UNIVERSIDAD SURCOLOMBIANA
GESTION SERVICIOS BIBLIOTECARIOS

CARTA DE AUTORIZACION

VERSION \n VIGENCIA

@ | ©

icontec icontec

50 9001 150 100 @HSAS
LR W WL

SACERESNEN CSCERSTMS

PAGINA

cODIGO AP-BIB-FO-06

Neiva, 15 de febrero de 2021

Sefiores

CENTRO DE INFORMACION Y DOCUMENTACION
UNIVERSIDAD SURCOLOMBIANA

Ciudad

El (Los) suscrito(s):

David Ernesto Reina Munar , con C.C. No. 1026591813 ,
Karen Yulieth Ceréon Manrique , con C.C. No. 1075314515 ,
, con C.C. No. ,
, con C.C. No. .

Autor(es) de la tesis y/o trabajo de grado o

titulado Sistema de deteccidn y evasién de obstaculos en un ambiente controlado, realizado con AR.Drone 2.0

mediante ROS y Python

presentado y aprobado en el afio __2021___ como requisito para optar al titulo de

Ingeniero Electrénico ;

Autorizo (amos) al CENTRO DE INFORMACION Y DOCUMENTACION de la Universidad Surcolombiana para
que, con fines académicos, muestre al pais y el exterior la produccién intelectual de la Universidad
Surcolombiana, a través de la visibilidad de su contenido de la siguiente manera:

e Los usuarios puedan consultar el contenido de este trabajo de grado en los sitios web que administra la
Universidad, en bases de datos, repositorio digital, catalogos y en otros sitios web, redes y sistemas de
informacion nacionales e internacionales “open access” y en las redes de informacion con las cuales tenga
convenio la Institucion.

e Permita la consulta, la reproduccién y préstamo a los usuarios interesados en el contenido de este trabajo,
para todos los usos que tengan finalidad académica, ya sea en formato Cd-Rom o digital desde internet,
intranet, etc., y en general para cualquier formato conocido o por conocer, dentro de los términos
establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decision Andina 351 de 1993, Decreto 460 de 1995 y
demas normas generales sobre la materia.

e Contintio conservando los correspondientes derechos sin modificacion o restriccion alguna; puesto que, de
acuerdo con la legislacion colombiana aplicable, el presente es un acuerdo juridico que en ningun caso
conlleva la enajenacion del derecho de autor y sus conexos.

Vigilada Mineducacion
La version vigente y controlada de este documento, solo podra ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestiéon de Calidad. La copia o impresién diferente a la publicada, sera considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

http://www.usco.edu.co/

UNIVERSIDAD SURCOLOMBIANA
GESTION SERVICIOS BIBLIOTECARIOS

CARTA DE AUTORIZACION

\ VERSION \n VIGENCIA

De conformidad con lo establecido en el articulo 30 de la Ley 23 de 1982 y el articulo 11 de la Decisién Andina
351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores” , los cuales son irrenunciables,
imprescriptibles, inembargables e inalienables.

@l ©f @
icontec icontec icontec

50 5001 150 14001 OHSAS
R \ oo J

SACERE SN CSCERSM

PAGINA

cODIGO AP-BIB-FO-06

EL AUTOR/ESTUDIANTE: EL AUTOR/ESTUDIANTE:
: \ =, A
Firma: KCIYCV\ QQ?OV\ ™. Firma: [,I{aﬁé G Qe:lm M%\'
EL AUTOR/ESTUDIANTE: EL AUTOR/ESTUDIANTE:
Firma: Firma:

Vigilada Mineducacion
La version vigente y controlada de este documento, solo podra ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestion de Calidad. La copia o impresion diferente a la publicada, sera considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

http://www.usco.edu.co/

UNIVERSIDAD SURCOLOMBIANA
GESTION SERVICIOS BIBLIOTECARIOS ofeofle
DESCRIPCION DE LA TESIS Y/O TRABAJOS DE GRADO
Ar-BB-F0-07 [INEEN 1 NEEEA 2014

150 5001 150 100 OHSAS
|50) _#oon

PAGINA

CODIGO |

TiTULO COMPLETO DEL TRABAJO: Sistema de deteccién y evasién de obstaculos en un ambiente
controlado, realizado con AR.Drone 2.0 mediante ROS y Python

AUTOR O AUTORES:
Primero y Segundo Apellido Primero y Segundo Nombre
Cerdén Manrique Karen Yulieth
Reina Munar David Ernesto

DIRECTOR Y CODIRECTOR TESIS:

Primero y Segundo Apellido Primero y Segundo Nombre
Robayo Betancourt Faiber Ignacio
ASESOR (ES):

Primero y Segundo Apellido Primero y Segundo Nombre

PARA OPTAR AL TiTULO DE: Ingeniero Electrénico
FACULTAD: Ingenieria
PROGRAMA O POSGRADO: Electronica

CIUDAD: Neiva ANO DE PRESENTACION: 2021 NUMERO DE PAGINAS: 60
TIPO DE ILUSTRACIONES (Marcar con una X):

Diagramas___ Fotografias__ Grabaciones en discos____ llustraciones en general_X_ Grabados_
Laminas___ Litografias Mapas___ Musica impresa___ Planos___ Retratos Sin ilustraciones __ Tablas
o Cuadros_ X

Vigilada Mineducacion
La version vigente y controlada de este documento, solo podra ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestion de Calidad. La copia o impresion diferente a la publicada, sera considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

about:blank

UNIVERSIDAD SURCOLOMBIANA
GESTION SERVICIOS BIBLIOTECARIOS ofeofle
DESCRIPCION DE LA TESIS Y/O TRABAJOS DE GRADO
Ar-BB-F0-07 [INEEN 1 NEEEA 2014

50 5000 150 1o OHSAS
— S e)

CODIGO | PAGINA

SOFTWARE requerido y/o especializado para la lectura del documento: Word

MATERIAL ANEXO:

PREMIO O DISTINCION (En caso de ser LAUREADAS o Meritoria):

PALABRAS CLAVES EN ESPANOL E INGLES:

Espaiiol Inglés Espaiiol Inglés
1. Visién por computador Computer vision 6. UAV UAV
2. Algoritmo Algorithm 7. ROS ROS
3. Python Python 8. OpenCV OpenCV
4. Dron Drone 9. AR.Drone 2.0 AR.Drone 2.0
5. VANT VANT

RESUMEN DEL CONTENIDO: (Maximo 250 palabras)

En este trabajo se desarrolla e implementa un algoritmo escrito en lenguaje de programacién Python, con el
fin de realizar la deteccidn y evasidn de obstaculos de color rojo. Este algoritmo se basado en el uso de
OpenCV para realizar la deteccion de obstaculos teniendo en cuenta la caracteristica del color del objeto, asi
como también el uso de Robot System Operating (ROS) como entorno de desarrollo de programacion para
realizar el intercambio de datos entre el dron y la estacidn en tierra, y el uso de Python como lenguaje de
programacién en estas dos herramientas.

Una finalidad importante de este trabajo es contribuir con el desarrollo tecnolégico de la regién mediante el
uso de drones, asi como también sentar las bases para futuras investigaciones y proyectos no sélo con
drones sino con cualquier robot que pueda ser programado con ROS, ya que la légica del algoritmo
desarrollado funciona de manera similar para todos, brindando asi una amplia utilidad y flexibilidad a las
personas que quieran adentrarse en esta area.

Vigilada Mineducacion
La version vigente y controlada de este documento, solo podra ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestiéon de Calidad. La copia o impresién diferente a la publicada, sera considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

about:blank

UNIVERSIDAD SURCOLOMBIANA
GESTION SERVICIOS BIBLIOTECARIOS ofeofle
DESCRIPCION DE LA TESIS Y/O TRABAJOS DE GRADO
Ar-BB-F0-07 [INEEN 1 NEEEA 2014

50 5001 150 100 OHSAS
— S e)

PAGINA

CODIGO |

ABSTRACT: (Maximo 250 palabras)

In this work a python algorithm was developed, in order to carry out the detection and avoidance of red
obstacles. This algorithm is based on the use of OpenCV to perform obstacle detection taking into account
the color characteristic of the object, as well as the use of Robot System Operating (ROS) as programming
development environment in order to data exchange between the drone and the ground station, and the use
of Python as programming language in these two tools.

An important purpose of this work is to contribute to the technological development of the region by using
drones, as well as to blaze the way for future research and projects not only with drones but with any robot
that can be programmed with ROS because logic of the developed algorithm works in a similar way for every
robot, thus providing a wide utility and flexibility to people who want go deeper into this area.

APROBACION DE LA TESIS
Nombre Presidente Jurado:

Firma:

Nombre Jurado: Diego Fernando Sendoya Losada
Firma:

Nombre Jurado: José de Jesus Salgado Patrén

Firma:

Vigilada Mineducacion
La version vigente y controlada de este documento, solo podra ser consultada a través del sitio web Institucional www.usco.edu.co, link
Sistema Gestiéon de Calidad. La copia o impresién diferente a la publicada, sera considerada como documento no controlado y su uso
indebido no es de responsabilidad de la Universidad Surcolombiana.

about:blank

SISTEMA DE DETECCION Y EVASION DE OBSTACULOS EN UN
AMBIENTE CONTROLADO, REALIZADO CON AR.DRONE 2.0 MEDIANTE
ROS Y PYTHON.

DAVID ERNESTO REINA MUNAR
KAREN YULIETH CERON MANRIQUE

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERIA
PROGRAMA DE INGENIERIA DE ELECTRONICA
NEIVA HUILA
2021

SISTEMA DE DETECCION Y EVASION DE OBSTACULOS EN UN
AMBIENTE CONTROLADO, REALIZADO CON AR.DRONE 2.0 MEDIANTE
ROS Y PYTHON.

DAVID ERNESTO REINA MUNAR
KAREN YULIETH CERON MANRIQUE

Trabajo de grado presentado como requisito para optar al Titulo de
Ingeniero Electronico.

Director
ING. FAIBER ROBAYO BETANCOURT, MSc.

UNIVERSIDAD SURCOLOMBIANA
FACULTAD DE INGENIERIA
PROGRAMA DE INGENIERIA DE ELECTRONICA
NEIVA HUILA
2021

Primero que nada, quiero dar gracias a Dios por permitirme
lograr esta meta, guiar mi camino siempre y mostrarme
gue, aunque a veces parezca dificil el camino,

con El de la mano se aligeran las cargas.

En segundo lugar, quiero agradecer a mis padres quienes
han sido fundamentales en este proceso por brindarme

su amor y apoyo incondicional, ademas de inculcarme

los valores que me hacen la persona que soy hoy en dia
asi como también ensefiarme que sin Dios nada es posible.

Quiero agradecer también a mis hermanos porque a pesar
de la distancia siempre me han apoyado y ayudado

en mi formacioén personal, asi como también porque
siempre han sido un ejemplo a segquir.

David

En primer lugar, doy gracias a Dios y a la Virgen

por estar a mi lado en todo momento ofreciéndome
lo mejor y presentandome el camino correcto durante
mi carrera sin importar las circunstancias.

A mis padres por todos sus sacrificios y esfuerzos,
por darme una carrera para mi futuro,

por todo el amor y comprension a lo largo de este
largo camino, siempre tuvieron una palabra de
aliento para seguir adelante.

A mi hermano por su carifio y apoyo durante todo

este proceso, quien siempre con sus palabras
me hace sentir orgullosa de lo que soy.

Karen

AGRADECIMIENTOS

Agradecemos a los docentes del programa de Ingenieria Electronica de la
Universidad Surcolombiana, por compartir sus conocimientos durante la
preparacion de nuestra profesion, en especial al ingeniero Faiber Robayo
director de nuestro proyecto de grado, quien, con su conocimiento, ensefianza y
tiempo dedicado a nosotros, contribuyé al desarrollo de este proyecto.

A nuestros comparieros Luisa, Marylin, Yimmi, Camilo, Sebastian, Maicol y David
que caminaron con nosotros durante todo este proceso, compartiendo no sélo
alegrias sino tristezas, dandonos su apoyo incondicional, aportando su granito
de arena para culminar nuestra meta propuesta.

RESUMEN

TITULO:

SISTEMA DE DETECCION Y EVASION DE OBSTACULOS EN UN AMBIENTE
CONTROLADO, REALIZADO CON AR.DRONE 2.0 MEDIANTE ROS Y
PYTHON.

AUTORES:

DAVID ERNESTO REINA MUNAR
KAREN YULIETH CERON MANIQUE

PALABRAS CLAVES:

Visién por computador, Algoritmo, Python, Dron, VANT, UAV, ROS, OpenCV,
AR.Drone 2.0.

DESCRIPCION:

En este trabajo se desarrolla e implementa un algoritmo escrito en lenguaje de
programacion Python, con el fin de realizar la deteccién y evasion de obstaculos
de color rojo. Este algoritmo se basado en el uso de OpenCV para realizar la
deteccion de obstaculos teniendo en cuenta la caracteristica del color del objeto,
asi como también el uso de Robot System Operating (ROS) como entorno de
desarrollo de programacién para realizar el intercambio de datos entre el dron y
la estacion en tierra, y el uso de Python como lenguaje de programacion en estas
dos herramientas.

Una finalidad importante de este trabajo es contribuir con el desarrollo
tecnoldgico de la region mediante el uso de drones, asi como también sentar las
bases para futuras investigaciones y proyectos no sélo con drones sino con
cualquier robot que pueda ser programado con ROS, ya que la logica del
algoritmo desarrollado funciona de manera similar para todos, brindando asi una
amplia utilidad y flexibilidad a las personas que quieran adentrarse en esta area.

ABSTRACT

TITLE:

OBSTACLE DETECTION AND AVOIDANCE SYSTEM IN A CONTROLLED
ENVIRONMENT WITH AR.DRONE 2.0 USING ROS AND PYTHON.

AUTHORS:

DAVID ERNESTO REINA MUNAR
KAREN YULIETH CERON MANRIQUE

KEYWORDS:

Computer vision, Algorithm, Python, Drone, VANT, UAV, ROS, OpenCV,
AR.Drone 2.0.

DESCRIPTION:

In this work a python algorithm was developed, in order to carry out the detection
and avoidance of red obstacles. This algorithm is based on the use of OpenCV
to perform obstacle detection taking into account the color characteristic of the
object, as well as the use of Robot System Operating (ROS) as programming
development environment in order to data exchange between the drone and the
ground station, and the use of Python as programming language in these two
tools.

An important purpose of this work is to contribute to the technological
development of the region by using drones, as well as to blaze the way for future
research and projects not only with drones but with any robot that can be
programmed with ROS because logic of the developed algorithm works in a
similar way for every robot, thus providing a wide utility and flexibility to people
who want go deeper into this area.

CONTENIDO

Pag.
1. CAPITULO UNO: FUNDAMENTOS BASICOS......cceieoeeeeeeeeeeeeeeeeeeeeee 144
1.1. DRONES ..., iERROR! MARCADOR NO DEFINIDO.4

1.2. ROBOT OPERATING SYSTEM (ROS) .. {ERROR! MARCADOR NO DEFINIDO.4
1.3. OPEN SOURCE COMPUTER VISION (OPENCV).. {ERROR! MARCADOR NO
DEFINIDO.5

S e A I = [] N P 155
1.5. AR DRONE 2.0..civiiiiiiiiiieiieeeeeeeee, iERROR! MARCADOR NO DEFINIDO.6
2. CAPITULO DOS: TRANSFERENCIA DE DATOS MEDIANTE ROS.......... 177
2.1. ROSTOPIC. ..o, iERROR! MARCADOR NO DEFINIDO.7
2.2. ROS PUBLISHER NODE.ccuu....... iERROR! MARCADOR NO DEFINIDO.7
2.3. ROS SUBSCRIBER NODE..................... iERROR! MARCADOR NO DEFINIDO.7

3. CAPITULO TRES: ALGORITMO DE DETECCION Y EVASION DE

OBSTACULOS DE COLOR ROUJO.......uiiiiieieeeecte e 18

3.1, LIBRERIAS. ...ttt 18

3.2. ALGORITMO DE DETECCION DE OBSTACULOS DE COLOR ROJO.
1818

3.2.1. CREACION DE LA CLASE Y DEFINICION DE FUNCIONESc.cevvuiiinieiieeieeennn, 18

3.2.2. ESTABLECIMIENTO DE LOS RANGOS DE COLOR EN FORMATO HSV PARA LA

DETECCION DE OBSTACULOScvvvvniviiiniiineennnn, iERROR! MARCADOR NO DEFINIDO.19

3.2.3. CONVERSION DE TIPO DE IMAGEN Y CREACION DE MASCARAS.............. iERROR!

MARCADOR NO DEFINIDO.21

3.2.4. UNIFICACION DE MASCARAS Y OPERACIONES MORFOLOGICAS.............. iERROR!

MARCADOR NO DEFINIDO.21

3.2.5. CREACION DEL CONTORNO.......ccevneevnnnnnn. iERROR! MARCADOR NO DEFINIDO.2

3.2.6. OBTENCION DE LAS COORDENADAS DEL OBSTACULO .. {ERROR! MARCADOR NO
DEFINIDO.2

3.2.7. VISUALIZACION DEL BORDE DEL CIRCULO Y EL CENTROIDE jERROR! MARCADOR
NO DEFINIDO.3

3.2.8. OBTENCION DE COORDENADAS NEGATIVAS................ iERROR! MARCADOR NO
DEFINIDO.23

3.2.9. DETECCION DE ERROR EN LA CONVERSION DE IMAGEN jERROR! MARCADOR NO
DEFINIDO.4

3.2.10. PUBLICACION DE LA IMAGEN FINAL iERROR! MARCADOR NO DEFINIDO.4
3.2.11. PUBLICACION DE LA IMAGEN FINAL CONVERTIDA A FORMATO TIPO ROS Y LA
COORDENADA X uuiuiiiiiietieneeeaneteeneeneeesnsneeneenaenns iERROR! MARCADOR NO DEFINIDO.4
3.2.12. DEFINICION DE LA FUNCION PRINCIPAL (MAIN) iERROR! MARCADOR NO
DEFINIDO.4

3.2.13. INICIADOR DE LA FUNCION PRINCIPAL (MAIN) iERROR! MARCADOR NO

DEFINIDO.5

3.3. ALGORITMO DE EVASION DE OBSTACULOS DE COLOR ROJO.
iERROR! MARCADOR NO DEFINIDO.5

3.3.1. CREACION DE LA CLASE Y SU CONSTRUCTOR iERROR! MARCADOR NO

DEFINIDO.5

3.3.2. DEFINICION DE LA FUNCION DE ACCION DE CONTROL... {ERROR! MARCADOR NO

DEFINIDO.5

3.3.3. CONDICION PARA REALIZAR LA ACCION DE CONTROL... ERROR! MARCADOR NO

DEFINIDO.26

3.3.4. PUBLICACION DE LAS VELOCIDADES Y VISUALIZACION DE LOS

TERMPORIZADORES ...cuivieiinitieieeneeeeneneesenenensenens iERROR! MARCADOR NO DEFINIDO.7
3.3.5. ATERRIZAJE DEL DRON DE ACUERDO CON LOS TEMPORIZADORES iERROR!
MARCADOR NO DEFINIDO.27

3.3.6. INICIADOR DE LA FUNCION PRINCIPAL...... iERROR! MARCADOR NO DEFINIDO.27
4. RESULTADOS Y DISCUSIONES. ... 2929
D CONCLUSIONES ... e e eas 5353
0. RECOMEND A CIONES e, 55
BIBLIOGRAFIA ... ettt 5656
AN E X O S e 5757

ALGORITMO DE DETECCION DE OBSTACULOS DE COLOR ROJO...iERROR!
MARCADOR NO DEFINIDO.59
ALGORITMO DE EVASION DE OBSTACULOS DE COLORROJO.................. 60

LISTA DE TABLAS

Pag.
TABLA 1 CARACTERISTICAS AR.DRONE 2.0 NUEVO Y USADOeuienieieeeeeaeeeeeeennn 30
TABLA 2 CONVENCION PARA LOS OBSTACULOS UTILIZADOS ... e eee e eeaeaaeeens 30

TABLA 3 CONVENCION PARA LAS PRUEBAS REALIZADAS . ..cuitii et eeneeneeens 30

LISTA DE FIGURAS

Pag.
FIGURA 1. AR.DRONE 2.0 CON PROTECCION PARA INTERIORES .. {ERROR! MARCADOR
NO DEFINIDO.6

FIGURA 2. INTERCAMBIO DE DATOS MEDIANTE ROS...........cv... iERROR! MARCADOR NO
DEFINIDO.7
FIGURA 3. LIBRERIAS DE PYTHON USADAS PARA EL DESARROLLO DEL ALGORITMO EN EL
NODO PUBLISHER ..cuvuitititeieee et e e e e e e s et e e e e e e e e e e s e s e eaeeneeneenaes 1818
FIGURA 4. LIBRERIAS DE PYTHON USADAS PARA EL DESARROLLO DEL ALGORITMO EN EL
NODO SUBSCRIBER .. cutitiittiitiiteitiiteettettsteeas et esne et tsseens et esneesestaeensetiesneenns 208
FIGURA 5. CONSTRUCTOR DE LA CLASE “IMAGE_CONVERTER” jERROR! MARCADOR NO
DEFINIDO.19
FIGURA 6. REPRESENTACION DEL FORMATO DE COLOR HSV ..cuvivniiniinieieinieieenn 2520
FIGURA 7. ESTABLECIMINETO DE LOS RANGOS PARA DETECCION DE OBTACULOS ..2520
FIGURA 8. VISTA DE LOS COMPONENTES HSV ..uuiiuiitiiiiiiieieeeeee e s e e s s e eneseneeans 21
FIGURA 9. CONVERSION TIPO DE IMAGEN Y CERACION DE MASCARAS.......cccvvivniennnn. 21
FIGURA 10. UNIFICACION DE MASCARAS Y OPERACIONES MORFOLOGICAS.............. 262
FIGURA 11. CREACION DEL CONTORNO iERROR! MARCADOR NO DEFINIDO.2
FIGURA 12. OBTENCION DE LAS COORDENADAS DEL OBSTACULOcvvvvvvenrivnennen, 2723
FIGURA 13. VISUALIZACION DEL BORDE DEL CIRCULO Y EL CENTROIDEcvvvvuvennes 273
FIGURA 14. OBTENCION DE COORDENADAS NEGATIVAScvviiiiiiieniiieeieeieeieenen, 2823
FIGURA 15. DETECCION DE ERROR EN LA CONVERSION DE IMAGENc.... iERROR!

MARCADOR NO DEFINIDO.24
FIGURA 16. PUBLICACION DE LA IMAGEN FINAL ... [ERROR! MARCADOR NO DEFINIDO.24
FIGURA 17. PUBLICACION DE LA IMAGEN FINAL CONVERTIDA A FORMATO TIPO ROS Y DE
LA COORDENADA X ..vuivniiietienieneanennenneneenns iERROR! MARCADOR NO DEFINIDO.24
FIGURA 18. DEFINICION DE LA FUNCION PRINCIPAL (MAIN)...... iERROR! MARCADOR NO
DEFINIDO.25

FIGURA 19. INICIADOR DE LA FUNCION PRINCIPAL (MAIN)........ iERROR! MARCADOR NO
DEFINIDO.25

FIGURA 20. CREACION DE LA CLASE Y SU CONSTRUCTOR ...cuuiivniiiiiereiineenneeeneennnes 25

FIGURA 21. DEFINICION DE LA FUNCION DE ACCION DE CONTROL . {ERROR! MARCADOR
NO DEFINIDO.6

FIGURA 22. CONDICIONAL PARA REALIZAR LA ACCION DE CONTROL iERROR!
MARCADOR NO DEFINIDO.6

FIGURA 23. PUBLICACION DE LAS VELOCIDADES Y VISUALIZACION DE LOS

TEMPORIZADORES ...uiuiiteiieiteetee et e et e et e e e et e et e e e et e aa e et et aeneetaeneenesnaenns 27
FIGURA 24. ATERRIZAJE DEL DRON DE ACUERDO A LOS TEMPORIZADORES................ 27
FIGURA 25. INICIADOR DE LA FUNCION PRINCIPAL]ERROR! MARCADOR NO DEFINIDO.28
FIGURA 26. AR.DRONE 2.0 CON SUS RESPECTIVOS EJES. iERROR! MARCADOR NO

DEFINIDO.31
FIGURA 27. DIRECCION DE GIRO DEL DRON RESPECTO DEL EJE Z (YAW).......... iERROR!

MARCADOR NO DEFINIDO.31
FIGURA 28. GRAFICA DE ORIENTACION VS TIEMPO PARA PRUEBA 1 iERROR!

MARCADOR NO DEFINIDO.32
FIGURA 29. GRAFICA DE ORIENTACION VS TIEMPO PARA PRUEBA 2 iERROR!

MARCADOR NO DEFINIDO.33
FIGURA 30. GRAFICA DE ORIENTACION VS TIEMPO PARA PRUEBA 3 iERROR!

MARCADOR NO DEFINIDO.34
FIGURA 31. GRAFICA DE ORIENTACION VS TIEMPO PARA PRUEBA 4. iERROR!

MARCADOR NO DEFINIDO.35
FIGURA 32. GRAFICA DE ORIENTACION VS TIEMPO PARA PRUEBA S iERROR!

MARCADOR NO DEFINIDO.36
FIGURA 33. GRAFICA DE ORIENTACION VS TIEMPO PARA PRUEBA 6 iERROR!

MARCADOR NO DEFINIDO.37
FIGURA 34. GRAFICA DE ORIENTACION VS TIEMPO PARA PRUEBA 7ev... iERROR!

MARCADOR NO DEFINIDO.38
FIGURA 35. GRAFICA DE ORIENTACION VS TIEMPO PARA PRUEBA 8 iERROR!

MARCADOR NO DEFINIDO.39
FIGURA 36. GRAFICA DE ORIENTACION VS TIEMPO PARA PRUEBA 9. iERROR!

MARCADOR NO DEFINIDO.40

FIGURA 37. GRAFICA DE ALTURA VS TIEMPO PARA PRUEBA 1. {ERROR! MARCADOR NO
DEFINIDO.41

FIGURA 38. GRAFICA DE ALTURA VS TIEMPO PARA PRUEBA 2. jERROR! MARCADOR NO
DEFINIDO.42

FIGURA 39. GRAFICA DE ALTURA VS TIEMPO PARA PRUEBA 3. jERROR! MARCADOR NO
DEFINIDO.43

FIGURA 40. GRAFICA DE ALTURA VS TIEMPO PARA PRUEBA 4. jERROR! MARCADOR NO
DEFINIDO.44

FIGURA 41. GRAFICA DE ALTURA VS TIEMPO PARA PRUEBA 5. {ERROR! MARCADOR NO
DEFINIDO.45

FIGURA 42. GRAFICA DE ALTURA VS TIEMPO PARA PRUEBA 6. jERROR! MARCADOR NO
DEFINIDO.46

FIGURA 43. GRAFICA DE ALTURA VS TIEMPO PARA PRUEBA 7. jERROR! MARCADOR NO
DEFINIDO.47

FIGURA 44. GRAFICA DE ALTURA VS TIEMPO PARA PRUEBA 8. {ERROR! MARCADOR NO
DEFINIDO.48

FIGURA 45. GRAFICA DE ALTURA VS TIEMPO PARA PRUEBA 9. {ERROR! MARCADOR NO
DEFINIDO.49

FIGURA 46. IMAGEN CONGELADA DEL AR.DRONE 2.0 POR EXCEDER ALCANCE DE SU
RED WIF| ceuiitniitiiieiieieeineeeeteete e enneaneennas iERROR! MARCADOR NO DEFINIDO.50

FIGURA 47. ESCENARIO COMPLETO DE IMAGEN CONGELADA DEL AR.DRONE 2.0 POR
EXCEDER ALCANCE DE SU RED WIFI............. iERROR! MARCADOR NO DEFINIDO.50

FIGURA 48. TRAYECTORIA REALIZADA POR AR.DRONE 2.0.... jERROR! MARCADOR NO
DEFINIDO.51

FIGURA 49. SIMULACION DE ESCENARIO DE DETECCION DE OBSTACULO CON
AR.DRONE 2.0 MEDIANTE GAZEBO............ iERROR! MARCADOR NO DEFINIDO.52

FIGURA 50. DETECCION DE OBSTACULO CON AR.DRONE 2.0 EN TIEMPO REAL jERROR!
MARCADOR NO DEFINIDO.52

1. CAPITULO UNO: FUNDAMENTOS BASICOS

1.1. DRONES

Segun Hernandez et al: “Un dron se puede definir como un vehiculo aéreo no
tripulado por sus siglas VANT o por sus siglas en inglés UAV (Unmanned Aerial
Vehicle). Existen varios tipos y formas de VANT’s que pueden desarrollar
diversos tipos de tareas...”

Los drones son vehiculos aéreos de talla reducida, menos caros y mas simples
de construir que un avién. También son mas discretos y su pérdida no es tan
sensible o costosa como la de un vehiculo convencional. El tamafio de los drones
puede variar (desde algunos centimetros hasta varios metros), al igual que su
forma y su tipo de propulsién, por ejemplo, algunos estan equipados de reactores,
otros de hélices o rotores, etc. Las aplicaciones de los drones son varias, las
cuales abarcan desde las civiles hasta las militares, siendo estas ultimas las mas
empleadas o conocidas. Los drones han sido en su mayor parte desarrollados en
los conflictos militares. Dentro de sus aplicaciones civiles, las mas deseables,
tenemos la vigilancia de trafico de carreteras, las operaciones de blsqueda aérea
y salvamento, la recoleccion de informacion para la prediccion meteorolégica, la
vigilancia de bosques o deteccion de fuegos, etc?.

1.2. ROBOT OPERATING SYSTEM (ROS)
Ortego define el entorno de desarrollo ROS de la siguiente manera:

Robot Operating System también conocido como ROS es una coleccion de
frameworks para el desarrollo de software de robots. ROS se desarrolld
inicialmente en 2007 bajo el nombre de switchyard por el Laboratorio de
Inteligencia Artificial de Stanford para dar soporte al proyecto del Robot con
Inteligencia Artificial de Stanford (STAIR2). Desde 2008, el desarrollo continu6
principalmente en Willow Garage, un instituto de investigacién rob6tico con mas
de veinte instituciones colaborando en un modelo de desarrollo federado?.

Nufiez, Ledén y Cardenas afirman que: “Aunque su nombre es la sigla para
sistema operativo, en realidad ROS es un meta-sistema operativo, ya que,

1 HERNANDEZ, Christian, et al. Dron polinizador de cultivos. Tecnologias aplicadas, para
alternativas sustentables. En: Revista Mexicana de Ciencias Agricolas [en linea]. Acapulco:
Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, febrero de 2015. vol.1,
p. 67-71. [Consultado: 24 de marzo de 2020]. Disponible en
https://www.redalyc.org/pdf/2631/263139243009.pdf. ISSN: 2007-0934.

2 CASTILLO, Pedro, et al. Modelado y estabilizacion de un helicoptero con cuatro rotores. En:
Revista Iberoamericana de Automatica e Informéatica Industrial [en linea]. Valencia: Universidad
Politécnica de Valencia, enero de 2007. vol.4, p. 41-57 [Consultado: 24 de marzo de 2020].
Disponible en https://polipapers.upv.es/index.php/RIAl/article/view/8176/8319. ISSN: 1697-7912.
3 ORTEGO, Daniel. Qué es ROS (Robot Operating System) [blog]. OpenWebinars. 21 de
septiembre de 2017. [Consultado: 15 de diciembre 2019]

aungue ofrece las funciones de un sistema operativo debe ser instalado sobre la
base de otro sistema operativo —basado en UNIX-*4

1.3. OPEN SOURCE COMPUTER VISION (OPENCYV)

Segun lo plantea el equipo de redaccion de Cheblender® OpenCV es una
biblioteca de vision artificial libre desarrollada por Intel, que emplea todo tipo de
aplicaciones que requieren incorporar el reconocimiento de objetos desde el afio
1999.

OpenCV quiere decir “Open Source Computer Vision Library”, que se puede
entender como una libreria para el procesamiento de imagenes que tienen como
propoésito aplicaciones de visidn en tiempo real. Es importante resaltar que,
aunque esta biblioteca esta escrita en codigos C y C++, también existen librerias
como opencv-python que permite utilizar todas sus caracteristicas en el lenguaje
de programacion Python. OpenCV es multiplataforma, es decir, esta disponible
para sistemas operativos como Linux, Mac OS X, Windows, Android y iOS.

1.4. PYTHON

Robledano plantea que Python: “Es un lenguaje de programacion versatil
multiplataforma y multiparadigma que se destaca por su codigo legible y limpio.
Una de las razones de su éxito es que cuenta con una licencia de cédigo abierto
gue permite su utilizacion en cualquier escenario. Esto hace que sea uno de los
lenguajes de inclinacion de muchos programadores siendo impartido en
escuelas y universidades de todo el mundo”®

Por otro lado, Alvarez afirma lo siguiente: “Python es un lenguaje de scripting
independiente de plataforma y orientado a objetos, preparado para realizar
cualquier tipo de programa, desde aplicaciones Windows a servidores de red o
incluso, paginas web. Es un lenguaje interpretado, lo que significa que no se
necesita compilar el cédigo fuente para poder ejecutarlo, lo que ofrece ventajas
como la rapidez de desarrollo e inconvenientes como una menor velocidad™

4NUNEZ, Manuel; LEON, Carlos y CARDENAS, Pedro. Congreso Internacional de Electrénica y
Tecnologia de Avanzada [en linea]. En: (10: 26-28, marzo, 2014: Pamplona, Colombia). ROS
Sistema operativo para robética, nociones y aplicaciones. En: Revista Colombiana de
Tecnologias de Avanzada. Pamplona: Universidad de Pamplona, marzo de 2014. p.1-7.
[Consultado: 24 de marzo de 2020]. Disponible en:
http://www.unipamplona.edu.co/unipamplona/portallG/home_79/recursos/01general/06052014/
memorias.jsp.

5 ¢Qué es OpenCV? [blog]. Cheblender. 12 de marzo de 2018. [Consultado: 15 de diciembre
2019] Disponible: https://www.cheblender.org/que-es-opencv/.

6§ ROBLEDANO, Angel. Que es Python: Caracteristicas, evolucion y futuro [blog]. OpenWebinars.
23 de septiembre de 2019, 2. [Consultado: 15 de diciembre de 2019]. Disponible en:
https://openwebinars.net/blog/que-es-python/.

7 Alvarez, Miguel. Qué es Python [blog]. Desarrollo Web. 19 de noviembre de 2003, 2.
[Consultado: 15 de diciembre de 2019]. Disponible: https://desarrolloweb.com/articulos/1325.php

1.5. AR.DRONE 2.0

Es un vehiculo aéreo no tripulado fabricado por la empresa francesa Parrot.
Posee una autonomia de 12 minutos, un alcance de 50 metros, camara de alta
definicion de 720p a 30fps que ademés de tomar fotos permite grabar videos
también, el pilotaje se realiza a través de su aplicacion disefiada para
Smartphone o tabletas, posee un procesador ARM Cortex A8 de 32 bits a 1 GHz
con video DSP a 800 MHz TMS320DMC64x, también cuenta con un sistema
operativo Linux 2.6.32, asi mismo cuenta con sensores abordo como
acelerometro, magnetémetro, bardmetro, sensor de altura ultrasonico, Yy
giroscopio.

Albornoz y Calahorrano afirman: “Debido al abaratamiento de los componentes
electrénicos en los ultimos afios ha sido posible que estos aparatos lleguen al
mercado como equipos para el ocio y recreacion”®

Figura 1. AR.Drone 2.0 con proteccion para interiores

Fuente: Parrot, AR.Drone 2.0 elite edition [imagen]. Francia: 2017. [Consultado: 15 de
diciembre de 2019]. Disponible en: https://www.parrot.com/es/drones/parrot-ardrone-
20-elite-edition

8 ALBORNOZ, Michael y CALAHORRANO, Darwin. Seguimiento de objetos basado en vision
artificial para cuadrirrotor parrot AR.Drone 2.0 [en linea]. Proyecto previo a la obtencion del titulo
de ingeniero en electronica y control. Quito: Escuela politécnica nacional. Facultad de ingenieria
eléctrica y electronica. 124 p. [Consultado: 24 de marzo 2020]. Disponible en:
https://bibdigital.epn.edu.ec/bitstream/15000/16978/1/CD-7555.pdf

2. CAPITULO DOS: TRANSFERENCIA DE DATOS MEDIANTE ROS

2.1. ROSTOPIC

El término topic en ROS hace referencia a los buses sobre los cuales se
intercambian mensajes. Un robot tiene muchos topics como por ejemplo de
velocidad, de odometria, de sensores como la camara, entre otros. Los topics
son muy importantes ya que al permitir el intercambio de mensajes no solo hacen
posible la visualizacion en tiempo real de los datos del robot, sino que también
permiten realizar una accidén de control mediante el uso de los llamados nodos.

2.2. ROS PUBLISHER NODE

El nodo Publisher es un término usado en ROS para referirse a un archivo
ejecutable (en este caso escrito en lenguaje Python) que contiene informacién
como procesamiento de imagenes, redes neuronales o simplemente una cadena
de caracteres y que envia esta informacion mediante un topic especifico, esto
con el fin de realizar una accién de control mediante el nodo Subscriber.

2.3. ROS SUBSCRIBER NODE

Al igual que el nodo Publisher el nodo Subscriber es un archivo ejecutable que
realiza la suscripcion (de ahi deriva su nombre) a un topic deseado para obtener
los datos en tiempo real que estan siendo publicados en dicho topic. Este nodo
Subscriber es muy importante ya que en este proyecto es el encargado de
obtener los datos y realizar una accion de control basado en el valor de estos
datos obtenidos.

Figura 2. Intercambio de datos mediante ROS

" ROS Node
_ Publisher

Topic: [example
’ Message Type: std_msgs/String

" ROSNode
_ Subscriber

Fuente: MathWorks, Exchange Data with ROS Publishers and Subscribers
[imagen].Estados Unidos: 2018. [Consultado: 24 de marzo 2020]. Disponible
en: https://es.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-
and-subscribers.html

En la figura 2 se muestra el diagrama de funcionamiento de los nodos Publisher-
Subscriber, los cuales permiten la configuracion en tiempo real de las
velocidades angulares (para el giro del robot) y lineales (para el avance del
robot).

3. CAPITULO TRES: ALGORITMO DETECCION Y EVASION DE
OBSTACULOS DE COLOR ROJO.

3.1. LIBRERIAS.

Para la implementacion del algoritmo propuesto en este trabajo de grado fue
necesario realizar algunas operaciones como establecer el color (rango en
formato Hue Saturation Value - HSV) del objeto que sera determinado como
obstaculo, la obtencién de la imagen en tiempo real del AR.Drone 2.0, y la
obtencion de coordenadas del obstaculo.

Figura 3. Librerias de Python usadas para el desarrollo del algoritmo en el nodo
Publisher.

import sys

import rospy

import cv2

from std_msgs.msg import String, Empty, Float32
from sensor_msgs.msg import Image

from collections import deque

from cv_bridge import CvBridge, CvBridgeError
import numpy as np

Figura 4. Librerias de Python usadas para el desarrollo del algoritmo en el nodo
Subscriber.

import rospy
from std_msgs.msg import Float32, Empty
from geometry_msgs.msg import Twist

3.2. ALGORITMO DE DETECCION DE OBSTACULOS DE COLOR ROJO.

El algoritmo realizado consta de dos codigos (Publisher y Subscriber). Por una
parte, el codigo Publisher es el encargado de obtener la imagen del AR.Drone
2.0 en tiempo real y realizar el procesamiento de dicha imagen para determinar
si hay un obstaculo presente y asi conocer sus coordenadas. Por otro lado, el
codigo Subscriber es el encargado de realizar las acciones de control pertinentes
sobre el dron basado en el valor de las coordenadas obtenidas por el codigo
Publisher.

3.2.1 Creacion de la clase y definicion de funciones

En el cdédigo Publisher (llamado CvBridge.py) se crea una clase llamada
‘image_converter” en la cual se definen dos funciones. La primera la funcion es

el constructor de la clase “_init _”, esta funcién permite la creacion de los
publicadores, tanto de coordenadas en x e y, asi como también el publicador

para el aterrizaje del dron; ademas de esto se realiza en esta funcion la
suscripcion al topic de la camara del dron para obtenerla en tiempo real, y se
crea el objeto “CvBridge” que permite la conversion del tipo de imagen obtenida
en ROS al tipo de imagen usada en OpenCV.

Figura 5. Constructor de la clase “image_converter”.

class image_converter:

def _init(self):

self.image_pub = rospy.Publisher("image_topic_2",Image,queue_size=10)
self.pub=rospy.Publisher('Coordenadas_Y',Float32,queue_size=1)
self.publ=rospy.Publisher('Coordenadas_X',Float32,queue_size=1)
self.pub3=rospy.Publisher('Aterrizaje’,Float32,queue_size=1)

self.bridge = CvBridge()

self.image_sub = rospy.Subscriber("/ardrone/front/image_raw",Image,self.callback)

La segunda funcion utilizada en esta clase es “callback”la cual se detalla a fondo
en el siguiente item.

3.2.2 Establecimiento de los rangos de color en formato HSV para la
deteccion de obstaculos

Para establecer el color que se usa como referente para determinar un obstaculo
es necesario utilizar la libreria “numpy”, ya que permite crear los arreglos que
contienen los valores de los rangos en formato HSV (Hue Saturation Value), este
tipo de formato de color estd compuesto de las siguientes tres caracteristicas:

Hue (Tono): Se debe concebir como un circulo de colores que varia desde el
color rojo (0° a rojo nuevamente (360°), pasando por colores como el verde
(120°), el azul (240°) y los demas colores “puros” como el amarillo, cian, morado,
entre otros.

Saturation (Saturacion): Esta caracteristica indica qué tanta cantidad de color
escogido en el valor Hue aparecera en la mezcla. Tiene un rango que varia entre
0y 100%.

Value (Valor): La componente Value varia desde 0 a 100% y representa la
cantidad de negro presente en el color escogido en la componente Hue (donde
0% es completamente negro y 100% es el color en su brillo maximo).

Figura 6. Representacion del formato de color HSV (py2py).

anjep

Fuente: Py2py, HSV Model [imagen]. We already have RGB so why we nees HSV?.
2019. Disponible en: https://py2py.com/we-already-have-rgb-so-why-we-need-hsv/

En la figura 7 se muestra la primera seccion de la funcién “callback”, esta funcion
recibe como argumento la variable “data”, que es la imagen obtenida en tiempo
real por la funcion “__init__”con el fin de realizar su conversion a tipo de imagen
usada en OpenCV para también realizar el procesamiento de esta, y asi mismo,
llevar a cabo la deteccion de los obstéaculos presentes en laimagen de la camara.
Para esto, en primer lugar, usando la libreria “humpy” se definen los rangos de
color en los cuales debe estar el objeto de la imagen para ser detectado como
un obstaculo.

Figura 7. Establecimiento de los rangos para deteccion de obstaculos.

def callback(self, data):

Lower = np.array([0, 100, 20],np.uint8)
Upper = np.array([5, 255, 255],np.uint8)
Lowerl = np.array([175, 100, 20],np.uint8)
Upperl = np.array([179, 255, 255],np.uint8)

Cabe aclarar que para el software OpenCV las caracteristicas Saturation y Value
mencionadas anteriormente tienen un rango de posibles valores entre 0 y 255,
mientras que la caracteristica Hue abarca un rango desde 0 hasta 179. El color
rojo en el formato HSV esta presente dos veces como se muestra en la figura 8,
por lo que es necesario realizar dos rangos diferentes.

Figura 8. Vista de los componentes HSV.
o (1) H=S (H: 0-180, S: 0-255, V: 255)

{ 30 40 5o 6
S (H: 0-180, S: 255, Vs :

Fuente: Solano, Gabriela. Vista de los componentes HSV [imagen]. Deteccion de
colores OpenCV - Pyhton (En 4 pasos). 2019. [Consultado: 24 de marzo de 2020].
Disponible en: https://omes-va.com/deteccion-de-colores/

3.2.3 Conversién de tipo de imagen y creaciéon de las mascaras

En la segunda seccion de la funcion “callback” se realiza la conversion de tipo
de imagen ROS a tipo de imagen OpenCV, para esto se utiliza el modulo
“CvBrige” importado de la clase “cv_bridge” junto con la funcionalidad
‘imgmsg_to_cv2”. Esta conversion proporciona una imagen OpenCV en formato
bgr8, la cual posteriormente es convertida al formato HSV explicado
anteriormente, con ayuda de la libreria de OpenCV para Python conocida como
“cv2”. Seguidamente se realiza la creacion de las mascaras para cada rango de
la figura 9 con la ayuda de la funcién “inRange”, la cual tiene como parametros
la imagen sobre la cual se realizara la deteccion de color, asi como el rango
inferior y superior del color que se desea detectar. Como era de esperarse, se
realizan dos mascaras debido a que son dos rangos de color rojo diferentes para
el formato HSV.

Figura 9. Conversion tipo de imagen y creacién de mascaras.
try:
cv_image = self.bridge.imgmsg_to_cv2(data, “bgr8”)
hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
maskl1 = cv2.inRange(hsv, Lower, Upper)
mask?2 = cv2.inRange(hsv, Lowerl, Upperl)

3.2.4 Unificacion de mascaras y operaciones morfologicas

Luego de la creacion de las mascaras se realiza la unificacion de estas para
trabajar con una sola mascara que contenga los dos rangos establecidos
anteriormente, para esto es necesario el uso de la funcion “add”, cuyos
parametros en este caso son las mascaras mostradas en la figura 9.
Posteriormente, se hace uso de los operadores morfolégicos “erode” (erosion) y
“dilate” (dilatacién) para completar la totalidad de la méascara.

Figura 10. Unificacion de mascaras y operaciones morfolégicas.

mask = cv2.add(maskl, mask?2)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)

3.2.5 Creacién del contorno

Para poder visualizar el contorno del obstaculo detectado se hace uso de la
funcion “findContours” de la libreria “cv2”. Esta caracteristica recibe como
parametros la mascara binaria obtenida anteriormente, el modo de recuperacion
del contorno y el método de aproximacién del contorno.

Figura 11. Creacion del contorno.

cnts = cv2.findContours(mask.copy(),
cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[-2]

3.2.6 Obtenciodn de las coordenadas del obstaculo

Inicialmente se crea la variable “center” pero no se le asigna ningun valor
momentaneamente. Luego se crea un ciclo “if’ que permite realizar las siguientes
acciones si la variable “cnts” (el contorno) es mayor que cero: obtener el contorno
mas grande presente en laimagen mediante la funcion “max”de Python, obtener
el centro (coordenada x, coordenada y) y radio del circulo mas pequefio posible
que encierre el obstaculo detectado. Seguido de esto se calcula los momentos
de la imagen mediante la funcion “moments” de OpenCV, esta funcion permite
calcular ciertas propiedades de una imagen como por ejemplo el radio, el area,
el centroide, entre otras. Teniendo esta funcion se calcula el centroide del circulo
que encierra el obstaculo. Seguido de esto, se crean dos variables ‘b”y “a”, las
cuales contienen las coordenadas x e y respectivamente del circulo que encierra
al obstaculo detectado. Posteriormente, mediante la libreria “rospy” se imprime
en el terminal de Linux las debidas coordenadas x e y del obstaculo. Por ultimo,
se utiliza la funcion “sleep” de la libreria “rospy” la cual permite ejecutar el ciclo
a una velocidad o tasa determinada (en este caso especificada en la variable
rate”).

Figura 12. Obtencion de las coordenadas del obstaculo.

center = None

if len(cnts) > 0O:

¢ = max(cnts, key=cv2.contourArea)

((x, y), radius) = cv2.minEnclosingCircle(c)

M = cv2.moments(c)

center = (int(M["'m10"] / M["'m00"]), int(M["'mO01"] / M["m00"))

a=(int(M["m01"] / M["m00"]))

b=(int(M["'m10"] / M["mO00"]))

rospy.loginfo('%i %s %i', int(M["m10"] / M["m00"]),",",int(M["m01"] / M["'mO00"]))
rate.sleep()

3.2.7 Visualizacién del borde del circulo y el centroide

Para poder mostrar el borde del circulo y su centroide se tiene en cuenta el
tamafo del radio obtenido por la funcion “minEnclosingCircle” almacenado en la
variable “radius”; si este valor es mayor a 10 pixeles (10px) se crea un circulo
con la ayuda de la funcion “circle” de la libreria “cv2” a la cual se le pasa como
parametros la imagen de entrada (cv_image), las coordenadas del circulo, el
radio del circulo, el color deseado (en formato BGR) y el espesor para el borde
del circulo. Para visualizar el centroide se procede del mismo modo, utilizando
como pardmetros la misma imagen de entrada, el centroide obtenido por la
funcién “moments”, el radio del circulo, el color deseado y el espesor.

Figura 13. Visualizacion del borde del circulo y el centroide.

if radius > 10:
cv2.circle(cv_image, (int(x), int(y)), int(radius),(0, 255, 255), 2)
cv2.circle(cv_image, center, 5, (0, 0, 255), -1)

3.2.8 Obtencidén de coordenadas negativas

Las siguientes lineas de cddigo tienen como finalidad conocer cuando no hay
presencia de obstaculos. Si la longitud de la variable “cnts” es menor que cero,
indica que no hay obstaculo y por tanto no hay contorno ni coordenadas
detectadas, por lo que es necesario que las variables ‘b”y “a” (coordenadas del
centroide) tengan valores negativos, para poder realizar las acciones de control
cuando no haya obstaculo.

Figura 14. Obtencién de coordenadas negativas.
else:
a=(int(-1))
b=(int(-2))

3.2.9 Deteccidn de error en la conversion de imagen

Con el fin de detectar un error en el proceso de conversion de imagen tipo ROS
a imagen tipo OpenCV (BGR) se utiliza la declaracion “except”y se publica en el
terminal.

Figura 15. Deteccién de error en la conversion de imagen.

except CvBridgeError as e:
print(e)

3.2.10 Publicacién de laimagen final

Mediante la funcién “imshow” de la libreria “cv2” se realiza la publicacion de la
imagen final, la cual recibe como parametros el nhombre de la ventana que
mostrara la imagen y la imagen final.

Figura 16. Publicaciéon de la imagen final.
cv2.imshow("Image window", cv_image)

3.2.11 Publicacién de laimagen final convertida a formato tipo ROS y de la
coordenada X

Utilizando la funcién ‘“publish” asi como la funcion “CvBrige” se realiza la
conversiéon de formato OpenCV (BGR) a formato tipo ROS y se realiza tanto la
publicacién de esta imagen como la coordenada X del obstaculo.

Figura 17. Publicaciéon de la imagen final convertida a formato tipo ROS y de la
coordenada X.

try:

self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
self.publ.publish(b)

except CvBridgeError as e:

print(e)

3.2.12 Definicion de la funcién principal (main)

En esta funcion se realiza la ejecucion de la clase “‘image_converter”. Ademas,
utilizando la funcion “spin” de la libreria “rospy” permite ejecutar el nodo hasta
gue sea interrumpido, en este caso por interrupcion de teclado.

Figura 18. Definicién de la funcion principal (main).

def main():

ic = image_converter()
try:

rospy.spin()

except Keyboardinterrupt:
print("Shutting down")
cv2.destroyAllWindows()

3.2.13 Iniciador de la funcidon principal (main)

En este condicional se crea el nodo llamado “image_converter” asi como también
se declara como global la variable “rate”y se inicializa esta variable mediante la
funcion “Rate” la cual proporciona la velocidad o tasa de publicacion de datos,
por ultimo, se ejecuta la funcion “main”.

Figura 19. Iniciador de la funcion principal (main).

if _name_=="' _main_"
rospy.init_node('image_converter', anonymous=True)
global rate

rate = rospy.Rate(20)

main()

3.3. ALGORITMO DE EVASION DE OBSTACULOS DE COLOR ROJO.

3.3.1. Creacion de la clasey su constructor

En primer lugar, se crea una clase llamada “Detector” y seguidamente su
constructor, esto con el fin que cuando se cree un objeto de esta clase se
inicialicen sus atributos definidos en esta seccion, los cuales son
“self.coordenadax” haciendo referencia a la variable que almacena la
coordenada x, asi como “self.coordenaday” que hace referencia a la variable
almacenada la coordenada y, en donde ambas son inicializadas con valor
“None”, con el fin de crear las variables pero sin asignarle valor alguno.

Figura 20. Creacion de la clase y su constructor.
class Detector():
def __init__ (self):
self.coordenadax = None
self.coordenaday = None

3.3.2. Definicion de la funcion de accion de control

En este punto se crea la funcion llamada “coordenadax_callback(self,data)” que
es la encargada de realizar las acciones de control pertinentes dependiendo si

recibe coordenadas positivas 0 negativas. Para esto en primer lugar se crean
dos publicadores ‘pub2” y ‘pub3” a los topics “cmd_vel” y “ardrone/land”
respectivamente, esto con el fin de publicar mensajes o enviar datos a estos
topics mencionados anteriormente. Los datos que recibe esta funcion (data) son
almacenados en la variable “self.coordenadax”.

Figura 21. Definicién de la funcién de accion de control.

def coordenadax_callback(self, data):

global pub2
pub3=rospy.Publisher(‘ardrone/land',Empty,queue_size=10)
pub2=rospy.Publisher(/cmd_vel',Twist,queue_size=10)
self.coordenadax = data

3.3.3. Condicional para realizar la accion de control

En esta seccidén se propone un condicional “f” que es el encargado de evaluar
los valores obtenidos de la coordenada x proveniente del algoritmo de deteccién
de obstéaculos, si el valor recibido es igual a -2 quiere decir que no hay obstaculo
presente, por tanto, la velocidad lineal tendré& un valor diferente de cero, para que
de esta manera el dron avance y la velocidad angular seré igual a cero para que
no realice ningun giro. Pero si es diferente de -2 hace referencia a que se detecta
un obstaculo, por tanto, aqui la velocidad lineal se hace igual a cero para que el
dron no avance, y la velocidad angular toma un valor diferente de cero, haciendo
que el dron gire, y de esta manera evadir el obstaculo. Igualmente, en cada parte
del ciclo (if y else) se inicia un conteo para cada variable (i y j), cuyas funciones
se definen en la seccion 3.3.5.

Figura 22. Condicional para realizar la accion de control.

if data.data == -2:

rospy.loginfo((NO HAY OBSTACULO")
msg.angular.z =0

msg.linear.x = 0.03

i=0

=il

else:

rospy.loginfo('SI HAY OBSTACULO")
msg.linear.x =0

msg.angular.z = 0.1

i=i+1

j=0

3.3.4. Publicaciéon delas velocidades y visualizacién de los temporizadores

Una vez establecidos los valores de las velocidades lineales y angulares, se
procede a publicar en el respectivo nodo (/cmd_vel) dichos valores, con el fin de
que el dron realice las instrucciones dadas en la seccion 3.3.3. Ademas de esto,
se visualiza en el terminal los temporizadores correspondientes al avance y giro
del dron.

Figura 23. Publicacion de las velocidades y visualizacion de los temporizadores.

pub2.publish(msg)
rospy.loginfo('%s %i'," Temporizador de giro: ',i)
rospy.loginfo('%s %i','Temporizador de avance: 'j)

3.3.5. Aterrizaje del dron de acuerdo con los temporizadores

En la seccién 3.3.3 se inicia el conteo de dos variables (i y j), las cuales hacen
las veces de un temporizador que permite al dron aterrizar cuando el conteo de
alguna de las variables llegue al valor establecido, para esto se realiza la
publicacién de un mensaje vacio al topic land que es el encargado de llevar a
cabo el aterrizaje del dron.

Figura 24. Aterrizaje del dron de acuerdo a los temporizadores.
if i > 350:
rospy.loginfo(ATERRIZANDO")
pub3.publish(Empty())
if j > 350:
rospy.loginfo(ATERRIZANDOQ)
pub3.publish(Empty())

3.3.6. Iniciador de la funcion principal

Se inicializa un nodo llamado “listener”’ necesario para ejecutar las publicaciones.
Asi como también se crea un objeto de la clase “Detector”, se declaran como
globales las variables i y j, se realiza la subscripcion al topic de la coordenada X
y de la coordenada Y creados en el algoritmo de deteccién de obstaculos de
color rojo en la seccién 3.2.1.

Figura 25. Iniciador de la funcién principal.

if _name_=="'_main_"
rospy.init_node(listener")

detector = Detector()

global i,]

i=0

=0

rospy.Subscriber('Coordenadas_X', Float32, detector.coordenadax_callback)
rospy.Subscriber('Coordenadas_Y', Float32, detector.coordenaday_callback)

rospy.spin()

4. RESULTADOS Y DISCUSIONES

Antes que nada, es preciso aclarar que el aporte de este proyecto de grado es
de tipo académico, debido a que se usan tecnologias que ademas de
interesantes son Utiles y que en esta region hasta el momento han sido poco
exploradas. En esta seccidn se presentara los resultados del funcionamiento del
algoritmo propuesto y a su vez se comentara el resultado de su desempefio.

Es necesario resaltar que la manera como esta compuesto ROS, es decir, su
arquitectura, proporciona utilidades como la obtencion de datos (imagenes y
sensorica) para su posterior procesamiento, asi como también la modificacién
de valores de variables (velocidades de motores) para realizar acciones de
control deseadas. Es por esto, que los resultados obtenidos al utilizar este
entorno de desarrollo fueron los esperados, permitiendo al dron realizar las
acciones pertinentes en los momentos determinados.

Ademas de lo dicho anteriormente, se puede destacar la gran ventaja y eficacia
del paquete cv_bridge en cuanto a la obtencion de imagenes en tiempo real
sobre otras herramientas como el software ffmpeg y la funcion VideoCapture de
OpenCV. Es posible realizar esta afirmacion debido a que durante todo el
proceso de construccién del algoritmo se realizaron pruebas con estas tres
herramientas encontrando que la obtencion de las imagenes por medio de
ffmpeg y VideoCapture tenian un retraso significativo (aproximadamente 15
segundos) que a su vez retrasaban todo el mecanismo de control del sistema
haciéndolo ineficiente, mientras que al usar el paquete cv_bridge la obtencién de
la imagen del robot se realiza de inmediato.

Es importante sefialar que el uso del software OpenCV para procesamiento de
imagenes proporciona muchas facilidades y funcionalidades que hacen de esta
una libreria muy completa, ideal para los diversos casos en donde se requiera
realizar el procesamiento de imagenes. Sin embargo, la eficacia de la deteccion
de los obstaculos en el algoritmo presentado depende en gran medida del
correcto establecimiento de los rangos de colores a detectar, ya que el ajuste de
un rango muy amplio se traduce en la deteccién de colores no deseados y, por
el contrario, el ajuste de un rango muy reducido equivaldria a no detectar todas
las posibles gamas del color escogido.

La eficacia del algoritmo se puede ver afectada por el estado del dron, ya que
debido al desgaste de sus componentes puede hacer que haya variaciones en
el desempeiio de este y por consiguiente obtener resultados no deseados. Asi
como también las condiciones climaticas pueden incurrir en el funcionamiento
del robot y en el rendimiento del algoritmo. En la tabla 1 se realiza una
comparacion entre las caracteristicas del AR.Drone 2.0 nuevo con las del
AR.Drone 2.0 usado en este proyecto de grado, que confirman que el desgaste
en sus componentes afecta el desempefio del algoritmo creado.

Tabla 1. Caracteristicas AR.Drone 2.0 nuevo y usado.

Caracteristicas

AR.Drone 2.0 nuevo

AR.Drone 2.0 usado

Alcance de la red wifi

50 metros
aproximadamente

10 metros
aproximadamente

Altura por defecto

usando ROS 1 metro Menor a 1 metro
Tiempo de carga de 1 hora y 30 minutos 2 horas
baterias aproximadamente aproximadamente
Tiempo de vuelo 12-15 minutos 5-7 minutos

Se realizaron un total de nueve (9) pruebas del algoritmo presentado variando el
pardmetro de la velocidad lineal respecto al eje x (velocidad de avance del dron),
asi como también la forma de los obstaculos y su tamafio.

En la tabla 2 se presenta la convencion usada para distinguir los obstaculos
usados en las pruebas.

Tabla 2. Convencion para los obstaculos utilizados.

Nombre Area (cm?) Forma
Obstaculo A 875 Rectangulo
Obstéculo B 187 Rectangulo
Obstaculo C 49.2 Rectangulo
Obstaculo D 320.47 Circulo

En la tabla 3 se presenta la convencién usada para representar cada una de las
pruebas realizadas.

Tabla 3. Convencion para las pruebas realizadas.

Velocidad Velocidad Temporizadores de
Prueba | Obstaculo | lineal en x angular en z aterrizaje (s)
(m/s) (rad/s)
1 A 0.05 0.1 175
2 B 0.01 0.1 17.5
3 B 0.05 0.1 175
4 C 0.03 0.1 17.5
5 C 0.03 0.1 175
6 C 0.03 0.1 17.5
I D 0.01 0.1 175
8 D 0.03 0.1 175
9 D 0.03 0.1 17.5

Con la finalidad de realizar la captura de los datos en cada prueba para su
posterior analisis se hace uso de la funcionalidad “rosbag” de ROS, que a su vez
también permite almacenarlos en un archivo de texto.

Una vez obtenido el archivo de texto para cada prueba, se procede a exportarlos
a Excel con el fin de organizarlos y elegir los datos que se van a analizar, tales

como tiempo y altura. Seguidamente los datos son importados directamente
desde MatLab para poder graficarlos y asi tener una mejor perspectiva de estos.

Cabe aclarar que el uso de la herramienta MatLab es s6lo para realizar el analisis
de estos datos, es decir, no hace parte del algoritmo realizado.

En la figura 26 se muestran los ejes del dron con sus respectivos nombres.

Figura 26. AR.Drone 2.0 con sus respectivos ejes.
z

X

Fuente: Maravall, D., de Lope, J., Fuentes, P.
El algoritmo presentado permite al dron realizar la deteccion y evasion de
obstaculos de color rojo girando siempre en sentido positivo respecto del eje z

(sentido antihorario). En la figura 27 se pueden apreciar los sentidos de giro
respecto dicho eje.

Figura 27. Direccion de giro del dron respecto del eje z (yaw).

+Z -Z
Q%)
<

La figura 28 muestra los datos de orientacion vs tiempo obtenidos para la Prueba
1. Esta prueba tiene una duracion de 55.51 segundos, en donde el dron evade 3
obstaculos y posteriormente aterriza. Para esta prueba el dron registra su
despegue en el segundo 6.73, por lo cual el andlisis se realiza a partir de este
punto. Para todas las pruebas realizadas el valor inicial de orientacion para el
dron oscila entre los -150° y -130°, y teniendo en cuenta que el giro respecto del
eje z se realiza en sentido positivo es correcto afirmar que los tramos
ascendentes de la curva mostrada en la figura 28 se traduce en la deteccion de
un obstaculo ya que el dron se encuentra girando, mientras que los tramos
“planos” reflejan los momentos en que el dron se encuentra avanzando en linea
recta. Desde el segundo 31 aproximadamente se coloca de manera intencionada
un obstaculo al frente del dron para que realice el aterrizaje pasados los 17.5
segundos correspondientes al temporizador, por lo que en el segundo 58
aterriza. Por el analisis realizado anteriormente se puede corroborar el correcto
funcionamiento del algoritmo realizado en este proyecto de grado.

Figura 28. Grafica de orientacién vs tiempo para Prueba 1.

Orientacion en eje z de Prueba 1
100 T T T T T

-50

Orientacion (°)

-100 .

_1 50 1 1 1 1 1
0 10 20 30 40 50 60

Tiempo (seg)

En la figura 29 se puede apreciar los datos de orientacion respecto del eje z
(yaw) para la Prueba 2. Esta prueba tiene una duracién de 102.8 segundos (1
minuto y 43 segundos aproximadamente), en donde el dron evade 3 obstaculos
y seguidamente aterriza. Para esta prueba el dron registra su despegue en el
segundo 14.25, por lo que los datos obtenidos antes de este punto no son
analizados. La orientacibn inicial para esta prueba es de -140°
aproximadamente. Se puede observar claramente las tres evasiones que realiza

el dron para esta prueba reflejadas en los tramos ascendentes de la curva
mostrada. Desde el segundo 71 hasta el segundo 88 se puede apreciar que la
curva se aplana, por lo que es correcto afirmar que durante este lapso de tiempo
el dron avanza y pasados los 17.5 segundos del temporizador finalmente
aterriza.

Figura 29. Grafica de orientacion vs tiempo para Prueba 2.

0 Orientacion en eje z de Prueba 2

1o
3
T

Orientacion (°)

-100

-120

_140 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 110

Tiempo (seq)

De igual forma la figura 30 muestra los datos de orientacion respecto del eje z vs
tiempo para la Prueba 3. Este caso tiene una duracion de 117.5 segundos, el
dron registra su despegue en el segundo 10.96 y el dron evade 3 obstaculos, sin
embargo, en la figura 4.5 se observan 5 tramos ascendentes, es decir, 5
evasiones realizadas, esto se debe a que al finalizar la segunda evasion el dron
no queda en linea de vista con un obstaculo sino que sigue derecho hacia la
pared del recinto por lo cual es necesario colocar un obstaculo externo para
evitar una colisién, seguido de esto el dron queda en linea de vista con el tercer
obstaculo del recinto y realiza su correspondiente evasion (cuarto tramo
ascendente). Llegando a la parte final de la grafica 30 es posible visualizar un
quinto tramo ascendente correspondiente a la evasion un obstaculo externo
colocado de manera intencionada porque el dron va a colisionar con una pared
del recinto, sin embargo, el dron ya esta muy cerca de la pared y no alcanza a
cambiar de direccion resultando en una colision reflejada en el pico mostrado al
final de la gréafica 30.

Figura 30. Grafica de orientacién vs tiempo para Prueba 3.

200 Orientacion en eje z de Prueba 3

150 7

100 7

)]
o
T

1

Orientacion (°)

-100 T

_1 50 1 1 1 1 1 1
10 20 30 40 50 60 70 80

Tiempo (seq)

El siguiente analisis corresponde a los datos obtenidos para la Prueba 4, la cual
tiene una duracién de 56.5 segundos, el dron tiene una orientacion inicial de -
145° aproximadamente, y realiza el despegue en el segundo 8.88, por lo que el
andlisis se realizard a partir de este valor. En esta prueba el dron evade dos
obstaculos y aterriza 12 segundos después de la ultima evasion debido a que el
dron va a sufrir una colision por lo que es aterrizado de manera remota por un
comando externo al algoritmo ingresado desde la estacion en tierra. En la figura
31 se muestran los datos de orientacidon respecto del eje z vs tiempo para esta
prueba.

Figura 31. Grafica de orientacién vs tiempo para Prueba 4.

Orientacién en eje z de Prueba 4

-100 7

-110 7

Orientacion (°)

-120 7

-130 7

140 | -

_1 50 1 1 1 1 1
0 10 20 30 40 50 60

Tiempo (seq)

La Prueba 5 tiene una duracion de 87 segundos, la orientacion inicial del dron es
-135° aproximadamente y el despegue se registra en el segundo 6.19. En la
figura 4.7 se plasman los datos obtenidos de orientacion respecto del eje z contra
el tiempo para esta prueba. En esta figura se aprecian 6 tramos ascendentes
gue corresponden con 6 evasiones realizadas; de estos 6 tramos, el tercero y el
quinto estan relacionados con obstaculos colocados de manera intencional para
guiar al dron hacia los obstaculos del recinto (primer, segundo, cuarto y sexto
tramo). Al final de la figura 32 se observa un pico que estad ligado a una
perturbacion que sufre el dron en una de sus hélices en el momento en que esta
realizando la ultima evasion, por lo cual, después de este suceso se termina la
transmision de datos de manera automatica.

Figura 32. Grafica de orientacién vs tiempo para Prueba 5.

100 Orientacion en eje z de Prueba 5

50 7

Orientacion (°)

-100 7

_1 50 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Tiempo (seq)

En la figura 33 se muestran los datos obtenidos de orientacion respecto del eje
z contra el tiempo para la Prueba 6. Esta prueba tiene una duracién de 129
segundos, el dron tiene una orientacién inicial de -145° aproximadamente, y
realiza la evasion de 2 obstaculos del recinto; sin embargo, en la figura 33 se
aprecian 5 tramos ascendentes, de los cuales el primero y segundo estan
relacionados con obstaculos colocados intencionadamente para guiar el dron
hacia los obstaculos del recinto. El altimo tramo ascendente hace referencia a la
evasion del obstaculo final para realizar el aterrizaje, no obstante, es necesario
realizar un aterrizaje forzoso, debido a la falta de espacio en el recinto para poder
llevar a cabo el aterrizaje programado 17.5 segundos después de giro o avance

constante; lo anterior se ve reflejado en la parte final de la grafica mostrada en
la figura 33.

Figura 33. Grafica de orientacién vs tiempo para Prueba 6.

200 Orientacion en eje z de Prueba 6

=

150

100 7

50 7

Orientacion (°)
o

-100

-150 T

_200 1 1 1 1 1
0 20 40 60 80 100 120

Tiempo (seq)

La siguiente prueba tiene una duracién de 117.43 segundos, el dron tiene una
orientacién inicial de -145° aproximadamente, y registra su despegue en el
segundo 9; en la grafica 34 se presentan los datos obtenidos para la Prueba 7
de orientacion respecto del eje z contra el tiempo. En esta gréfica se puede
observar gque justo después del momento del despegue el dron gira en sentido
horario (sentido negativo del eje z), esto se debe a inestabilidad del dron al
momento de despegar, sin embargo, es necesario hacer uso de un obstaculo
externo para redirigirlo hacia los obstaculos del recinto. En la figura 34 se pueden
observar 4 tramos ascendentes, correspondiente a 4 evasiones, sin embargo,
parte del primer tramo corresponde a un obstaculo externo para guiar al dron
hacia el primer obstaculo del recinto, el segundo tramo se ubica entre 60 y 75
segundos aproximadamente, correspondiente a la evasion del segundo
obstaculo. Seguido de esto, el tercer tramo ascendente esta relacionado con la
deteccién y evasion del tercer y cuarto obstaculo del recinto, es decir, el dron al
momento de evadir el tercer obstaculo inmediatamente queda en linea de vista
con el cuarto obstaculo por lo que sigue girando hasta alrededor del segundo 90.
Finalmente, se coloca un obstaculo final al frente del dron por 17.5 segundos
para que realice su respectivo aterrizaje.

Figura 34. Grafica de orientacién vs tiempo para Prueba 7.

150 Orientacion en eje z de Prueba 7
5 T T T T

100 7

Orientacion (°)

-100 7

-150 7

_200 1 1 1 1 1
0 20 40 60 80 100 120

Tiempo (seq)

En la figura 35 se representan los datos de orientacion respecto del eje z versus
el tiempo para la Prueba 8. Esta prueba tiene una duracion de 85 segundos, a
su vez el dron tiene una orientacion inicial de -145° aproximadamente, presenta
el despegue en el segundo 10, realiza la evasion de los 4 obstaculos del recinto
y finalmente aterriza con ayuda de un obstaculo externo. En la figura 35 se
pueden apreciar 3 tramos ascendentes, el primero de ellos corresponde a la
evasion del primer obstaculo del recinto, el segundo esta relacionado con la
evasion del segundo, tercer y cuarto obstaculo del recinto, ya que al terminar de
evadir el segundo queda inmediatamente en linea de vista con el tercer obstaculo
y de igual manera cuando termina de evadir el tercer obstaculo continua en linea
de vista con el ultimo. Concluyendo el andlisis de esta prueba, el tercer tramo
ascendente coincide con los 17.5 segundos de evasion de un obstaculo externo
colocado con la intencion de realizar el aterrizaje del dron.

Figura 35. Grafica de orientacién vs tiempo para Prueba 8.

Orientacion en eje z de Prueba 8

150 T T T T

100

Orientacion (°)
[6)]
o o

9
o
T

-100

_150 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90

Tiempo (seq)

Finalmente se presenta la figura 36 que corresponde a la Gltima prueba realizada
donde se plasman los datos de orientacion en el eje z respecto del tiempo. Para
este caso la duracion es de 95 segundos, el dron tiene una orientacion inicial de
-145° aproximadamente, presenta el despegue en el segundo 13 y realiza la
evasion de los 4 obstaculos del recinto. En la figura 36 es posible observar 4
tramos ascendentes, el primero de ellos corresponde a la evasién del primer
obstaculo del recinto, el segundo corresponde a la evasion del segundo y tercer
obstaculo respectivamente, el tercer tramo ascendente corresponde a la evasion
del Ultimo obstaculo del recinto y finalmente, el Ultimo tramo ascendente
corresponde a los 17.5 segundos de evasion del obstaculo externo para realizar
el aterrizaje.

Figura 36. Grafica de orientacién vs tiempo para Prueba 9.

200 Orientacion en eje z de Prueba 9

150 7

100 7

50 7

Orientacion (°)
o

-100 7

-150 T

_200 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

Tiempo (seq)

A continuacién, se muestran las gréficas de altura con respecto al tiempo para
cada una de las nueve pruebas realizadas, esto con el fin de realizar un analisis
mas completo de estas pruebas. Es importante aclarar que el eje de la altura en
todas las figuras esta dado en milimetros.

En la figura 37 se muestran los datos de altura versus tiempo para la Prueba 1.
En esta figura se observan dos tramos en los cuales el valor de altura (eje y) es
cero; el primer tramo corresponde al lapso de tiempo desde el cual se ejecuta el
comando para la grabacion de datos, hasta que el momento antes que el dron
despegue, asi como el segundo tramo corresponde al intervalo de tiempo desde
gue el dron aterriza hasta que es finalizado el comando de grabacién de datos.
Estos intervalos no se tienen en cuenta para el andlisis debido a que no hacen
parte del rango tiempo durante el cual se ejecuta el algoritmo, por lo que, se
analiza s6lo los momentos en los que la altura es diferente de cero. Para esta
prueba la carga inicial de la bateria es de 40% vy la carga final es de 32%.

El promedio obtenido para la altura de esta prueba teniendo en cuenta solo el
intervalo de tiempo en el cual la altura es diferente de cero es de 718.91 mm.

Figura 37. Grafica de altura vs tiempo para Prueba 1.

800 Grafica de altura vs tiempo Prueba 1

700 T

600 7

500 7

Altura (mm)
S
3

200 7

100 7

0 1 1 1 1 1
0 10 20 30 40 50 60

Tiempo (seq)

De igual manera la figura 38 muestra los datos de altura respecto del tiempo para
la Prueba 2. Al igual que en el analisis anterior, no se tienen en cuenta los
intervalos de tiempo para los cuales la altura es cero. En la Prueba 2 la carga
inicial de la bateria es de 47% y la carga final es de 18%.

El promedio obtenido para la altura de esta prueba teniendo en cuenta sélo el
intervalo de tiempo en el cual la altura es diferente de cero es de 680.41mm, esto
se debe posiblemente a que el dron en esta prueba tuvo mayor tiempo de vuelo
Yy, por tanto, mayor desgaste en sus baterias, ocasionando un promedio de altura
menor para esta prueba respecto de la Prueba 1.

Figura 38. Grafica de altura vs tiempo para Prueba 2.

800 Grafica de altura vs tiempo Prueba 2

700 7

600 .

a

o

o
T

1

N

o

o
T

1

0 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 110

Tiempo (seq)

Los datos de altura vs tiempo obtenidos para la Prueba 3 son mostrados en la
figura 39. Se analiza el intervalo de tiempo en el cual la altura es diferente de
cero, obteniendo que el promedio de altura para esta prueba es de 715.64 mm.

El porcentaje inicial de la carga de la bateria para esta prueba es de 66%, y el
porcentaje final es de 58%. Al comparar el promedio de altura de la Prueba 2 con
el de la Prueba 3 se puede concluir que el porcentaje de carga de la bateria tiene
efecto sobre la altura directamente, ya que el porcentaje de carga final en la
Prueba 2 es de 18% y el promedio de altura es menor al de la Prueba 3 el cual
tiene un porcentaje final de 58%.

Figura 39. Grafica de altura vs tiempo para Prueba 3.

800 Grafica de altura vs tiempo Prueba 3

700 7

(&)

o

o
T

1

0 1 1 1
0 20 40 60 80 100 120

Tiempo (seg)

La figura 40 contiene la curva que representa los datos de altura referente del
tiempo para la Prueba 4. El andlisis que se realiza abarca el rango de tiempo
para el cual la altura es diferente de cero, obteniendo que el promedio de altura
para esta prueba es de 710.22 mm.

El porcentaje inicial de la carga de la bateria para esta prueba es de 64%, y el
porcentaje final es de 41%. El promedio de altura de la Prueba 2 sigue siendo el
menor respecto a los promedios de altura mostrados hasta este punto, teniendo
una diferencia que oscila entre los 298 mm y 385 mm.

Figura 40. Grafica de altura vs tiempo para Prueba 4.

800 Grafica de altura vs tiempo Prueba 4

700 T

600 7

a
o
o
T
1

N

o

o
T
1

0 1 1 1 1 1
0 10 20 30 40 50 60

Tiempo (seq)

En la figura 41 se presentan los datos de altura en relacién con el tiempo para la
Prueba 5. La carga inicial de la bateria del dron para esta prueba es de 41% vy la
carga final es de 33%.

En este caso se realiza el andlisis para el intervalo de tiempo desde el segundo

6.19 hasta el segundo 86.57, debido a que en este rango los valores de altura
son diferentes de cero, obteniendo que el promedio de altura para esta prueba
es de 730.60 mm. Comparando este promedio con respecto al menor obtenido
hasta ahora se concluye que existe una diferencia de 50.19 mm.

Figura 41. Grafica de altura vs tiempo para Prueba 5.

900 Grafica de altura vs tiempo Prueba 5

800 7

0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Tiempo (seq)

Seguidamente se presenta la figura 42 la cual contiene la curva que representa
los datos de altura versus tiempo para la Prueba 6. La carga inicial de la bateria
del dron para esta prueba es de 49% vy la carga final es de 11%.

El intervalo de tiempo a ser analizado es comprendido desde el segundo 11.78
hasta el segundo 107.78, obteniendo que el promedio de altura para esta prueba
es de 635.60 mm. Al revisar la figura 42 es de esperarse que el promedio de
altura para esta prueba sea muy bajo debido a los valles que presenta la curva,
esto se debe principalmente a la reduccién del porcentaje de carga de la bateria
del dron durante la prueba.

Figura 42. Grafica de altura vs tiempo para Prueba 6.

Grafica de altura vs tiempo Prueba 6

800

700

La grafica que se muestra en la figura 43 la cual contiene la curva que representa
los datos de altura versus tiempo para la Prueba 7. La carga inicial de la bateria
del dron para esta prueba es de 28% y la carga final es de 11%.

El andlisis para esta prueba se realiza desde el segundo 8.98 hasta el segundo
111.77, obteniendo que el promedio de altura para esta prueba es de 740.43
mm. Debido al porcentaje de carga de las baterias tanto inicial como final en esta
prueba es de esperarse que el promedio esté situado entre uno de los mas bajos,
sin embargo, la repercusién que tienen estos porcentajes de carga se ven
reflejados directamente en la figura 4.9, ya que al momento de iniciar el
despegue el dron gira en sentido contrario a lo indicado en el algoritmo, es decir,

20

40

realiza un giro de -35°.

60
Tiempo (seg)

80

100

Figura 43. Grafica de altura vs tiempo para Prueba 7.

900 Grafica de altura vs tiempo Prueba 7

800 .

0 1 1 1 1 1
0 20 40 60 80 100 120

Tiempo (seg)

La figura 44 es una representacion gréafica de los datos obtenidos para la Prueba
8 de altura con respecto del tiempo. La carga inicial de la bateria del dron para
esta prueba es de 93% y la carga final es de 68%.

El andlisis para esta prueba se realiza desde el segundo 11.7 hasta el segundo
74.77, obteniendo que el promedio de altura para esta prueba es de 706.94 mm.
Es de esperarse que debido al alto porcentaje de carga de la bateria para esta
prueba sea la que mejor desempefio presenta, no obstante, para esta prueba y
la siguiente (Prueba 9) la bateria usada se habia puesto a cargar muy poco
tiempo, por lo que no esta cargada en su totalidad y, por ende, el dato obtenido
de porcentaje de bateria corresponde a una carga falsa, es decir, que para estas
dos ultimas pruebas el porcentaje de bateria real es menor al obtenido. Por esta
razon, se presenta el valle aproximadamente en el segundo 35, porque la bateria
no tiene una carga del 93% sino que en realidad su porcentaje de carga esta
entre 50% y 55%.

Figura 44. Grafica de altura vs tiempo para Prueba 8.

800 Grafica de altura vs tiempo Prueba 8

700 7

0 1 1 1 1
10 20 30 40 50 60 70 80 90

Tiempo (seg)

En la figura 45 se observa la curva representativa de los datos de altura vs tiempo
para la Prueba 9. El porcentaje inicial de carga de la bateria es de 68% vy el
porcentaje final es de 54%.

El rango de tiempo sobre el cual se realiza el analisis inicia en el segundo 13.07
y finaliza en el segundo 89.98, obteniendo que el promedio de altura para esta
prueba es de 712.52 mm. Al igual que en la Prueba 8 para esta prueba la bateria
usada se habia puesto a cargar muy poco tiempo, por lo que no esta cargada en
su totalidad y, por ende, el dato obtenido de porcentaje de bateria corresponde
a una carga falsa. Por esta razon, se presenta el valle aproximadamente en el
segundo 68, porque la bateria no tiene una carga del 68% sino que en realidad
Su porcentaje de carga oscila alrededor del 30%.

Figura 45. Grafica de altura vs tiempo para Prueba 9.

900 Grafica de altura vs tiempo Prueba 9

800 7

0 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

Tiempo (seq)

Este algoritmo es una representacion simple y sencilla de todo un conjunto de
herramientas utiles, que sirven de base para llevar a cabo futuros proyectos, el
cual es uno de los resultados de mayor importancia, porque de este modo se
incentiva a las personas interesadas en este campo a hacer uso de las nuevas
tecnologias y asi mismo incurrir en el desarrollo de estas, asi como a su vez
lograr tener un aporte académico a la region.

Al realizar las diferentes pruebas del sistema se tiene como resultado que la
distancia entre el dron y la estacién en tierra es de gran importancia, debido a
que esto logra influir en el correcto funcionamiento y, por tanto, en el desempeiio
del sistema, ya que al alejarse demasiado el dron, la imagen que se obtiene
desde este a la base en tierra se congela, y por tanto no es posible el
procesamiento de la imagen en tiempo real, y a su vez no se logra realizar la
deteccién del obstaculo y por ende no es posible que se tomen las acciones de
control para realizar una evasion correcta. Lo anterior se puede apreciar en las
figuras 46 y 47; en esta Ultima figura se observa al dron encerrado en un évalo
de color negro detectando al obstaculo encerrado en un circulo de color rojo, sin
embargo, la imagen observada en la estacién en tierra en la figura 46 ya se
encuentra congelada debido a la distancia de alcance de la red wifi creada por
el AR.Drone 2.0.

Figura 46. Imagen congelada del AR Drone 2.0 por exceder alcance de su red wifi.

——

Figura 47. Escenario completo de imagen congelada del AR.Drone 2.0 por exceder
alcance de su red wifi.

Finalmente, al llevar el algoritmo al campo y realizar algunas pruebas se puede
apreciar el correcto funcionamiento del sistema, es decir, que logra percibir un
objeto de color rojo, y segun las pruebas realizadas con el obstaculo de mayor
tamafio es capaz de reconocerlo hasta a una distancia mas o menos de dos
metros y medio, para posteriormente evadirlo mediante las acciones control
implementadas en el algoritmo tales como la variacién de la velocidad angular
hasta que el obstaculo se encuentre fuera del rango visual del dron para
modificar asi la velocidad lineal y seguir un trayectoria recta, hasta que detecta
otro obstaculo de color rojo en su camino. Es preciso aclarar que como medida

de seguridad implementada para el sistema se establecen unos tiempos limites
que al ser sobrepasados hacen posible que se genere un aterrizaje seguro del
dron. Al estar el dron girando durante 17.5 segundos seguidos, este aterriza de
manera satisfactoria en las pruebas realizadas. De igual manera al continuar en
linea recta durante este mismo periodo de tiempo el dron realiza su aterrizaje de
forma correcta.

Figura 48. Trayectoria realizada por AR.Drone 2.0.

En la figura 49 se evidencia la simulacion del escenario de deteccién de
obstaculo con AR.Drone 2.0 mediante Gazebo, el cual es una herramienta que
permite simular entornos en tres dimensiones para estimar el comportamiento
de un robot en un entorno virtual. En el costado izquierdo de la figura se observa
al dron y al obstaculo frente a él, mientras que en el costado derecho de la figura
se evidencia la deteccion del obstaculo, asi como en la parte inferior las
coordenadas x e y de su centro.

Figura 49. Simulacion de escenario de detecciébn de obstaculo con AR.Drone 2.0
mediante Gazebo.

Gazebo

wHOH|S - - OB |%%Z | nl|

et 4@EPLHY

Il Real Time Factor: Sim Ti Real Time:

il (x-344. v=190) ~ R:102 G:0 B:0

La figura 50 ratifica la deteccion de obstaculos en tiempo real usando el
AR.Drone 2.0. Esta figura se puede dividir en dos escenarios, el primero de ellos
es el dron con el obstaculo ubicado en frente de él, y el segundo la estacion en
tierra obteniendo la imagen de la camara frontal del dron con su respectiva
deteccion.

Con lo dicho anteriormente es posible concluir que los resultados obtenidos
fueron los esperados, logrando implementar satisfactoriamente un sistema de
deteccidén y evasion de obstaculos haciendo uso de herramientas de fuente
abierta bajo condiciones especificas.

5. CONCLUSIONES

Se logré desarrollar un algoritmo de deteccion y evasion de obstaculos de
color rojo utilizando el lenguaje de programacién Python en conjunto con
el entorno de desarrollo Robot Operating System (ROS) vy la libreria para
procesamiento de imagenes OpenCV, teniendo la gran ventaja de ser
asequible a cualquier persona ya que las herramientas mencionadas
anteriormente son de cédigo abierto.

Se encontraron varios factores que influyeron negativamente en el
desemperio del algoritmo, los cuales son externos a este, tales como el
estado del dron (aspas, motores y baterias) que dificultaron ver el
rendimiento esperado del algoritmo realizado.

Es de suma importancia tener en cuenta la cobertura (alcance) de la red
WiFi creada por el AR.Drone 2.0 al momento de ser energizado, ya que
al sobrepasar este alcance se pierde la comunicacion entre el dron y la
estacion en tierra (computador), generando que se pierdan los paquetes
de la transmision del video y esta manera no se pueda seguir realizando
las acciones control para el dron.

La estructura de ROS ofrece una gran cantidad de ventajas entre las
cuales cabe resaltar la adquisicion de datos en tiempo real del robot en
estudio (AR.drone 2.0), como la obtencion de imagenes de las camaras,
datos de sensores, asi como también su gran comunidad existente que
provee informacion de gran utilidad en la web.

Se utilizaron dos métodos para la obtencion de imagenes en tiempo real
(mediante ROS realizando la suscripcion al topic
/ardrone/front/image _raw” y mediante OpenCV utilizando la funcion
“VideoCapture”) encontrando que las imagenes obtenidas mediante
OpenCV tienen un tiempo de retardo considerable, mientras que las
imagenes por medio de ROS si se obtenian en tiempo real, verificando
una de las ventajas de este entorno de desarrollo.

Al tener que definir unos rangos de colores en formato HSV es de suma
importancia tener en cuenta la luminosidad del entorno ya que la ultima
caracteristica de este formato (Value) indica qué tanto brillo debe tener el
color para ser detectado, por tanto, no todos los rojos seran detectados
como obstéaculos.

Este proyecto de grado sienta las bases en un tema muy poco conocido
en la region que es de gran utilidad como lo es el uso de ROS para la
implementacion de algoritmos en robots, debido a que el algoritmo
presentado proporciona informacion util y funciona como guia para futuros
proyectos o investigaciones, ademas de que la légica del algoritmo

funciona con mucha similitud en otros robots no solo aéreos sino también
terrestres y acuaticos.

6. RECOMENDACIONES

Con el fin de mejorar la eficacia del sistema se recomienda utilizar una
herramienta alternativa en cuanto a la deteccion de los obstaculos como
las redes neuronales, debido a que estas pueden reconocer objetos tanto
de diferentes formas y colores, gracias a su proceso de entrenamiento.

Dependiendo de la aplicacion en la que se vaya a incurrir, se recomienda
ajustar las acciones de control (velocidades angulares y lineales), asi
como también los tiempos para el aterrizaje seguro.

Al momento de realizar las pruebas del sistema, se recomienda estar
seguro de que las baterias se encuentren con mas del 80% de carga,
debido que a la alta cantidad de corriente que necesitan los motores del
dron generan un desgaste alto en un corto tiempo en las baterias,
limitando asi el tiempo de uso, el nimero de ejecuciones y el rendimiento
del sistema.

Bibliografia

Bradski, Gary. (2000). The OpenCV Library. Dr. Dobb's Journal of Software
Tools.

Mihelich, P., Bowman, J. 2012. cv_bridge: package to convert between ROS Im-
age messages and OpenCV images.

Monajjemi, M., et al. 2012. ardrone_autonomy: a ROS driver for AR.Drone 1.0 &
2.0.

ROS.org. Converting between ROS images and OpenCV images (Python). [en
linea]. http://wiki.ros.org/cv_bridge/Tutorials/ConvertingBetweenROSImagesAn-
dOpenCVIimagesPython. 24 de marzo de 2020

ROS.org. Topics. [en linea]. http://wiki.ros.org/Topics. 24 de marzo de 2020.

ROS.org. Writing a Simple Publisher and Subscriber (Python). [en linea].
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%?29. 24
de marzo de 2020.

SOLANO, Gabriela. DETECCION DE COLORES en OPENCYV [en 4 Pasos] —
Partel [video]. Ecuador: Youtube. (2 de marzo de 2019). 7:11 minutos. [Consul-
tado: 24 de marzo de 2020]. Disponible en
https://www.youtube.com/watch?v=giwtDY cIXKA.

Stanford Atrtificial Intelligence Laboratory et al. (2018). Robotic Operating Sys-
tem. Disponible en https://www.ros.org.

ANEXOS

ALGORITMO DE DETECCION DE OBSTACULOS DE COLOR ROJO
#!/usr/bin/env python2

import sys

import rospy

import cv2

from std_msgs.msg import String, Empty, Float32
from sensor_msgs.msg import Image

from collections import deque

from cv_bridge import CvBridge, CvBridgeError
import numpy as np

class image_converter:

def _init(self):

self.image_pub = rospy.Publisher("image_topic_2",Image,queue_size=10)

self.pub=rospy.Publisher('Coordenadas_Y',Float32,queue_size=1)

self.publ=rospy.Publisher('Coordenadas_X',Float32,queue_size=1)

self.pub3=rospy.Publisher('Aterrizaje’,Float32,queue_size=1)

self.bridge = CvBridge()

self.image_sub = rospy.Subscriber("/ardrone/front/image_raw",Im-
age,self.callback)

def callback(self,data):
Lower = np.array([0, 150, 20],np.uint8)
Upper = np.array([1, 255, 255],np.uint8)
Lowerl = np.array([178, 150, 20],np.uint8)
Upperl = np.array([179, 255, 255],np.uint8)
pts = deque(maxlen=64)
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
maskl = cv2.inRange(hsv, Lower, Upper)
mask2 = cv2.inRange(hsv, Lowerl, Upperl)
mask = cv2.add(maskl1,mask?2)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTER-
NAL,cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
if len(cnts) > 0O:
¢ = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["'m210"] / M["'m00"]), int(M[*'mO1"] / M["'m00"]))

a=(int(M["mO01"] / M["m00"]))

b=(int(M["'m10"] / M["m00"]))

rospy.loginfo('%i %s %i', int(M["'m210"] / M["mO00"]),",",int(M["m01"] /

M[*'m00°7))

rate.sleep()

if radius > 10:
cv2.circle(cv_image, (int(x), int(y)), int(radius),(0, 255, 255), 2)
cv2.circle(cv_image, center, 5, (0, 0, 255), -1)

else:

a=(int(-1))
b=(int(-2))

except CvBridgeError as e:
print(e)

cv2.imshow("Image window", cv_image)
cv2.waitKey(3)

try:
self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
self.publ.publish(b)
except CvBridgeError as e:
print(e)
def main():
ic = image_converter()
try:
rospy.spin()
except Keyboardinterrupt:
print("Shutting down")
cv2.destroyAllWindows()

if _name_==' main_"
rospy.init_node('image_converter', anonymous=True)
global rate

rate = rospy.Rate(20) # Taza o velocidad de 20Hz
main()

ALGORITMO DE EVASION DE OBSTACULOS DE COLOR ROJO

#!/usr/bin/env python

import rospy

from std_msgs.msg import Float32,Empty
from geometry_msgs.msg import Twist
msg=Twist()

class Detector():

def _init_(self):

self.coordenadax = None
self.coordenaday = None

def coordenadax_callback(self, data):

global pub2
pub3=rospy.Publisher(‘ardrone/land',Empty,queue_size=10)
pub2=rospy.Publisher('/cmd_vel', Twist,queue_size=10)
self.coordenadax = data

if data.data == -2:

global i,j
rospy.loginfo('NO HAY OBSTACULOQ")
msg.angular.z =0
msg.linear.x = 0.01
i=0
=i+l
else:

rospy.loginfo('SI HAY OBSTACULO")
msg.linear.x =0

msg.angular.z = 0.1

i=i+1

j=0

pub2.publish(msg) #Realiza la publicacion de las velocidades
rospy.loginfo('%s %i','Temporizador de giro: ',i)
rospy.loginfo('%s %i',' Temporizador de avance: ')
if i > 350:

rospy.loginfo(ATERRIZANDOQ")

pub3.publish(Empty())
if j > 350:

rospy.loginfo(ATERRIZANDO")

pub3.publish(Empty())

def coordenaday_callback(self, data):

self.coordenaday = data

if _name_=="' main_"
rospy.init_node('listener’)

detector = Detector()

global i,j

i=0

=0

rospy.Subscriber('Coordenadas_X', Float32, detector.coordenadax_callback)
rospy.Subscriber('Coordenadas_Y', Float32, detector.coordenaday_callback)

rospy.spin()

