cv2.CHAIN_APPROX_SIMPLE)[-2]
 center = None
 if len(cnts) > 0:
 c = max(cnts, key=cv2.contourArea)
 ((x, y), radius) = cv2.minEnclosingCircle(c)
 M = cv2.moments(c)
 center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))

 a=(int(M["m01"] / M["m00"]))
 b=(int(M["m10"] / M["m00"]))
 rospy.loginfo('%i %s %i', int(M["m10"] / M["m00"]),",",int(M["m01"] /
M["m00"]))
 rate.sleep()
 if radius > 10:
 cv2.circle(cv_image, (int(x), int(y)), int(radius),(0, 255, 255), 2)
 cv2.circle(cv_image, center, 5, (0, 0, 255), -1)

 else:

 a=(int(-1))
 b=(int(-2))

 except CvBridgeError as e:
 print(e)

 cv2.imshow("Image window", cv_image)
 cv2.waitKey(3)

 try:
 self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
 self.pub1.publish(b)
 except CvBridgeError as e:
 print(e)
def main():
 ic = image_converter()
 try:
 rospy.spin()
 except KeyboardInterrupt:
 print("Shutting down")
 cv2.destroyAllWindows()

if _name_ == '_main_':
 rospy.init_node('image_converter', anonymous=True)
 global rate
 rate = rospy.Rate(20) # Taza o velocidad de 20Hz
 main()

ALGORITMO DE EVASIÓN DE OBSTÁCULOS DE COLOR ROJO

#!/usr/bin/env python
import rospy
from std_msgs.msg import Float32,Empty
from geometry_msgs.msg import Twist
msg=Twist()

class Detector():

 def _init_(self):

 self.coordenadax = None
 self.coordenaday = None

 def coordenadax_callback(self, data):

 global pub2
 pub3=rospy.Publisher('ardrone/land',Empty,queue_size=10)
 pub2=rospy.Publisher('/cmd_vel',Twist,queue_size=10)
 self.coordenadax = data
 if data.data == -2:

 global i,j
 rospy.loginfo('NO HAY OBSTACULO')
 msg.angular.z = 0
 msg.linear.x = 0.01
 i=0
 j=j+1
 else:

 rospy.loginfo('SI HAY OBSTACULO')

 msg.linear.x = 0
 msg.angular.z = 0.1
 i=i+1
 j=0

 pub2.publish(msg) #Realiza la publicacion de las velocidades
 rospy.loginfo('%s %i','Temporizador de giro: ',i)
 rospy.loginfo('%s %i','Temporizador de avance: ',j)
 if i > 350:
 rospy.loginfo('ATERRIZANDO')
 pub3.publish(Empty())
 if j > 350:
 rospy.loginfo('ATERRIZANDO')
 pub3.publish(Empty())

 def coordenaday_callback(self, data):

 self.coordenaday = data

if _name_ == '_main_':
 rospy.init_node('listener')

 detector = Detector()
 global i,j
 i=0
 j=0
 rospy.Subscriber('Coordenadas_X', Float32, detector.coordenadax_callback)
 rospy.Subscriber('Coordenadas_Y', Float32, detector.coordenaday_callback)

 rospy.spin()

