

CARTA DE AUTORIZACIÓN

IQNET CERTIFIED MARKAGEMENT SYSTEM

CÓDIGO

AP-BIB-FO-06

VERSIÓN

1

VIGENCIA

2014

PÁGINA

1 de 1

Neiva, 11 de junio de 2025

Señores

CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN

UNIVERSIDAD SURCOLOMBIANA

Neiva

El suscrito:

Jean Carlo Quintero Garcia, con C.C. No. 1.081.159.762 (Rivera – Huila),

Autor de la tesis y/o trabajo de grado titulado: "Diseño y establecimiento de un sistema de aseguramiento de calidad bajo el enfoque de análisis de peligros y puntos críticos de control, en las etapas de fermentación, secado y almacenamiento de cacao, en cuatro centrales de beneficio del departamento del Huila". presentado y aprobado en el año 2025 como requisito para optar al título de Ingeniero Agroindustrial;

Autorizo al CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN de la Universidad Surcolombiana para que, con fines académicos, muestre al país y el exterior la producción intelectual de la Universidad Surcolombiana, a través de la visibilidad de su contenido de la siguiente manera:

- Los usuarios puedan consultar el contenido de este trabajo de grado en los sitios web que administra la Universidad, en bases de datos, repositorio digital, catálogos y en otros sitios web, redes y sistemas de información nacionales e internacionales "open access" y en las redes de información con las cuales tenga convenio la Institución.
- Permita la consulta, la reproducción y préstamo a los usuarios interesados en el contenido de este trabajo, para todos los usos que tengan finalidad académica, ya sea en formato Cd-Rom o digital desde internet, intranet, etc., y en general para cualquier formato conocido o por conocer, dentro de los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia.
- Continúo conservando los correspondientes derechos sin modificación o restricción alguna; puesto que, de acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso conlleva la enajenación del derecho de autor y sus conexos.

De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, "Los derechos morales sobre el trabajo son propiedad de los autores", los cuales son irrenunciables, imprescriptibles, inembargables e inalienables.

EL AUTOR/ESTUDIANTE:

Firma

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO

AP-BIB-FO-07

VERSIÓN

1

VIGENCIA

2014

PÁGINA

1 de 3

TÍTULO COMPLETO DEL TRABAJO: Diseño y establecimiento de un sistema de aseguramiento de calidad bajo el enfoque de análisis de peligros y puntos críticos de control, en las etapas de fermentación, secado y almacenamiento de cacao, en cuatro centrales de beneficio del departamento del Huila.

AUTOR O AUTORES:

Primero y Segundo Apellido	Primero y Segundo Nombre	
Quintero Garcia	Jean Carlo	

DIRECTOR Y CODIRECTOR TESIS:

Primero y Segundo Apellido	Primero y Segundo Nombre	
Castro Camacho	Jennifer Katiusca	
Criollo Nuñez	Jenifer	

ASESOR (ES):

Primero y Segundo Apellido	Primero y Segundo Nombre
N/A	N/A

PARA OPTAR AL TÍTULO DE: Ingeniero Agroindustrial

FACULTAD: Ingeniería

PROGRAMA O POSGRADO: Ingeniería Agroindustrial

CIUDAD: Neiva AÑO DE PRESENTACIÓN: 2025 NÚMERO DE PÁGINAS: 107

TIPO DE ILUSTRACIONES (Marcar con una X):

Diagramas X Fotografías X Grabaciones en discos Illustraciones en general X Grabados Láminas Litografías Mapas X Música impresa Planos X Retratos Sin illustraciones Tablas o Cuadros X

SOFTWARE requerido y/o especializado para la lectura del documento: N/A

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

AP-BIB-FO-07

VERSIÓN

1

VIGENCIA

2014

PÁGINA

2 de 3

MATERIAL ANEXO: N/A

PREMIO O DISTINCIÓN (En caso de ser LAUREADAS o Meritoria): LAUREADA

PALABRAS CLAVES EN ESPAÑOL E INGLÉS:

<u>Español</u> <u>Inglés</u>		<u>Español</u>	<u>Inglés</u>
1. Cacao Cacao		6. Beneficio	Primary processing
2. Calidad	Quality 7. Fermentación		Fermentation
3. Aseguramiento	Assurance	8. Secado	Drying
4. Punto crítico	Critical control point	9. Polifenoles	Polyphenols
5. Postcosecha	Postharvest	10. Análisis sensorial	Sensory analysis

RESUMEN DEL CONTENIDO: (Máximo 250 palabras)

El cacao es un cultivo de alto valor en la industria alimentaria por sus propiedades sensoriales y medicinales. Colombia, en 2022, ocupó el décimo lugar como productor mundial, destacándose por un 95% de cacao fino y de aroma, aunque enfrenta retos en la conservación de dicha calidad. El departamento del Huila, cuarto productor nacional, busca fortalecer su competitividad mediante la estandarización del beneficio poscosecha. En este contexto, se desarrolló una investigación en el marco del proyecto financiado por el Sistema General de Regalías, con participación de la Gobernación del Huila, AGROSAVIA, SENA y la Universidad Surcolombiana, orientado a la implementación de un sistema de aseguramiento de calidad (CECAO) en las centrales de beneficio de los municipios de Rivera, Campoalegre, Algeciras y Gigante. Se diseñó y validó una lista de inspección con alta confiabilidad (α ≥ 0,90), y se documentaron planes, programas y formatos que estructuran el sistema. Se identificaron como puntos críticos las fases de recepción, fermentación y secado, formulando planes de mejora específicos. Se realizaron tres inspecciones sanitarias y análisis del grano seco mediante métodos físico (NTC 1252:2012), químico (Folin-Ciocalteu, espectrofotometría) y sensorial (COEX). Los análisis estadísticos evidenciaron mejoras significativas en condiciones sanitarias y calidad global. correlacionadas con el índice de fermentación. El sistema CECAO demostró eficacia en la mejora integral de la calidad del cacao seco en grano y reveló perfiles sensoriales homogéneos entre municipios, sugiriendo un potencial de articulación institucional para el fortalecimiento de la cadena cacaotera del Huila.

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO AP-BIB-FO-07

VERSIÓN

1

VIGENCIA

2014

PÁGINA

3 de 3

ABSTRACT: (Máximo 250 palabras)

Cocoa is a high-value crop in the food industry due to its sensory and medicinal properties. In 2022, Colombia ranked tenth among global producers, with 95% of its cocoa classified as fine and flavor, though it faces challenges in preserving this quality. The department of Huila, the fourth largest national producer, seeks to enhance its competitiveness by standardizing postharvest processing. Within this context, research was conducted as part of a project funded by the General System of Royalties, involving the Huila Government, AGROSAVIA, SENA, and the Surcolombiana University. The project focused on implementing a quality assurance system (CECAO) in cocoa processing centers located in the municipalities of Rivera, Campoalegre, Algeciras, and Gigante. An inspection checklist was designed and validated with high reliability ($\alpha \ge 0.90$), and comprehensive documentation was developed, including plans, programs, and formats that structure the system. Reception, fermentation, and drying stages were identified as critical control points. leading to specific improvement plans. Three sanitary inspections were carried out, along with dry bean sampling at diagnostic, intermediate, and final stages. Physical analysis was performed using the cut test (NTC 1252:2012), chemical analysis of total polyphenols (Folin-Ciocalteu method), fermentation index via spectrophotometry, and sensory characterization following the Cocoa of Excellence (COEX) guidelines. Statistical analysis revealed significant improvements in sanitary conditions and overall quality, positively correlated with fermentation indices. The CECAO system proved effective in enhancing the physical, chemical, and sensory attributes of dry cocoa beans and revealed similar flavor profiles among municipalities, highlighting the potential for institutional collaboration to strengthen Huila's cocoa value chain.

APROBACION DE LA TESIS

Nombre Jurado 1: Néstor Enrique Cerquera Peña

Firma:

Nombre Jurado 2: Jaime Daniel Bustos Vanegas

Firma:

DISEÑO Y ESTABLECIMIENTO DE UN SISTEMA DE ASEGURAMIENTO DE CALIDAD
BAJO EL ENFOQUE DE ANÁLISIS DE PELIGROS Y PUNTOS CRÍTICOS DE CONTROL,
EN LAS ETAPAS DE FERMENTACIÓN, SECADO Y ALMACENAMIENTO DE CACAO, EN
CHATEO CENTRALES DE BENEFICIO DEL DEDARTAMENTO DEL HIJILA

Jean Carlo Quintero Garcia

Universidad Surcolombiana - Facultad de Ingeniería Programa de Ingeniería Agroindustrial Neiva (Huila)

DISEÑO Y ESTABLECIMIENTO DE UN SISTEMA DE ASEGURAMIENTO DE CALIDAD BAJO EL ENFOQUE DE ANÁLISIS DE PELIGROS Y PUNTOS CRÍTICOS DE CONTROL, EN LAS ETAPAS DE FERMENTACIÓN, SECADO Y ALMACENAMIENTO DE CACAO, EN CUATRO CENTRALES DE BENEFICIO DEL DEPARTAMENTO DEL HUILA.

Jean Carlo Quintero Garcia

Trabajo de grado presentado como requisito para optar al título de: Ingeniero Agroindustrial

Dirigida por:

PhD. Jennifer Katiusca Castro Camacho – USCO PhD. Jenifer Criollo Nuñez - AGROSAVIA

Universidad Surcolombiana - Facultad de Ingeniería Programa de Ingeniería Agroindustrial Neiva (Huila) 2025

DEDICATORIA

A Dios.

Por permitirme avanzar día a día, construyéndome académica, profesional y personalmente, fluyendo con sus designios y brindándome la sabiduría y fuerza necesarias para progresar hacia el éxito en cada etapa de mi vida.

A mis padres y hermanas,

Por brindarme su apoyo absoluto y forjar en mi la valentía para perseguir mis propósitos. En especial a Alexandra Quintero García, quien ha sido mi mayor motivación para enfrentar las situaciones que el mundo me presenta, buscando la manera de salir siempre victorioso. A ella le demuestro que, con compromiso y determinación, todo es posible, así mismo manifiesto que cuenta con un hermano e ingeniero agroindustrial para acompañarla en este camino llamado "Vida".

AGRADECIMIENTOS

Agradezco a Dios, por estar siempre presente en mi camino, recordándome a través de la existencia misma que cada situación que se presente, puede superarse dejando en nosotros experiencia y madurez, rodeado de personas que te construyen y que llegan a ti como guardianes a los cuales llamas familia o amigos.

A la Universidad Surcolombiana, por ser la entidad que me permitió formarme integralmente como ingeniero agroindustrial con el objetivo y capacidad de generar cambios significativos en la industria regional y por permitirme ser libre de expresar mis ideas y con ellas construir comunidad.

A la Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, por haberme vinculado a su equipo de trabajo para que en conjunto, estableciéramos estrategias en pro de generar mejoras e impactos positivos en el sector cacaocultor del departamento del Huila, además de brindarme las herramientas tecnológicas y científicas para desarrollar el presente trabajo junto con la Gobernación del Huila, a través del sistema general de regalías, las asociaciones vinculadas ASOPROCAR, ASOPECA, APROCALG & ASOCAGIGANTE; y el Centro de Investigación CESURCAFÉ.

Al Servicio Nacional de Aprendizaje, en especial al Centro de Formación Agroindustrial "La Angostura" que, como entidad junto a su talento humano, fueron un aliado de gran relevancia en el desarrollo de la investigación; tambien, por haber sido la primera institución que me brindó formación técnica y a través de ella la motivación para continuar el camino profesional.

A mis padres Clara Inés Garcia y Libardo Quintero, a mis hermanas Diana y Alexandra, quienes siempre han sido mi mayor soporte y motivo de superación, dándome su energía y amor que me llevan cada vez a alcanzar el éxito de cada meta propuesta, a mi mejor amiga Ana María quien siempre está presente durante las veces en que mi estabilidad emocional flaquea, dándome motivación para seguir adelante.

A las mujeres que desde mi juventud se han ganado mi admiración por su tenacidad y fuerza, además de su vocación por la ciencia como profesionales de la ingeniería Agroindustrial, Ángela Ávila quien me dio el primer impulso hacia el mundo de la investigación y Kathryn Yadira Guzman quien se convirtió en mi mentora en inocuidad alimentaria y calidad de cacao.

A mis directoras de trabajo de grado quienes me orientaron en la investigación y en conjunto desarrollaron estrategias para el abordaje preciso de metodologías que llevaran a la obtención de resultados favorables.

Finalmente, pero no menos importante, agradezco a todas y cada una de las personas involucradas en este proceso, asociados, investigadores, docentes, jurados y demás, quienes desde diferentes ámbitos hicieron su aporte con la finalidad de alcanzar resultados con impacto en el sector agroindustrial colombiano.

A todos... ¡Muchas gracias!

TABLA DE CONTENIDO

R	ESUN	ΛΕΝ	. 10
Α	bstrac	pt	. 11
1	. IN	TRODUCCIÓN	. 12
2	. AS	PECTOS DE LA PROBLEMÁTICA	. 15
3	. OE	BJETIVOS	. 17
	3.1.	Objetivo general	. 17
	3.2.	Objetivos específicos.	. 17
4	. M <i>P</i>	ARCO TEÓRICO	. 18
	4.1.	Calidad	. 18
	4.2.	Sistema de gestión de calidad	. 18
	4.3.	APPCC / HACCP	. 19
	4.4.	Cacao	. 19
5	. ME	ETODOLOGÍA	. 22
	5.1.	Geolocalización	. 22
	5.2.	Centrales de beneficio	. 23
	5.3.	Diagnóstico y Seguimiento	. 25
	5.4.	Plan de mejora	. 28
	5.5.	Seguimiento	. 29
	5.6.	Sistema de aseguramiento	. 29
	5.7.	Muestreo	. 31
	5.8.	Análisis Físico	. 31
	5.9.	Análisis Químico	. 35
	5.9	0.1. Contenido de Polifenoles totales	. 35
	5.9	0.2. Índice de fermentación	. 35
	5.10.	Análisis Sensorial	. 36
	5.11.	Procesamiento estadístico	. 38

6.	RE	SULT	TADOS	38
	6.1.	Dia	gnóstico	38
	6.2.	Plar	n de mejora	44
	6.3.	Sist	ema de aseguramiento	50
	6.3	.1.	Plan de personal manipulador	51
	6.3	.2.	Plan de saneamiento	52
	6.3	.3.	Plan de Trazabilidad	55
	6.3	.4.	Plan de Gestión	60
	6.3	.5.	Análisis de peligros y puntos críticos de control	61
	6.4.	Seg	uimientos	71
	6.5.	Aná	ilisis físico	72
	6.6.	Aná	ilisis químico	76
	6.7.	Aná	lisis sensorial	80
	6.8.	Aná	lisis estadístico de resultados	86
7.	СО	NCL	USIONES	88
8.	RE	СОМ	ENDACIONES	89
9.	RE	FERE	ENCIAS BIBLIOGRÁFICAS	90
1(). A	NEX	OS1	02

Lista de Tablas

Tabla 1. Escala de calificación para la herramienta de inspección	28
Tabla 2. Parámetros de evaluación física de cacao	31
Tabla 3. Clasificación del cacao en gran para comercialización nacional	34
Tabla 4. Panel de expertos evaluadores de la lista de inspección	39
Tabla 5. Plan de mejora de requisitos sanitarios en centrales de beneficio	45
Tabla 6. Asignación de códigos para la documentación del sistema CECAO	51
Tabla 7. POES Cajón fermentador	53
Tabla 8. Caracterización de especies (plagas) en centrales de beneficio de cacao	54
Tabla 9. Criterios de aceptación y rechazo de cacao fresco	56
Tabla 10. Identificación de peligros en centrales de beneficio de cacao	66
Tabla 11. Determinación de PCC en centrales de beneficio de cacao	68
Tabla 12. Límites críticos para control de peligros	69
Tabla 13. Resultados de análisis físico de cacao - Especificaciones sensoriales	72
Tabla 14. Resultados de análisis físico de cacao – Requisitos físicos y químicos	74
Tabla 15. Análisis de Varianza para Total de Fermentación (%)	75
Tabla 16. Pruebas de Múltiple Rangos para Total de Fermentación (%)	75
Tabla 17. Análisis de Varianza para Polifenoles Totales EAG (mg/g)	76
Tabla 18. Pruebas de Múltiple Rangos para Polifenoles Totales EAG (mg/g)	76
Tabla 19. Análisis de Varianza para Índice de fermentación	78
Tabla 20. Pruebas de Múltiple Rangos para Índice de fermentación	79
Tabla 21. Reporte de resultados de atributos sensoriales de cacao	80
Tabla 22. Resumen estadístico de correlación entre variables	86
Tabla 23. Correlación Pearson entre las variables	87
Tabla 24. Covarianzas entre las variables	87

Lista de Figuras

Figura 1. Árboles y frutos de cacao en cultivo	20
Figura 2. Fermentadores de cacao tipo horizontal y rotatorio	20
Figura 3. Secadores de cacao tipo marquesina estático y de bandejas extraíbles	21
Figura 4. Ubicación geográfica del Huila y municipios de influencia del proyecto	22
Figura 5. Área sembrada y producción por municipio – 2022	23
Figura 6. Central de beneficio – Rivera	24
Figura 7. Central de beneficio – Campoalegre	24
Figura 8. Central de beneficio - Algeciras	25
Figura 9. Central de beneficio - Gigante	25
Figura 10. Árbol de decisiones para identificación de puntos críticos de control	30
Figura 11. Rueda de sabor de cacao y chocolate COEX	
Figura 12. Escala de calificación global de cacao – COEX	37
Figura 13. Proceso de estructuración y validación de lista diagnóstico	38
Figura 14. Perfil sanitario, Diagnóstico inicial centrales de beneficio de cacao Huila	44
Figura 15. Codificación de la documentación	50
Figura 16. Encabezado de los documentos del Sistema CECAO	51
Figura 17. Tratamiento de potabilización de agua	52
Figura 18. Cacao fresco óptimo Vs Cacao afectado	56
Figura 19. Flujograma de recepción de cacao fresco en las centrales de beneficio	57
Figura 20. Formato de recepción y trazabilidad de cacao	58
Figura 21. Proceso postcosecha de cacao en centrales de beneficio	59
Figura 22. Elementos suministrados a las centrales de beneficio de cacao	61
Figura 23. Estructura organizacional de las centrales de beneficio	63
Figura 24. Diagrama de sitio – Central de beneficio Rivera	65
Figura 25. Cumplimiento de requisitos sanitarios con relación al seguimiento	71
Figura 26. Análisis de Varianza Total de Fermentación (%) vs Seguimiento	75
Figura 27. Análisis de Varianza Polifenoles totales EAG (mg/g) vs Seguimiento	77
Figura 28. Análisis de Varianza - Índice de fermentación vs Seguimiento	79
Figura 29. Perfil sensorial – Diagnóstico	81
Figura 30. Perfil sensorial – Seguimiento Intermedio	82
Figura 31. Perfil sensorial – Seguimiento Final	82
Figura 32. Análisis por componentes principales – Correlaciones sobre eje t1 y t2	83
Figura 33. Calidad Global / Coeficientes estandarizados	85

Lista de ecuaciones

Ecuación 1. Cálculo de alfa de Cronbach	
Lista de anexos	
Anexo A. Fortalecimiento de comunidad científica	102
Anexo B. Divulgación y participación en eventos	103
Anexo C. Transferencia de conocimientos	107

RESUMEN

El cacao es un fruto que posee un alto potencial de mercado en la industria alimentaria, donde es altamente valorado por su versatilidad como ingrediente debido a sus características sensoriales y propiedades medicinales. En el último quinquenio, de acuerdo con el reporte de la Organización internacional de Cacao ICCO (2022) su producción mundial se ha visto incrementada, acompañado de mayores exigencias en cuanto a calidad. En 2022, Colombia se ubicó en décimo lugar como productor mundial, con un 95% de su cacao clasificado como fino y de aroma, sin embargo, surgieron desafíos relacionados con la conservación a largo plazo de estos atributos (Huamán et al., 2022). Bajo este contexto, el Huila, como cuarto productor nacional, enfrenta el reto de estandarizar y controlar los procesos de postcosecha asegurar que su cacao mantenga propiedades destacadas y alineadas a las demandas del mercado internacional (Cámara de comercio del Huila, 2018). Debido a lo anterior, la Gobernación del Huila, a través del sistema general de regalías y en alianza con AGROSAVIA, el SENA y la Universidad Surcolombiana, estableció el proyecto enfocado al desarrollo y validación de tecnologías de manejo integrado del cultivo y agroindustria de cacao en los municipios de Campoalegre, Gigante, Rivera y Algeciras; cuyo objetivo consistía en mejorar la calidad del cacao producido en el departamento mediante diversas actividades, entre ellas, la implementación de un sistema de aseguramiento de calidad, dando origen a la presente investigación.

Este estudio presenta la aplicación del sistema de aseguramiento de calidad (CECAO) en las centrales de beneficio de cacao del departamento del Huila, localizadas en los municipios de Rivera, Campoalegre, Algeciras y Gigante. Para lo cual, se diseñó una lista de inspección adaptada a las condiciones específicas de cada central, validada mediante la determinación de alfa de Cronbach, obteniendo una alta confiabilidad ($\alpha \ge 90$). Posteriormente, se documentó 4 planes compuestos por 10 programas, 12 formatos v anexos, que constituyen el sistema. Se identificaron las fases de recepción, fermentación y secado como puntos críticos en términos químicos y biológicos, formulando un plan de mejora enfocado en infraestructura/equipos, documentación y gestión. Se llevaron a cabo tres inspecciones sanitarias semestrales en las etapas de diagnóstico, intermedio y final; además del muestreo de cacao seco en grano durante las mismas. Se realizó análisis físico aplicando prueba de corte según NTC 1252:2012, análisis químico de polifenoles totales por metodología Folin-Ciocalteu, índice de fermentación vía espectrofotométrica, y caracterización sensorial basada en la quía de evaluación de Cacao de Excelencia (COEX). Los datos fueron tabulados y sometidos a análisis de varianza ANOVA multifactorial además de análisis multivariados identificando interacciones entre sí.

Los resultados evidenciaron un incremento en el cumplimiento de las condiciones sanitarias en las cuatro centrales de beneficio, alcanzando la meta del 70% en tres de ellas y cerca del 65% en la restante. En cuanto a las propiedades evaluadas, se observó una correlación positiva entre el grado de fermentación, índice de fermentación y la calidad global, aumentando en cada seguimiento; lo que valida el planteamiento de la investigación. Se confirmó que el sistema de aseguramiento de calidad contribuyó a la mejora de las propiedades físicas, químicas y sensoriales del cacao seco en grano en las centrales evaluadas; además, se identificó que éstas, presentan perfiles de sabor similares, lo que sugiere un potencial de trabajo colaborativo entre las entidades involucradas, que conlleve al fortalecimiento de la cadena productiva del cacao en el departamento del Huila.

ABSTRACT

Cocoa is a fruit with high market potential in the food industry, where it is highly valued for its versatility as an ingredient due to its sensory characteristics and medicinal properties. In the last five years, according to the International Cocoa Organization (ICCO, 2022), its global production has increased, accompanied by greater quality demands. In 2022, Colombia ranked tenth among global producers, with 95% of its cocoa classified as fine and flavor cocoa. However, challenges emerged related to the long-term preservation of these attributes (Huamán et al., 2022).

In this context, the department of Huila, as the fourth largest national producer, faces the challenge of standardizing and controlling post-harvest processes to ensure that its cocoa maintains outstanding properties aligned with international market demands (Cámara de Comercio del Huila, 2018). In response, the Government of Huila, through the General System of Royalties and in alliance with AGROSAVIA, SENA, and the Universidad Surcolombiana, established a project focused on the development and validation of integrated crop management and cocoa agro-industry technologies in the municipalities of Campoalegre, Gigante, Rivera, and Algeciras. The objective was to improve the quality of cocoa produced in the department through various activities, including the implementation of a quality assurance system, giving rise to the present research.

This study presents the application of the quality assurance system (CECAO) in cocoa processing centers located in the municipalities of Rivera, Campoalegre, Algeciras, and Gigante in the department of Huila. An inspection checklist was designed and adapted to the specific conditions of each center, and validated through Cronbach's alpha, achieving high reliability ($\alpha \ge 90$). Subsequently, four plans were documented, consisting of 10 programs, 12 formats, and several annexes that make up the system. The reception, fermentation, and drying stages were identified as critical control points in terms of chemical and biological risks, and an improvement plan was formulated focusing on infrastructure/equipment, documentation, and management. Three semi-annual sanitary inspections were carried out during the diagnostic, intermediate, and final stages, along with the sampling of dry cocoa beans in each stage. Physical analysis was conducted using the cut test following NTC 1252:2012, chemical analysis of total polyphenols using the Folin–Ciocalteu method, fermentation index via spectrophotometry, and sensory characterization based on the Cacao of Excellence (COEX) evaluation guide. Data were tabulated and subjected to multifactorial ANOVA and multivariate analyses to identify internal interactions.

The results showed an increase in compliance with sanitary conditions in the four processing centers, reaching the 70% target in three of them and approximately 65% in the remaining one. Regarding the evaluated properties, a positive correlation was observed between fermentation degree, fermentation index, and overall quality, with progressive improvement across the three evaluations, thus validating the research hypothesis. It was confirmed that the quality assurance system contributed to the improvement of the physical, chemical, and sensory properties of dry cocoa beans in the evaluated centers. Additionally, the centers exhibited similar flavor profiles, suggesting a potential for collaborative work among the involved institutions, which could lead to the strengthening of the cocoa production chain in the department of Huila.

1. INTRODUCCIÓN

El cacao (*Theobroma Cacao* L.) es un fruto que, por sus propiedades nutritivas y medicinales, fue utilizado como moneda de cambio y ofrenda religiosa por las poblaciones indígenas de América (Universidad San Ignacio de Loyola, 2018), su origen no logra deducirse con precisión geográfica debido a que previo a la colonización, la población aborigen en su vida nómada, lo diseminó como cultivo en el centro y sur del continente (Enriquez, 1985). Una vez América fue subyugada, los conquistadores observaron la gran relevancia que tenía el cacao en el nuevo continente, razón por la cual promovieron su cultivo de manera masiva en países tropicales con condiciones agroclimáticas propicias, tal como lo señala Barros (1981); considerando como factores determinantes un promedio anual de lluvias de 1200 mm y una humedad relativa aproximada del 70 al 80 % (Batista, 2009). Como resultado, el cacao se convirtió en un producto de consumo mundial, consolidándose América y África como los mayores productores de este grano, abasteciendo tanto la demanda interna como de la proveniente de países europeos y asiáticos (Laviana, 2007).

En la actualidad este fruto presenta una creciente demanda en el mercado global para su consumo en bebidas, barras y confites (Sánchez et al., 2019). Para el año 2022 de acuerdo con la Organización internacional de Cacao ICCO la producción mundial de este fruto se proyectó cercana a los 5 millones de toneladas, de las cuales los mayores aportantes con el 75% aproximadamente, son Costa de marfil y Ghana convirtiéndolos en líderes en producción a nivel mundial, y menor al 20% corresponde al aporte de la producción en América, estando Ecuador como líder, seguido por Brasil y Perú, Colombia se ubica en la cuarta posición regional y décimo a nivel mundial (Huamán et al., 2022). No obstante, de esta producción, se destaca que solo el 5% corresponde al denominado cacao fino y de aroma o "especiales", dado por la genética de los árboles o genotipo (Barrientos et al., 2019), articuladas con las condiciones de cultivo o fenotipo y, su proceso de postcosecha, generando un grano con características especiales en términos de calidad física, química y sensorial (Núñez et al., 2023) apetecido a nivel internacional para la elaboración de productos de alta cocina y confitería (Proexport Colombia, 2012) (Contreras, 2016), sin defectos y con perfil de sabor particular o único (Hütz-Adams, 2022).

Colombia cuenta con 189 mil hectáreas de cultivo y una producción de 63.000 toneladas anuales (Finagro, 2020); desde el año 2016 fue declarado por el gobierno nacional, como el "cultivo para la paz" convirtiéndose en la estrategia agrícola para la sustitución de cultivos ilícitos una vez firmados los acuerdos (Arenas et al., 2023), así mismo, se resalta que la ICCO, en el año 2017, declaró que el 95% de la producción de este grano en Colombia corresponde a cacao fino y de aroma, ratificándolo una vez más en el 2019 (MinAgricultura, 2021), llevando a la promoción para el desarrollo rural y de comunidades (Charry et al., 2019). Con esto, se presumían mejores precios de compra e incremento de los índices de participación en la exportación del grano, pero a pesar de los esfuerzos y cooperaciones internacionales con países como Estados Unidos, Canadá, Suiza, entre otros, como menciona Ávila-Santos (2020); actualmente en la industria de cacao no se ha evidenciado un cambio significativo en los ingresos de los productores en el país, que no corresponda al decrecimiento productivo mundial a causa de fenómenos climáticos en África (Huamán et al., 2023), la causa se atribuye a diferentes factores como la poca tecnificación de

procesos, monopolización del mercado, fluctuación de precios y deficiente calidad de grano (Abbott et al., 2018),. De las anteriores, la escasa tecnificación de procesos en las fases de fermentación y secado, se convierte en uno de los mayores obstáculos o factor determinante para la comercialización, debido a que los cacaocultores basan sus conocimientos en saberes ancestrales con la finalidad de obtener un pago como intercambio del grano seco, sin tener en cuenta la calidad del mismo (Benjamín et al., 2016) y es esta práctica la cual requiere de procesos de acompañamiento donde se brinden las herramientas científicas que generen impactos significativos en la cadena de valor del cacao y por ende en la calidad de vida de las personas y familias involucradas.

De acuerdo con el estudio presentado por Peraza (2022), La producción nacional de cacao en grano seco ha mostrado un crecimiento sostenido, alcanzando un promedio anual de 46.000 toneladas entre el 2004 y 2014. En 2015 se registró un incremento a 54.798 toneladas, y para el año 2020 la producción llegó a 63.048 toneladas; esta cifra corresponde al aporte de cada departamento del país, siendo Santander el mayor productor, con 26.315 toneladas, 58.000 Hectáreas sembradas y un rendimiento de 0,46 t ha⁻¹, seguido por Antioquia y Arauca, con 5.974 y 5.082 toneladas, respectivamente. El Huila, ocupa el cuarto lugar a nivel nacional, con una producción de 4.312 toneladas, 11.940 hectáreas sembradas y un rendimiento de 0,42 ton ha⁻¹. En términos de volumen, Santander posee una clara ventaja productiva, no obstante, se ha reportado presencia de cadmio en niveles superiores a los permitidos (Rueda et al., 2021). En contraste, el grano de cacao producido en el departamento del Huila, presenta concentraciones considerablemente más bajas de este metal pesado, lo que constituye una ventaja competitiva para acceder directamente a los mercados extranjeros, según señala Muñoz-Álvarez (2021).

Basado en lo anterior y en búsqueda de mejorar las características del cacao que es beneficiado en las centrales del departamento del Huila, a través de la generación de una cultura de calidad por parte de los productores, se estableció como investigación aplicada, el diseño e implementación de un sistema de aseguramiento bajo el enfoque de análisis de peligros y puntos críticos de control, que genere impacto en la calidad de grano en las cuatro centrales de beneficio ubicadas en los municipios de Rivera, Campoalegre, Algeciras y Gigante operadas por las asociaciones ASOPROCAR, ASOPECA, APROCALG y ASOCAGIGANTE, respectivamente. El alcance de este sistema está dado por la recepción de cacao fresco en baba en la central, fermentación, secado y almacenamiento de grano seco. Siendo una propuesta relevante para el sector cacaocultor debido a que las investigaciones que se han realizado respecto a sistemas de calidad se han enfocado principalmente en plantas de transformación para obtención de chocolate o derivados y no en las centrales de beneficio como punto de partida donde se genera la materia prima para estos productos y además es donde se desarrollan las etapas que mayor relación tiene con la calidad física, sensorial y química del cacao como lo es la fermentación y secado (Farfán, 2012; López-D'Sola et al., 2012).

El sistema de aseguramiento con enfoque en el Análisis de peligros y puntos críticos de control también llamado APPCC o HACCP por sus siglas en inglés Hazard Analysis Critical Control Point, regulado en Colombia bajo el Decreto 60 de 2002, donde a través de un numero de fases se previene el riesgo de contaminación y asegura la calidad e inocuidad de un alimento con fines de consumo y comercialización en el país, facilita las herramientas y aumenta las oportunidades de incursión en mercados nacionales y extranjeros, así como,

la permanencia en los mismos (Figueroa, 2021). Se propicia la estandarización del proceso de acuerdo con las condiciones del establecimiento, controlando variables y a su vez realizando el registro y documentación trazable del grano que conlleve a determinar la calidad del producto final (Pallares et al., 2016).

Con la finalidad de diseñar y establecer este sistema de aseguramiento como herramienta de mejora continua en las centrales de beneficio, considerando una evaluación diagnóstica inicial como punto de partida, con seguimientos intermedio y final, se diseñó y validó mediante metodología Delphi una herramienta diagnóstica ajustada a las condiciones y requerimientos de una central de beneficio de cacao partiendo de la metodología propuesta por Castro y Ramirez (2009), así como su correlación con las variables físicas, químicas y sensoriales del grano, dadas por el análisis físico de corte de acuerdo con la Norma Técnica Colombiana NTC 1252 de 2021 determinación de contenido de polifenoles Folin—Ciocalteu e índice de fermentación por absorbancia ambos mediante espectrofotometría (Ortiz et al., 2019) y finalmente análisis sensorial mediante panel entrenado según la norma ISO 6658:2017, NTC 3929/2009 ajustado al protocolo COEX Cacao de la Excelencia.

En razón a lo anterior, se aborda el proceso de diseño, aplicación y validación de la herramienta, así como la estructuración y ejecución de un plan de mejora relacionados con la calidad del grano cuya postcosecha es llevada a cabo en las centrales de beneficio; cuyos resultados fueron consolidados, procesados y estudiados de manera estadísticas, permitiendo identifica la influencia del sistema sobre las propiedades y condiciones del producto generado. Adicionalmente, se consideran factores como la documentación, la infraestructura y la gestión, junto con el planteamiento de protocolos, la implementación de buenas prácticas de manifactura, el análisis de peligros, el establecimiento de límites críticos, el entrenamiento del personal y la identificación de oportunidades de mejora. Estas acciones buscan generar impactos perdurables en la calidad de vida de los cacaocultores del Huila, a través del fortalecimiento de las actividades realizadas en lso centros de acopio del departamento.

Este trabajo de grado se desarrolló en el marco de la actividad 6: "Establecimiento de prácticas de manejo postcosecha con potencial para mejorar la calidad sensorial del cacao, adaptadas a centrales de beneficio en el departamento del Huila" del objetivo 3 "Evaluar y validar prácticas de manejo postcosecha con potencial de mejorar la calidad organoléptica" del proyecto BPIN 2021000100166 financiado a través del sistema general de regalías, denominado "Desarrollo y validación de tecnologías de manejo integrado del cultivo y agroindustria para incrementar la competitividad y sostenibilidad del sistema productivo de cacao en los municipios de Campoalegre, Gigante, Rivera y Algeciras en el Huila" cuyo ejecutor es la Corporación Colombiana de Investigación Agropecuaria AGROSAVIA en cooperación con la Gobernación del Huila, Universidad Surcolombiana (USCO) y el Servicio Nacional de Aprendizaje (SENA).

2. ASPECTOS DE LA PROBLEMÁTICA

El cacao colombiano posee potencial de mercado por sus características de fino y aroma, también denominado especialidad según lo establecido por Proexport Colombia (2012), no obstante, se requiere del cumplimiento de requerimientos físicos como mínimo según los estándares del cliente o tomando como referencia la norma técnica colombiana 1252 de 2021. Esto se representa en la continuidad de compra y apertura a nuevas líneas comerciales (Aguilar, 2016) que en la actualidad según Briceño (2016) para el departamento del Huila se han visto limitadas debido a falencias tecnológicas que conllevan a la deficiente estandarización de sus procesos y control de variables que orienten hacia un cacao seco en grano con estándares de calidad "Premium" con retribución en precio y que derive en el mejoramiento de las condiciones de vida de los productores huilenses (Carrión-Astudillo et al., 2021).

Con la finalidad de disminuir las falencias en la estandarización de procesos y control de variables que permitan mejorar las condiciones de producción, para el año 2015, la gobernación del Huila, dotó a 4 asociaciones del departamento con centrales de beneficio comprendidas por área de fermentación y cajones de tipo horizontal, área de secado mediante marquesina, ambos en una sola estructura con capacidad secuencial y de sistema de ruedas pivotantes, tambien, se propició un área para el almacenamiento de cacao seco en grano y que desde allí se despacharía hacia los diferentes socios comerciales. Sin embargo, esta infraestructura requería de personal entrenado que ejecutara las actividades de fermentación y secado de forma controlada y estándar, por lo cual durante los últimos años el avance fue poco significativo, pues las herramientas documentales y de apoyo con las que se contaban eran pocas, en términos de seguimiento y registro de actividades que permitieran tomar decisiones tanto preventivas como de acción correctiva considerado como propuesta empresarial por la cámara de comercio del Huila (2024).

Durante el último quinquenio en vista de los requerimientos de la industria por poseer información de cada lote de producción generado; se estableció en las centrales de beneficio un registro básico de trazabilidad, pero que requería ser potenciado para dar respuesta a las necesidades del cliente. Esto permitió tener acceso canales de exportación, sin embargo, esta participación sigue siendo incipiente con relación a otras regiones del país; a pesar de contar con la ventaja competitiva correspondiente a bajos niveles de cadmio (Muñoz-Álvarez, 2021) considerado como el factor de calidad con mayor exigencia de cumplimiento para realizar transacciones comerciales en mercados internacionales como el europeo, que a su vez está dispuesto a compensar económicamente. abarcando desde altos volúmenes, hasta micro lotes que destaquen por sus características de especialidad (Cámara de comercio del Huila, 2018).

En razón a lo anterior, y con el propósito de generar una herramienta sólida, pertinente y con capacidad de aplicación práctica según las condiciones específicas de cada establecimiento, la Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, en articulación con la Universidad Surcolombiana y el SENA, mediante financiación del sistema general de regalías de la gobernación del Huila, desarrollaron esta iniciativa, cuyos beneficiarios directos son cuatro asociaciones de cacaocultores, quienes fortalecerán sus capacidades técnicas y productivas a partir de los resultados obtenidos. Para ello, y en el

marco del objetivo 3, actividad 6 del proyecto BPIN 2021000100166, se estableció un sistema de aseguramiento de calidad basado en el enfoque de análisis de puntos críticos. Esta acción fue ejecutada por el autor, quien se encargó de diagnosticar, diseñar, liderar, capacitar y establecer las condiciones documentales y de gestión requeridas para el establecimiento de la herramienta, aplicada en las cuatro centrales de beneficio de cacao ubicadas en los municipios de Rivera, Campoalegre, Algeciras y Gigante, cada una con una capacidad de producción de 4000 kg semanales.

El proceso incluyó un estudio correlacional para evaluar la influencia del sistema sobre la calidad física, química y sensorial del grano de cacao seco, desarrollado a lo largo de 12 meses. Inicialmente, durante el primer mes, se llevó a cabo un muestreo diagnóstico o "línea base". Posteriormente, en el sexto mes, se realizó un segundo muestreo, denominado "intermedio", correspondiente a la aplicación teórico-práctica de las medidas sanitarias. Finalmente, en el doceavo mes, se efectuó el muestreo "final", orientado a evaluar la influencia integral del establecimiento y ejecución del sistema por parte del personal de cada una de las centrales de beneficio.

En la actualidad, los sistemas de calidad de este tipo se centran en la fase de transformación del cacao en chocolate y no en la fase intermedia o postcosecha como lo hizo Ramirez (2023) y Figueroa (2021). Por tanto, la investigación cobra relevancia por su aplicabilidad e impacto, así como su novedad, partiendo de referencias abordadas principalmente de la industria del chocolate con el respectivo soporte normativo. Aunque hoy en día no hay regulaciones que controlen esta actividad productiva específica de fermentación y secado de cacao, se decidió partir de la base general de directrices higiénicas mediante decretos y resoluciones derivadas de la Ley 09 de 1979 "Por la cual se dictan Medidas Sanitarias" para con ellas plantear aspectos a supervisar siendo adecuados a las condiciones de estos establecimientos y con capacidad de ser replicado a nivel nacional a futuro, restando importancia a la deficiencia tecnológica para dar un mayor enfoque hacia el aprovechamiento adecuado de los instrumentos que se poseen y que bajo la dirección de un sistema de aseguramiento se convierten en agentes que fortalecen los procesos junto con un riguroso control de calidad e inocuidad.

3. OBJETIVOS

3.1. Objetivo general.

Diseñar y establecer un sistema de aseguramiento tipo HACCP, bajo los lineamientos de análisis de peligros y puntos críticos de control basado en el diagnóstico inicial de las cuatro centrales de beneficio de cacao del departamento del Huila, como herramienta de mejora continua de la calidad e inocuidad del grano.

3.2. Objetivos específicos.

- Identificar los peligros y puntos críticos de control en las etapas de beneficio de cacao, que incidan en la calidad del grano.
- Desarrollar un plan de mejora para el cumplimiento de los requisitos técnicos y de aseguramiento de la calidad en las etapas de beneficio de cacao de las cuatro centrales.
- Evaluar la incidencia del sistema de aseguramiento en la calidad física, química y sensorial del grano producido en las cuatro centrales de beneficio de cacao del departamento del Huila.

4. MARCO TEÓRICO

4.1. Calidad

La calidad ha sido un concepto implícito en la humanidad desde la antigüedad, cuando se empezó la fabricación y prestación de bienes y servicios como intercambio comercial con un cliente o consumidor siendo hasta el Siglo XX el momento en que se incursionó en su definición hasta lo que se conoce hoy en día y sus sistemas de gestión (Lahidji y Tucker, 2016).

A lo largo de los años, diversos filósofos de la calidad han aportado sus apreciaciones sobre el concepto. Walter Shewhart, en su obra Economic Control of Quality of Manufactured Product (1931), fue uno de los primeros en establecer una definición del término "calidad", distinguiendo entre una dimensión subjetiva, asociada a las preferencias del consumidor, y otra objetiva, relacionada con las propiedades del producto, además de resaltar la importancia de la relación precio-conformidad. Posteriormente, Philip Crosby (1979) planteó la calidad correspondiente a la "conformidad con los requerimientos", destacando su carácter relativo según la percepción individual. Por su parte, Edward Deming (1988), en su libro Out of the Crisis, sostuvo que la calidad debe referirse desde el agente que la evalúa, y que el reto radica en traducir esas características en elementos medibles que permitan diseñar productos que realmente respondan a las necesidades del cliente. Esta visión es compartida por Armand Feigenbaum (1986), quien en Total Quality Control, desarrolló el concepto de control integral, considerando todos los procesos involucrados. Kaoru Ishikawa (1985), en ¿Qué es el control total de calidad? El modelo japonés, amplió el enfoque al considerar la calidad no solo en el producto final, sino en todas las fases del proceso, siempre en función de los requerimientos del cliente. Finalmente, Joseph Juran (1988), a través de su Manual de control de calidad, también contribuyó significativamente a la consolidación del concepto en la industria moderna.

Todos los anteriores autores, convergen en don factores importantes referentes a la calidad siendo que, está asociada directamente a la satisfacción del cliente y además es multidimensional, la percepción final es el resultado de un conjunto de características llevadas a cabo durante su proceso de fabricación (Hoyer y Brooke, 2001).

4.2. Sistema de gestión de calidad

El concepto calidad y demás actividades relacionadas, durante la últimas décadas han evolucionado significativamente pasando desde la inspección, control, aseguramiento hasta lo que se conoce en la actualidad como gestión total bajo el enfoque PHVA - Planear, Hacer, Verificar y Actuar (Chacón y Rugel, 2018), encaminados hacia la ventaja competitiva y participación en el mercado de modo que esta propiedad pueda ser operada, medida y evaluada en las organizaciones (Gorotiza-Vélez y Romero-Vélez, 2021); para lo cual se establecen estrategias como el diseño e implementación de sistemas de gestión siendo una herramienta para la identificación de oportunidades de mejora desde diferentes ámbitos en una organización y naturaleza de la misma (Lee, 2024), para con ellos establecer estándares y protocolos que conlleven a soluciones eficientes, con capacidad de mantenerse y mejorar continuamente, adaptado a las condiciones que el día a día presenta sin afectar la integralidad del producto o servicio y por tanto los clientes o consumidores alcancen el nivel de satisfacción esperado (Nikolaenko y Bal-Prylypko, 2020).

4.3. Análisis de peligros y puntos críticos de control APPCC / HACCP

Análisis de Peligros y puntos críticos de control / Hazard Analysis Critical Control Point presentado por primera vez en 1971 por la empresa Pillsbury como estrategia para garantizar la seguridad de los alimentos que empelaría la NASA en sus misiones espaciales, que posteriormente fue usado como base para el establecimiento de normas de higiene por parte de la entidad Food and Drugs Administration (FDA) en Estados Unidos, y que para 1993 fue incorporado al Codex Alimentarius (Torres et al., 2005), definido como una herramienta de gestión de inocuidad en el sector agroalimentario con fundamento científico de riesgos para la salud humana (Higuera, 2017), mediante el cual se identifican monitorean y controlan los peligros físicos, químicos y biológicos de un sistema productivo alimentario bajo un enfoque preventivo y sistemático (López et al., 2012); encaminado al cumplimiento de las exigencias del mercado y necesidades del cliente mediante la mejora continua y de forma articulada que conlleve a la calidad e inocuidad del producto así como a la confianza del consumidor (Apollinar & Ibañez, 2022).

Este sistema es considerado en el *Codex Alimentarius* como una herramienta clave para el aseguramiento de la calidad e inocuidad de los alimentos a nivel internacional. En el caso de Colombia, su implementación por parte de las entidades interesadas, está regulada por el Decreto 60 de 2002, expedido por el ministerio de Salud (MinSalud, 2002).

Su aplicación se basa en siete principios, los cuales son: 1. Análisis de peligros, 2. Determinación de puntos críticos de control PCC, 3. Establecimiento de límites críticos, 4. Sistema de monitoreo y vigilancia de los PCC, 5. Establecimiento de acciones correctivas, 6. Comprobación del sistema, 7. Establecimiento del Sistema de documentación (FAO, 2011). No obstante, previo a este desarrollo, se requiere de pre-requisitos que darán soporte al sistema HACCP, tal es el caso de: a). Creación de equipo HACCP, b). Estructura Organizacional de la empresa, c). Planos y flujo de proceso, d). Descripción del producto o ficha técnica, e). Diagrama de flujo del producto, f). Programas para las buenas prácticas de manufactura: capacitación, mantenimiento, calibración, saneamiento, proveedores y trazabilidad (Palga-Mejía, 2022), siendo estos últimos, establecidos en Colombia por la Resolución 2674 de 2013 (MinSalud, 2013).

4.4. Cacao

Theobroma Cacao L. conocido comúnmente como cacao, es un cultivo tropical con origen en américa (Véase figura 1), con registros de su cultivo desde tiempos prehispánicos. A partir de sus semillas o granos, luego de un proceso bioquímico y de transformación, se obtienen productos con valor agregado, siendo de mayor relevancia, el chocolate (Batista, 2009). Este fruto se caracteriza por su alto contenido de grasa, carbohidratos, proteínas que destacan un importante aporte energético. (Perea et al., 2011).

En su proceso productivo, desde el cultivo a nivel mundial se ha clasificado tres *variedades* conocidas como Criollo, Forastero y Trinitario cada uno con características diferenciadas en el fruto como resistencia a plagas y perfil de sabor; a partir de estas, se ha realizado mejoramiento genético y reproductivo dando paso a variedades hibridas, pero también a clones, encaminados a la resistencia a enfermedades, mayor producción y generación de perfiles sensoriales especiales (Zambrano, 2017).

Figura 2. Árboles y frutos de cacao en cultivo.

La **fermentación** de la semillas o comúnmente llamado "granos" del fruto del cacao, es un proceso mediante el cual interactúan los azúcares presentes en el mucilago del fruto bajo condiciones anaerobias junto con levaduras y bacterias acido lácticas que degradan estos compuestos para generar ácidos y alcoholes, que a su vez sirven de sustrato para bacterias acido acéticas; generando un cambios físicos y bioquímicos en el cotiledón (López-Hernández y Criollo-Nuñez, 2022), causando la inhibición de crecimiento del embrión, degradación del mucilago y cambio en la coloración interna debido a la generación de otros compuestos de aroma y sabor que dan una mayor expresión de atributos sensoriales (Ramirez et al., 2024). Este proceso puede ser realizado en cajones horizontales, cajón circular rotatorio, cajones tipo escalera, en bolsa y otros, como se detalla en la figura 2, de acuerdo con la capacidad, necesidad del productor y en concordancia con el mercado (Calderón et al., 2022).

Figura 2.Fermentadores de cacao tipo horizontal y rotatorio.

El **secado**, es la fase en la que a través del uso de energía se retira, parcialmente, contenido de humedad hasta alcanzar un 7%, cantidad considerada segura para evitar la proliferación de microorganismos, para ello, existen diversos métodos como es secado solar, ilustrado en la figura 3, siendo ampliamente usado, tanto en plancha, marquesinas, túneles, secador artificial y demás de acuerdo con los recursos disponibles o las necesidades del cliente. En esta fase, además de retirar agua, se liberan en baja proporción acido orgánicos generados durante la fermentación (Erazo et al., 2023).

Figura 3.Secadores de cacao tipo marquesina estático y de bandejas extraíbles.

El *almacenamiento* de estos granos de cacao seco, se realiza en áreas protegidas de flujos de aire, temperatura y humedad controladas de modo que el cacao se estabilice con el medio, y con ellos poder mantenerse durante meses sin desmejorar su calidad (Andrade-Almeida et al., 2019), al ser un producto con finalidad alimenticia o de uso humano, se deben garantizar las condiciones de higiene e inocuidad respectivas, su envasado es realizado en la industria comúnmente en costales de yute, de primer uso; a partir de esta actividad, el cacao es distribuido a las diferentes entidades que realizan el aprovechamiento agroindustrial, comercialización y generación de valor agregado (Foster et al., 2024).

Referente al *uso* del cacao en la industria, debido a sus compuestos nutricionales, así como sus propiedades metabólicas, es empleado en el sector alimentario como alimentos sea chocolate de mesa o chocolatería fina, además es ingrediente para diversidad de recetas y productos alrededor del mundo (Fideles et al., 2023), no obstante, la industria cosmética también es un gran consumidor de ella, siendo la grasa el compuesto de mayor interés como base para maquillaje, cremas hidratantes, entre otros (Singh et al., 2020). La industria farmacéutica se interesa por sus compuestos activos como los polifenoles a los cuales se adjudica propiedades antioxidantes y por tanto antienvejecimiento (Kandar et al., 2024); otros sectores en los que se emplea en la industria de bebidas, así como en la agroindustria no alimentaria para aprovechamiento de subproductos como la cáscara y la cascarilla (Posso et al., 2024 y Dewan et al, 2024).

Como entidades regulatorias a nivel mundial y Nacional se destacan la ICCO Organización internacional del cacao, COEX – Cacao de la excelencia, siendo estas instituciones las pioneras y líderes de desarrollo de cacao desde sus diferentes acciones. Para el caso de Colombia, se encuentra liderada por la federación nacional de cacaoteros FEDECACAO, La red cacaotera nacional, así como la corporación de investigación AGROSAVIA.

5. METODOLOGÍA

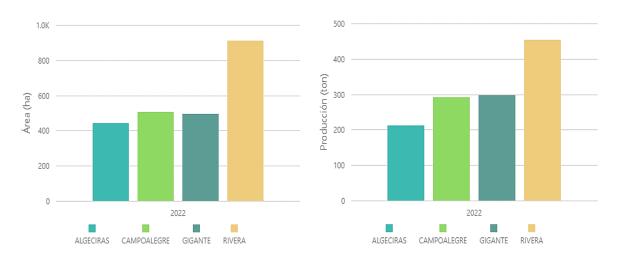
5.1. Geolocalización

La investigación se desarrolla en el departamento del Huila, ubicado al suroccidente de Colombia en la región Andina, coordenadas 01°33'09" y 03°49'32" de latitud norte 74°26'06" y 76°36'55" de longitud oeste; cuenta con una superficie de 19.890 Km², su capital es Neiva, cuenta con deferentes pisos térmicos desde bosque seco tropical, macizo, hasta nevado, su distribución política cuenta con 37 municipios de los cuales el proyecto tiene influencia en cuatro de ellos, como se puede ver en la figura 4.

Figura 4.

Ubicación geográfica del Huila y municipios de influencia del proyecto.

Nota: Adaptado de [Departamento del Huila], Google Earth, 2022 (https://earth.google.com/web) y Gobernación del Huila [Municipios], 2017 (https://earth.google.com/web)


Rivera: Ubicado a 686 metros sobre el nivel del mar, con una superficie de 435 Km² latitud: 2° 46′ 38″ Norte, Longitud: 75° 15′ 19″ Oeste, ubicado en dos regiones geográficas, una es montañosa que pertenece a la cordillera central y la otra plana debido al valle del rio magdalena; presenta pisos térmicos desde cálidos a frío con temperatura promedio de 25°C (Alcaldía de Rivera, 2024), cuenta con 911,14 hectáreas de área sembrada de cultivo de cacao y una producción del grano de 453,07 toneladas (Agronet, 2022).

Campoalegre: Municipio ubicado a 666 metros sobre el nivel del mar, su superficie está comprendida por 661 Km² Latitud: 2° 41′ 12″ Norte, Longitud: 75° 19′ 32″ Oeste, el territorio está delimitado por el occidente por el río Magdalena, la cordillera central al oriente y la quebrada Rivera y Macosito al norte y sur respectivamente, su clima varía dependiendo la zona siendo desde cálido hasta frío, temperatura promedio de 27°C (Alcaldía de Campoalegre, 2024). Respecto al cultivo de cacao reporta un área sembrada de 506,23 hectáreas con una producción de 291,74 toneladas (Agronet, 2022).

Algeciras: Se localiza en a 955 metros sobre el nivel del mar, con una extensión de 672 Km², Latitud: 2° 31′ 19″ Norte, Longitud: 75° 18′ 52″ Oeste, su economía se basa en la explotación agrícola de café, cacao y hortalizas principalmente, se enmarca entre la cordillera oriental con limitación con el departamento del Caquetá, su temperatura promedio oscila entre los 20 y 22°C (Alcaldía de Algeciras, 2024). En extensión de cultivo de cacao, cuenta con 442,5 hectáreas y su producción es de 211,25 toneladas (Agronet, 2022).

Gigante: municipio localizado a una altura sobre el nivel del mar de 794 metros, con un área de superficie, correspondiente a 561 Km², cuyas coordenadas son Latitud: 2° 23' 12" Norte, Longitud: 75° 32' 46" Oeste, se encuentra entre la Cordillera Occidental y el Cerro Matambo, a orillas del río Magdalena, su clima es tropical cálido con un promedio de 24°C (Alcaldía de Gigante, 2024), posee un área sembrada de cultivo de cacao correspondiente a 495, 45 hectáreas, obedeciendo a una producción de 297,27 toneladas (Agronet, 2022), como se evidencia en la figura 5.

Figura 5. Área sembrada y producción por municipio - 2022

Nota: Tomados de [Estadísticas Agrícolas. Reporte: Área y producción municipal en el departamento por Cultivo]. AGRONET, 2024 (https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=4).

5.2. Centrales de beneficio

Para el desarrollo de la investigación, se trabajó con cuatro centros de acopio conocidos como *centrales de beneficio de cacao*, cada una es administrada por asociaciones de cacaocultores de su respectiva jurisdicción. Éstas, compran cacao tanto fresco como seco, a sus miembros, obteniendo beneficios no solo de tipo económico, sino también en materia de construcción comunitaria mediante la participación activa en proyectos públicos y privados; iniciativas que han generado repercusiones positivas y directas en sus cultivos, al proporcionar herramientas de desarrollo, fomentar el fortalecimiento de capacidades, potenciar la producción y promover ventajas competitivas que contribuyen al mejoramiento de la calidad de vida de los productores.

orientados a fortalecer lo antes descrito, se suscribieron acuerdos con los representantes de estos establecimientos de postcosecha de cacao; proponiendo términos de trabajo conjunto y beneficios finales relacionados con la estandarización de procesos, capacitación o entrenamiento y el mejoramiento de la calidad del grano. Esta articulación ase consolidó a través de la Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, aliados y las centrales que se describen a continuación:

 Central de beneficio de cacao - Rivera: Administrada por la asociación de productores cacao del municipio de Rivera (ASOPROCAR), con ubicación geográfica 2° 48′ 04″ N 75° 17′ 57″ W, Ilustrada en la Figura 6.

Figura 6.

Central de beneficio – Rivera

 Central de beneficio de cacao - Campoalegre: Administrada por la asociación de pequeños productores de cacao del municipio de Campoalegre (ASOPECA), ubicación geográfica 2° 41' 29" N 75° 18' 58" W. como se observa en la Figura 7.

Figura 7.

Central de beneficio - Campoalegre

 Central de beneficio de cacao - Algeciras: Administrada por la asociación de productores de cacao del municipio de Algeciras (APROCALG), con ubicación geográfica 2° 31' 11" N 75° 19' 39" W (Véase Figura 8).

Figura 8.

Central de beneficio - Algeciras.

• Central de beneficio de cacao - Gigante: Administrada por la asociación de productores de cacao del municipio de Gigante (ASOCAGIGANTE), ubicación geográfica 2° 23' 12" N 75° 31' 34" W, tal como se presenta en la Figura 9.

Figura 9.

Central de beneficio - Gigante.

5.3. Diagnóstico y Seguimiento

En el sector manufacturero, incluyendo la industria alimentaria, se han creado diversos sistemas destinados a garantizar la calidad de productos o servicios (Barbancho-Maya y López-Toro, 2022). Estos sistemas cubren áreas como las propiedades físicas, químicas, sensoriales y microbiológicas del producto (Mihafu et al., 2020). A nivel internacional, los estándares de la Organización Internacional de Normalización (ISO, por sus siglas en inglés) son de los más reconocidos, especialmente la ISO 9000:2015 e ISO 9001:2015, claves en la manufactura, que han mejorado la satisfacción del consumidor (Shende et al., 2022; Husseini et al., 2018). Estos estándares también sientan las bases para otros enfoques en temas ambientales, de seguridad laboral y de inocuidad alimentaria, destacando la ISO 22000:2018 para la seguridad de los alimentos. En el ámbito agroalimentario, también se destacan las Buenas Prácticas de Manufactura (BPM), que

estipulan requisitos higiénicos para los establecimientos de alimentos (Szczyrba y Dziuba, 2023), y el sistema de Análisis de Peligros y Puntos Críticos de Control (HACCP), que adopta un enfoque preventivo con acciones correctivas inmediatas ante cualquier desviación (Awuchi, 2023).

A nivel global, el sector cacaotero busca mejorar las condiciones de calidad para poder competir en mercados internacionales (Portilla, 2020). Los productores deben orientar sus procesos hacia la estandarización y cumplimiento de normativas nacionales e internacionales (Fonseca et al., 2011). En Colombia, uno de los principales productores de cacao, se han firmado acuerdos internacionales, como el de Ginebra en 2010, ratificado por la Ley 2163 de 2021. Asimismo, existen normativas como la Resolución 1511 de 2011 para chocolates, aunque, hasta 2021, no había regulaciones específicas para la postcosecha (fermentación, secado, almacenamiento). Para solucionar esto, el ICONTEC implementó la Norma Técnica Colombiana 1252:2021, que clasifica el cacao en tres categorías: corriente, estándar y Premium/especial. La Resolución 2674 de 2013 (MinSalud, 2013) también establece pautas generales de higiene para las fábricas de alimentos.

El proceso postcosecha del cacao no cuenta con una regulación directa, por lo que las prácticas se basan en guías de centros de investigación nacionales e internacionales (Perez y Contreras, 2017). Las fases de fermentación y secado se realizan generalmente en fincas, y el grano resultante se comercializa como materia prima para fábricas que elaboran productos intermedios y chocolate (Rodríguez et al., 2020). En Colombia, la asociatividad regional ha permitido que, en el Huila, desde 2015, se establezcan centros de acopio gestionados por cooperativas de cacaocultores, los cuales realizan fermentación, secado y almacenamiento a mayor escala (Gobernación del Huila, 2015). Sin embargo, aún es necesario estandarizar técnicas para garantizar la calidad del grano y facilitar su acceso a mercados internacionales (Penagos, 2019). Como respuesta a esta necesidad, AGROSAVIA, en colaboración con la Universidad Surcolombiana (USCO) y el SENA, ha desarrollado un sistema de aseguramiento de calidad, basado en la identificación de puntos críticos de control, adaptado a las condiciones de los centros de acopio (Yacomelo-Hernández et al., 2021). Este sistema ha sido respaldado por entidades clave como Fedecacao y la Red Cacaotera, que también financian proyectos de mejora de los cultivos y calidad del fruto (Cerón et al., 2020).

Dado que aún no existía una herramienta diagnóstica adaptada a las condiciones de los centros de beneficio comunitario de cacao que evalúe las condiciones iniciales y permita un plan de mejora continuo, es crucial desarrollar y validar una herramienta que impulse la implementación de sistemas de aseguramiento de la calidad. Este instrumento debe estar orientado a la identificación de peligros y puntos críticos de control para asegurar la producción estandarizada de cacao desde su postcosecha. Para la creación de la herramienta se adoptó la metodología GHYCAL, propuesta por Castro y Ramírez (2009) y Gutierrez et al. (2010), replicada posteriormente por Osorio y Sánchez (2012) abordada tambien por Siancas y Quiñones (2015).

Esta metodología se compone de diferentes etapas que para el objeto de estudio se agrupó en siete, siendo estas: Vigilancia científica, establecimiento de la línea base, desarrollo preliminar, validación, consolidación y aprobación, aplicación, y finalmente, la estimación de la confiabilidad.

Como parte de la vigilancia científica, y en concordancia con las propuestas de Van der Spiegel (2003), los sistemas de aseguramiento deben adaptarse a las particularidades de la actividad productiva. Por ello, para el diseño de la herramienta evaluativa y de inspección, se realizó una búsqueda exhaustiva de información relacionada con la temática que sirviera como base para su diseño y gestión, enfocándose específicamente en las centrales de beneficio de cacao. Esta búsqueda incluyó investigaciones y aplicaciones previas encontradas en bases de datos como SCOPUS, ScienceDirect y Google Scholar, así como normatividad sanitaria vigente en Colombia, tanto de entidades gubernamentales como privadas.

Tras la revisión de la literatura y la identificación de estrategias, se concluyó que, aunque en países como Perú (Sánchez-Cardozo, 2019) se han desarrollado estudios previos, las condiciones tecnológicas y normativas difieren. Por lo tanto, se identificó la necesidad de desarrollar un instrumento de evaluación adaptado a los requisitos sanitarios de las centrales de beneficio del departamento del Huila, tomando como referencia información relevante del sector cacaotero, para así realizar un abordaje adecuado a las características de estas instalaciones y sus actividades.

A partir de la información secundaria obtenida, se elaboró una versión preliminar del instrumento en formato de lista de verificación, que incluyó 47 ítems cubriendo aspectos como infraestructura, saneamiento, capacitación y personal, entre otros (Arispe y Tapia, 2007). Se utilizó una escala de tipo Likert de 5 puntos, similar a la empleada por Canto de Gante et al. (2020), como se detalla en la Tabla 1.

En la siguiente fase, se llevó a cabo la validación del instrumento a través del método Delphi, lo que permitió identificar indicadores clave para evaluar el desempeño, así como verificar la aplicabilidad e idoneidad del mismo, siguiendo los lineamientos de Van der Spiegel et al. (2005). Para este proceso, se contó con la participación de 9 expertos vinculados a la cadena productiva del cacao, abarcando desde las fases de cosecha y postcosecha, hasta la transformación, control de calidad y mercado. Estos expertos evaluaron tanto el instrumento en su conjunto como cada uno de los criterios individuales.

Con la retroalimentación obtenida del panel de expertos, se procedió a la consolidación final del instrumento. Una vez aprobado, se aplicó en las cuatro centrales del departamento durante las fases de diagnóstico intermedio y final. Para evaluar la confiabilidad de los resultados obtenidos, se calculó el alfa de Cronbach, utilizando la ecuación 1 (Contreras-Espinoza y Novoa-Muñoz, 2018).

$$\propto = \left[\frac{k}{k-1}\right] \cdot \left[1 - \frac{\sum s_i^2}{\sum s_t^2}\right]$$
 Ecuación 1.

Donde:

 $s_i^2 = \text{La suma de varianzas de cada ítem.}$

 $s_t^2 = La$ varianza del puntaje total de los jueces.

k = número de ítems.

Tabla 1.Escala de calificación para la herramienta de inspección.

Puntaje	Cumplimiento	Descripción
4	Satisfactorio	La Central cumple a satisfacción la totalidad del criterio evaluado, tanto documentado como de ejecución e implementación.
3	Importante	La Central cumple en mayor medida el criterio, ejecución satisfactoria, sin embargo, presenta oportunidades de mejora respecto a la documentación y actualización de la misma.
2	Medio	La Central cumple medianamente los requisitos descritos en el aspecto a evaluar, realiza la ejecución pero no cuenta con documentación de registro o viceversa.
1	Mínimo	La Central presenta cumplimiento bajo del aspecto a evaluar, realiza los procesos y no posee documentación, o posee documentación sin diligenciar.
0	Nulo	La Central no cumple ninguno de los requisitos descritos en el criterio a evaluar y puede representar un riesgo a la inocuidad del cacao, el criterio no se encuentra ni documentado ni implementado.

Nota: Esta tabla presenta las consideraciones para puntuación de criterios sanitarios.

5.4. Plan de mejora

Una vez aplicada la lista diagnóstico y emitido el cumplimiento de requisitos sanitarios por parte de cada una de las centrales, se procede a realizar el planteamiento de estrategia de mejora para los ítems con baja puntuación, para ello, se realiza un enfoque bajo 3 aspectos importantes y en los cuales se puede enmarcar las actividades, estos son: infraestructura/equipos, documentación y gestión.

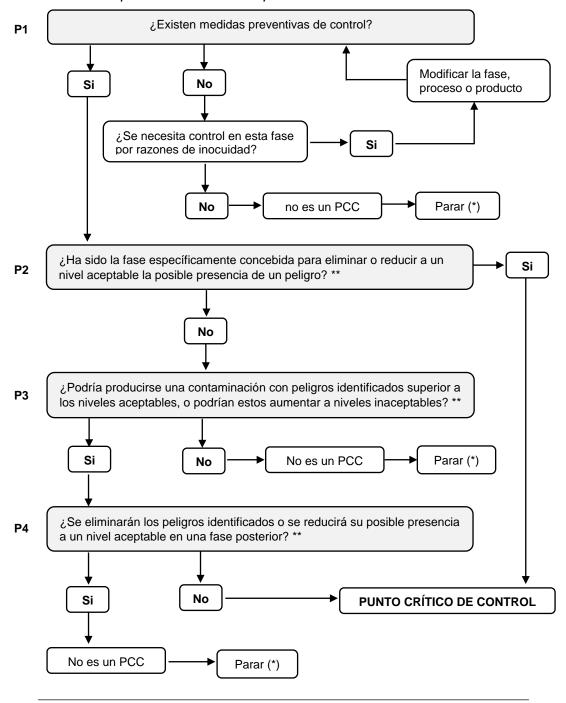
- Infraestructura / Equipos: Corresponde a la necesidad de intervención en la estructura locativa de la central de beneficio, siempre y cuando se considere de gran importancia, de lo contrario su enfoque puede ser de adecuación, respecto a equipos, estos tienen un enfoque de adquisición o modificación, de acuerdo con las observaciones.
- Documentación: Para los procesos de gestión de calidad e inocuidad, la documentación es de gran relevancia, además de brindar el soporte trazable de un producto que le permita identificar fortalezas y oportunidades de mejora, por lo tanto, es requerido en las actividades diaria de la central, en caso de no existir, se debe hacer referencia a su creación o si es el caso, modificación y ajuste.
- Gestión: Corresponde a actividades humanas a cargo de los administradores y responsables de las acciones realizadas en la central, para ello se consideran labores de limpieza, mantenimientos, Adquisición de elementos, entre otros que requieran la intervención, planificación, organización, dirección y control de recursos o actividades.

5.5. Seguimiento

Con la lista de inspección creada, se establece que se realizaran seguimientos para identificar el avance de cumplimiento durante el desarrollo de la investigación, permitiendo realizar análisis comparativo de las fases inicial, intermedia y final, así como la verificación de gestión realizada por el proyecto y su impacto desde el diagnóstico hasta la finalización.

Estos seguimientos se consideran:

- 1. **Diagnóstico:** Al iniciar el proyecto, se usa para establecer las condiciones iniciales y punto de partida, dando las bases para la intervención de la investigación, permitiendo la orientación y plan de trabajo.
- 2. *Intermedia:* Una vez se ejecuten las actividades del plan de mejora o parte de ella, se realizará la aplicación de la lista diagnóstico para identificar el grado de intervención y avance de cumplimiento.
- 3. Final: Transcurrido el periodo de ejecución del proyecto se da cierre con la aplicación del último seguimiento, mediante el cual se evaluará la injerencia de las actividades desarrolladas con el cumplimiento de requisitos sanitarios, que permita relacionar estos factores con la calidad física, química y sensorial del cacao seco en grano procesado en estos establecimientos.


5.6. Sistema de aseguramiento

Partiendo del diagnóstico, se realiza la documentación, actualización o modificación de planes, programas y formatos suficientes que den soporte a las actividades desarrolladas en la central bajo el componente de trazabilidad, para ello, se siguen los lineamientos de la Resolución 2674 de 2013, así como tambien el Decreto 60 de 2002 expedidos por el Ministerio de Salud y Protección Social. Es tomado como referencia lo propuesto por Quintero et al. (2020) donde para la construcción de los planes y programas prerrequisitos, plantean 4 planes, cada uno con programas específicos pero que convergen de modo que se brinde la garantía suficiente de inocuidad del establecimiento y el producto, así como la calidad de este. Una vez consolidado, se procede con una segunda fase comprendida por la identificación, establecimiento de límites y control de puntos crítico, de acuerdo con Sanchez-Cardozo (2019). Se identifican los puntos críticos de acuerdo con la identificación de peligros de acuerdo con lo abordado por Campoverde et al. (2022):

- Físicos: Amenazas que atenten contra la integridad del producto y del consumidor.
- Químicos: Sustancias exógenas a las naturales del producto que pueda ocasionar alteraciones en su composición y afecten la salud del consumidor.
- Biológicos: Agentes patógenos que puedan generar afecciones en el consumidor.

Se evalúa también su riesgo en el proceso, mediante la aplicación del árbol de decisión establecido en el Codex Alimentarius en su primera Recomendación del Código de Prácticas de Higiene (CAC/RCP 1-1969, Rev. 4 (2003)). Tal como se detalla en la figura 10, dicha herramienta permite, a través de cuatro preguntas, determinar si la fase evaluada puede considerarse un punto crítico de control (PCC).

Figura 10. Árbol de decisiones para identificación de puntos críticos de control.

^(*) Pasar al siguiente peligro identificado del proceso descrito.

Nota: Tomado de Código internacional de prácticas recomendado – Principios generales de higiene de los alimentos CAC/RCP 1-1969 por Food and Agriculture Organization FAO (p. 34), Rev.4-2003, (https://www.fao.org/4/w3700s/w3700s0n.htm)

^(**) lo niveles aceptables o inaceptables necesitan ser definidos teniendo en cuenta los objetivos globales cuando se identifican los PCC del plan de HACCP.

5.7. Muestreo

Según lo abordado en secciones anteriores, se realizó el seguimiento en tres momentos del proyecto, no solo referente a la aplicación de la lista de inspección de cumplimiento de requisitos sanitarios, sino también que se establece su relación con las propiedades físicas, químicas y sensoriales del grano seco de cacao procesado en cada central de beneficio de estudio, permitiendo la comparación y relación de la implementación del sistema con los atributos del cacao generado, para ello se realiza muestreo de acuerdo con la Norma Técnica Colombiana NTC 2859 (ICONTEC, 2002), Mediante el cual se brinda un enfoque sistemático que garantiza la representatividad y la calidad de las muestras, las cuales están constituidas por 2 kg de cacao fermentado y seco de cada central, del cual 1 kg será destinado al análisis físico y 1 kg a su procesamiento para obtención de masa o licor de cacao para el análisis químico y sensorial de acuerdo con la metodología propuesta.

5.8. Análisis Físico

Para la determinación del porcentaje de fermentación, siendo uno de los factores importantes y determinantes en la calidad de cacao, especialmente para acceder al mercado nacional, se requiere del cumplimiento de los parámetros establecidos en la NTC 1252 (ICONTEC, 2021), este procedimiento es realizado mediante corte con guillotina a 100 granos evaluando de forma cualitativa características como granos bien fermentados, insuficientemente fermentados, sin fermentar, mohosos, germinados, dañados por insectos y demás mencionadas en la norma (ver tabla 2), con un total de 3 repeticiones. Estos resultados se contrastan con lo establecido en la tabla 3 correspondiente a los términos de clasificación de cacao por parte de la NTC de referencia.

Tabla 2.Parámetros de evaluación física de cacao – NTC 1252:2021 ICONTEC

Característica	Ilustración
----------------	-------------

Grano bien fermentado

Causas: Cacao en grano cuyo proceso de fermentación ha sido completo.

Características:

- Almendra de cacao color marrón o chocolate.
- Alveolos bien definidos (forma arriñonada internamente).
- La cáscara se desprende fácilmente al presionarla con los dedos.

Consecuencias: Olor agradable a cacao.

Característica Ilustración

Granos insuficientemente fermentados

Causas: insuficiente tiempo de fermentación

Características: almendra de color violeta o

marrón violeta

Consecuencias: genera sabores amargos y

astringencia

Grano sin fermentar o pizarrosos

Causas: ausencia de fermentación

Características: aspecto pizarroso, estructura compacta de color interno gris oscuro o violeta

Consecuencias:

- genera sabores amargos y astringencia
- el secado es más lento lo que puede favorecer la aparición de moho

Grano con moho externo

Granos mohosos (moho interno o moho externo)

Causas:

- granos provenientes de mazorcas de cacao enfermas o secas
- almacenamiento prolongado
- deficiencia en el volteo durante el secado y capa de cacao muy gruesa
- almacenamiento de cacao en grano húmedo

Características: presencia de hongos externos e internos cuando se realiza la prueba de corte

Consecuencias:

- el moho interno puede generar efectos nocivos en la salud humana
- olor y sabor desagradable

Grano con moho interno

Característica

Ilustración

Granos germinados

Causas:

- cosecha de mazorcas de cacao sobremaduras
- desgranado tardío de las mazorcas de cacao cosechadas

Características:

- cáscara perforada
- embrión sobresaliente

Consecuencias: grano susceptible a la infestación de mohos

Grano infestado o dañado por insectos

Causas: almacenamiento prolongado y en condiciones inadecuadas

Características:

- presencia de insectos vivos en cualquiera de sus estados biológicos
- granos perforados o con alteraciones en su apariencia

Consecuencias:

- aumento en las mermas de almacenamiento
- en almacenamiento genera contaminación del cacao sano

Granos aglomerados o grano múltiple

Causas:

- no retirar la placenta al desgranar
- deficiencia en el volteo durante la fermentación y el secado
- cosechar granos de mazorcas de cacao enfermas

Características: dos o más granos pegados

Consecuencias: tostión o descascarillados

irregulares

Característica Ilustración

Impurezas o materias extrañas

Causas:

- fermentación y secado en superficies inadecuadas y sucias
- desgrane inadecuado
- granos sin pasar por tamiz o zaranda

Características: cualquier material o elemento diferente del grano de cacao entero

Consecuencias:

- bajo rendimiento industrial
- contaminación con elementos extraños

Nota: Tomado de la Norma Técnica Colombiana 1252:2021 – ICONTEC.

Tabla 3.Clasificación del cacao en gran para comercialización nacional.

Demoistre físice a marímica	Clasificación del cacao en grano			
Requisitos físicos y químicos	Premium/Especial	Estándar	Corriente	
Granos bien fermentados, en % mín.	70	65	55	
Granos insuficientemente fermentados y violetas, en % máx.	30	35	45	
Masa (peso) en g, de 100 granos	>120	95-120	<95	
Contenido de humedad, en % fracción de masa, máx.	7,0	7,5	7,5	
Tolerancias para el cacao	en grano			
Contenido de impurezas o materias extrañas, en % fracción de masa, máx.	0	0,3	0,5	
Grano con moho interno, número de granos/100 granos, máx.	1	3	5	
Grano dañado por insectos o germinados o ambos, numero de granos/100 granos, máx.	1	2	3	
Contenido de grano partido, número de granos/100 granos, máx.	1	2	5	
Contenido de almendra, en % fracción de masa, mín.	n.a.	n.a.	n.a.	
Granos sin fermentar (pizarrosos), en %, máx.	1	3	5	

n.a.: no es aplicable.

fracción de masa: fracción de la masa que se evalúa respecto a la masa total.

NOTA El término almendra se refiere al cotiledón o fragmento del cotiledón del grano de cacao.

Nota: Tomado de la Norma Técnica Colombiana 1252:2021 – ICONTEC.

5.9. Análisis Químico

5.9.1. Contenido de polifenoles totales

El método de Folin-Ciocalteu se basa en la capacidad de los fenoles para reaccionar con agentes oxidantes, específicamente con el reactivo de Folin-Ciocalteu, que contiene molibdato y tungstato sódico (Platzer et al., 2021). Este reactivo forma complejos fosfomolíbdico-fosfotúngstico que, al ser reducidos en condiciones de pH básico, producen un cromógeno de color azul intenso, proporcional al número de grupos hidroxilo presentes en los compuestos fenólicos (Franco et al., 2016). La metodología empleada en este estudio se basa en el método de Folin-Ciocalteu para la determinación de compuestos fenólicos, siguiendo las modificaciones propuestas por Sánchez-Riaño et al. (2020) y adaptadas por Sanchez-Riaño y Gutierrez-Guzmán (2023). Los compuestos fenólicos, presentes de manera abundante en el reino vegetal, incluyen flavonoides, ácidos fenólicos, taninos, lignanos y cumarinas. Químicamente, se caracterizan por contener uno o más anillos aromáticos con grupos hidroxilo, lo que les confiere propiedades antioxidantes clave (Nollet & Gutierrez-Uribe, 2018). Este análisis se lleva a cabo considerando variaciones en el orden de adición de reactivos, tiempos de incubación y mezcla, descritos por Plank et al. (2012). La señal analítica obtenida fue registrada y relacionada con la concentración de fenoles presentes en las muestras, utilizando la curva de calibración.

5.9.2. Índice de fermentación

El índice de fermentación por absorbancia en cacao es un método utilizado para medir el grado de fermentación de los granos de manera rápida y no destructiva. Se basa en la capacidad de los granos fermentados para absorber luz a una longitud de onda específica, generalmente en el rango visible (como 460 nm o 530 nm), lo que refleja cambios en la composición química del cacao, como la degradación de compuestos fenólicos y la formación de precursores de sabor. Durante la fermentación, los polifenoles se oxidan y reducen, lo que provoca un cambio en el color de los granos, que se puede cuantificar mediante la absorbancia del extracto de cacao en solución. Un índice de fermentación más alto indica una fermentación más completa y la reducción de compuestos fenólicos, lo que mejora la calidad sensorial del cacao, especialmente en términos de sabor y aroma, esenciales para la producción de chocolate de alta calidad. Este método ofrece una evaluación objetiva del proceso de fermentación, permitiendo una correlación entre el nivel de fermentación y la calidad final de los granos, complementando o reemplazando métodos tradicionales más subjetivos, como la inspección visual de los granos partidos.

El método empleado para la determinación del índice de fermentación fue el abordado por Garcia et al. (2019) quienes a partir del propuesto de Gourieva y Tserrevitinov en 1979 se realizó modificaciones que se adaptaran a las condiciones de la matriz "cacao" aplicando secado, molido, extracción con 50 ml Metanol:HCl (97:3) a 0,1 g de la muestra, refrigeración por 20 horas, filtración a vacío y lectura mediante espectrofotómetro (Espectrofotómetro visible GENESYS 140 - ThermoScientific) a 460 y 530 nm de absorbancia, estimando el índice de fermentación por relación entre lecturas según la ecuación 2.

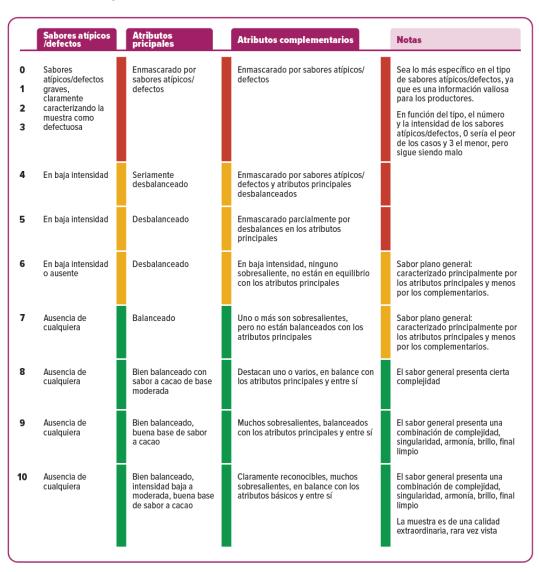
$$IF = \frac{Abs_{460}}{Abs_{530}}$$
 Ecuación 2.

5.10. Análisis Sensorial

La metodología de análisis sensorial, se rige bajo la norma estándar internacional 6658 (ISO, 2017) y la NTC 3929 (ICONTEC, 2009) complementado por el protocolo Cacao de Excelencia (COEX, 2024) haciendo una evaluación discriminativa-descriptiva de aroma y sabor, que de acuerdo con la rueda de sabor (Véase figura 11) se da una valoración a la intensidad de los atributos tanto principales como complementarios y posteriormente una descripción general de la muestra; Este análisis fue realizado por un panel de 7 expertos entrenados en la metodología bajo condiciones estandarizadas garantizando consistencia en los resultados y empleando una escala de valoración incremental de 0 a 10 de acuerdo con la característica y una calificación de calidad global ajustada a las condiciones de equilibrio de sabores de la muestra correspondientes a sabores básicos en esta matriz: Cacao, Amargor, Acidez, Astringencia y Tostión, además de expresión de sabores complementarios como: Fruta Fresca, Fruta marrón, Vegetal, Floral, Madera, especia, nuez además de un compendio de posibles sabores atípicos también denominados "Defectos" que se pueden dar durante por prácticas no apropiadas en el proceso de cosecha y postcosecha del fruto conforme a lo representado en la figura 12.

Figura 11.

Rueda de sabor de cacao y chocolate COEX.



Nota: Tomado de Rueda de sabores del cacao de excelencia, 2024. (https://www.cacaoofexcellence.org).

Cacao de Excelencia es una plataforma mundial mediante el cual se evalúa la calidad sensorial de cacao de diferentes orígenes a nivel internacional expresada mediante intensidad de sabor y balance del mismo, para lo cual, se ha emitido un procedimiento estándar de preparación de muestras, procedimiento y reporte de resultados de catación de licor o masa de cacao y chocolate con la finalidad de ser replicado y empleado como lineamiento base para este tipo de análisis (COEX, 2023).

La rueda de sabor está encaminada a la valoración de la percepción de atributos principales y complementarios de acuerdo con la intensidad percibida por cada miembro del panel, mediante la media aritmética se define el perfil sensorial de la muestra expresándose mediante un gráfico radial acompañado de la descripción técnica.

Figura 12.
Escala de calificación global de cacao – COEX.

Nota: Tomado de la Guía para la evaluación de la calidad y el sabor del cacao, 2024. (https://www.cacaoofexcellence.org).

5.11. Procesamiento estadístico

A fin de determinar la influencia del sistema de aseguramiento frente a la calidad física, química y sensorial del cacao en grano producido en las centrales, se realiza la tabulación e interpretación mediante el procesamiento de datos y análisis estadístico descriptivo paramétrico relacionando variables cuantitativas, obtenidas a partir del desarrollo de la investigación y en los tres seguimientos realizados respecto las variables consideradas como determinantes en el cacao en grano. Se estima su relación a través análisis multivariado que conlleven a la determinación de aceptación o rechazo de la hipótesis planteada inicialmente: La aplicación de un sistema de aseguramiento tipo HACCP basado en el análisis de peligros y puntos críticos de control en las 4 centrales de beneficio de cacao del Huila, mejora la calidad física, química y sensorial del grano seco.

Adicionalmente, la información relacionada con la calidad física, química y sensorial de los muestreos de cacao seco de las cuatro centrales de beneficio durante los tres seguimientos, se analizan mediante un análisis de varianza por ANOVA simple y pruebas de comparación múltiple de Tukey al nivel α = 0.05, en el software estadístico Statgraphics Centurion XVI versión 16.1.03. Finalmente, para la identificación de correlación entre variables sensoriales con los físicos y químicos por cada seguimiento realizado, mediante el Software XLSTAT SENSORY se realizó un análisis de componentes principales identificando los conjuntos de datos multidimensionales con variables cuantitativas y de este modo establecer la relación entre los resultados obtenidos del estudio.

6. RESULTADOS

6.1. Diagnóstico

El diseño de una lista de inspección para la identificación de cumplimiento de requisitos sanitarios en centrales de beneficio de cacao implicó las siguientes fases presentadas en la figura 13:

Figura 13.

Proceso de estructuración y validación de lista diagnóstico.

Vigilancia y establecimiento de línea base: Durante la recopilación y selección de información relacionada con la línea base, los autores decidieron utilizar como punto de partida la "lista de chequeo para el seguimiento y control en la cosecha de cacao", presentada por la Red Cacaotera (s.f.). Esta lista está dirigida a productores y personal de centros de beneficio y acopio, y está conformada por 6 actividades, 9 sub actividades y 63 ítems, relacionados con labores de cosecha y postcosecha. Dado que las centrales de beneficio solo llevan a cabo actividades de fermentación, secado y almacenamiento, se priorizaron estos criterios y se complementaron con los requisitos de la Resolución 2674 de 2013 (MinSalud, 2013), adaptados a las condiciones de estos centros de acopio. Como apoyo adicional, se empleó el modelo GHYCAL (Gestión de la Higiene y la Calidad), propuesto por Castro y Ramírez (2009), con el objetivo de asegurar la calidad del producto sin alterar significativamente la estructura y diseño de las áreas. También se tomó en cuenta la Resolución 082394 de 2020 del Instituto Colombiano Agropecuario, que incluye el "Anexo 1 - Lista de chequeo para la certificación de Buenas Prácticas". Esto permitió cuantificar el impacto en la calidad del cacao, ya que no se identificó un instrumento que se aplicara directamente a este tipo de establecimientos.

Desarrollo preliminar y validación: Con la información recopilada, se desarrollaron criterios preliminares, los cuales fueron evaluados por un panel de 9 expertos Tabla 4. Estos expertos proporcionaron retroalimentación y recomendaciones para mejorar la efectividad del instrumento. En la primera sesión Delphi, 28 de los 47 ítems originales fueron aprobados, con la recomendación de agruparlos en 4 categorías principales, en función de la naturaleza de los criterios y su relación con los factores de aseguramiento de la calidad. También se sugirió dividir tres ítems debido a su extenso contenido para facilitar su comprensión y evaluación. Los ajustes propuestos se implementaron y, además, se recomendó un sistema de puntuación total de 100 para evitar confusiones, ya que la escala inicial sumaba hasta 200 puntos.

Tabla 4.Panel de expertos evaluadores de la lista de inspección.

N°	Experto	Área de desarrollo		
1	Andrea Elinor Lara Sanchez	Ingeniera de alimentos, especialista en sistemas de calidad e inocuidad HACCP y estándares GFSI - Universidad Surcolombiana.		
2	Miguel Ángel Perez Beltrán	Especialista en el sector agrícola sostenible, áreas de producción, transformación y comercialización de cacao - Intisuperfoods.		
3	David Saavedra Mora	Ingeniero Agroecólogo, Magister en Agroforestería, Investigador en sistemas productivos agrícolas - Corporación Universitaria del Huila CORHUILA.		
4	Claudia Mercedes Ordoñez Espinosa	Ingeniera Agropecuaria, PhD en Ciencias - Biología, Investigadora en ciencia y tecnología agroalimentaria, Servicio Nacional de Aprendizaje (Regional Huila).		
5	Maria Luisa Ruiz Calderón	Ingeniero en Industrias Alimentarias, Magister en Administración de Empresas. Magister en Nutrición, Lima - Perú.		
6	Nubia Martinez Guerrero	Ingeniera agrónoma Especialista en genética y calidad de cacao, MSc. Ciencias Agrarias, doctorando en Ciencia de los Alimentos en la Universidad Nacional Agraria La Molina, Perú.		
7	Leidy Machado Cuellar	Ingeniera Agroecóloga, Magíster en Agroforestería, investigadora en producción, cosecha, postcosecha y calidad de cacao - Servicio Nacional de Aprendizaje (Regional Huila).		
8	Valentín Murcia Torrejano	Agrónomo, Investigador en procesos de investigación de cultivos de importancia agrícola del Huila (cacao y arroz) - Servicio Nacional de Aprendizaje (Regional Huila).		
9	Kathryn Yadira Guzman Pacheco	Ingeniera Agroindustrial, Especialista en sistemas de gestión, investigadora en cacao y aprovechamiento de subproductos - Servicio Nacional de aprendizaje (Regional Huila).		

Consolidación y aprobación: Después de incorporar todas las sugerencias de los expertos, se desarrolló la herramienta final en formato de lista de inspección, compuesta por 50 ítems distribuidos en 4 categorías. Cada puntaje parcial se fraccionaba para relacionar su valor con el porcentaje de cumplimiento. Los ítems intervenidos y aprobados durante la última sesión incluían ajustes en el título, cambios semánticos y de redacción en varios criterios, y la adición de nuevos ítems como el 1.5, 2.9 y 3.18. Se realizó modificación gramatical que permitiera una mayor comprensión e integración de los criterios 1.3, 1.4, 1.7, 1.9, 1.10, 2.1, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 3.1, 3.17, 4.1, 4.3, 4.4, 4.5, 4.6. Además, se incluyó un gráfico de barras que muestra el avance en cada área evaluada y el porcentaje de cumplimiento general. La herramienta fue aprobada por los expertos, quienes destacaron su relevancia a nivel nacional para mejorar los centros de acopio de cacao, a continuación, se presenta la versión final de la herramienta:

AGROSAVIA Corporación colombiana de investigación agropecuaria	Evaluación de Centrales o
Realizado po	r: Jean Carlo Quintero Garcia
	Dato
Ciudad / Depto.	
Central de beneficio	
Representante Legal	
Asociaciones vinculadas	
N° de Empleados	

Evaluación de requisitos sanitarios en Centrales de beneficio de cacao

Cód: ASC_D01 Versión: 01 Fecha: Septiembre / 2023 Aprobado por: Jenifer Criollo Nuñez

Datos del establecimiento			
Ciudad / Depto.		Fecha	
Central de beneficio		Dirección	
Representante Legal		Teléfono	
Asociaciones vinculadas			
N° de Empleados		Capacidad Semanal	

Requerimiento de Inspección			
Empresa / Representante Legal		Teléfono	
Dirección		Correo	

Objeto de la Inspección:			

Profesional evaluador			
Nombre		Profesión	
Cédula		Tarj. Profesional	
Teléfono		Correo	

	Escala de evaluación				
Puntaje	ntaje Cumplimiento Descripción				
4	Satisfactorio	La Central cumple a satisfacción la totalidad del criterio evaluado, tanto documentado como de ejecución e implementación.			
3 Importante La Central cumple en mayor medida el criterio, ejecución satisfactoria, sin embargo presenta oportunidades de mejora respecto a la documentación y actualización de la misma.					
2	Medio	La Central cumple medianamente los requisitos descritos en el aspecto a evaluar, realiza la ejecución pero no cuenta con documentación de registro o viceversa.			
1	Mínimo	La Central presenta cumplimiento bajo del aspecto a evaluar, realiza los procesos y no posee documentación, o posee documentación sin diligenciar.			
0	Nulo	La Central no cumple ninguno de los requisitos descritos en el criterio a evaluar y puede representar un riesgo a la inocuidad del cacao, el criterio no se encuentra ni documentado ni			

PMX: Puntaje máximo posible

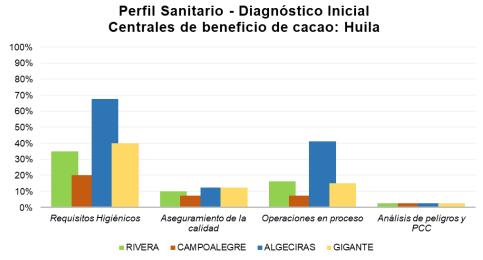
PMO: Puntaje máximo obtenido

ítem	Criterio	Evaluación			
			20	Observaciones	
1.	Requisitos Higiénicos	PMP: PMO:	0		
	La central de beneficio se encuentra localizada en una zona alejado de				
1.1	focos de insalubridad y no representa riesgo para la comunidad.				
	Los accesos y alrededores de la central de beneficio, se encuentran limpios				
1.2	y libre de estancamiento de agua y acumulaciones de residuos solidos.				
	El diseño de la central de beneficio brinda protección del producto en todas				
	sus fases (recepción, fermentación, secado, almacenamiento), evitando				
1.3	corrientes de aire, cambios abruptos de temperatura, lluvias, ingreso de				
	animales o personal no autorizado.				
	El diseño de la central de beneficio presenta una secuencia y tamaño				
1.4	adecuado para realizar las operaciones según su capacidad y permite la				
	circulación fluida de materia prima, cacao seco y personal.				
1.5	Las áreas de la central de beneficio están delimitadas, separadas				
	físicamente y posee la señalización necesaria. Los pisos, paredes, techo, ventanas, puertas, cortinas, escaleras e				
1.6	iluminación brindan protección del ambiente externo, son firmes,				
	resistentes, y poseen un buen estado de limpieza y mantenimiento.				
	La central de beneficio cuenta con unidades sanitarias, lavamanos y				
1.7	vestidores en cantidad suficiente (mín. 1 por cada 15 personas),				
	completamente dotados para la higiene y aseo del personal.				
1.8	El diseño de tuberías y drenajes no genera riesgos de contaminación,				
	encontrándose debidamente identificados y protegidos.				
	El área de almacenamiento de residuos solidos o líquidos se encuentra diseñado y ubicado de modo que no representa riesgo de contaminación				
1.9	para el producto o las áreas productivas, además dispone de recipientes en				
1.5	cantidad y volumen suficiente según su capacidad de generación diaria, con				
	remoción frecuente para evitar la proliferación de plagas.				
	La central de beneficio, posee equipos, maquinaria y herramientas				
1.10	suficientes para los procesos que se realiza, a su vez están construidos en				
	materiales que evitan la contaminación. (Para 400 Kg, mínimo: 1 cajón				
2.	Aseguramiento de la calidad	PMX:	20	Observaciones	
۷.	Asegui aimento de la candad	РМО:	0	Observaciones	
	La central de beneficio ejecuta un programa de mantenimiento preventivo				
2.1	o correctivo de equipos y utensilios documentado con manuales,				
	instructivos, guías, registros y controles realizados a los mismos.				
2.2	Existe en la central de beneficio, un programa de calibración de equipos de				
	medición con sus respectivos registros de uso y calibración.				
2.3	La central de beneficio posee y aplica un programa de abastecimiento de				
	agua y registros de control de calidad de agua potable.				
2.4	La central de beneficio dispone de un programa documentado e				
	implementado para el manejo integral de residuos solidos y líquidos.				
2.5	La central de beneficio efectúa acciones preventivas mediante un programa para el control integrado de plagas y las documenta.				
	La central de beneficio efectúa actividades de limpieza y desinfección de superficies, equipos, utensilios, áreas del establecimiento, orientado				
2.6	mediante un programa escrito con sus respectivos protocolos y controles				
	para las fases de recepción, fermentación, secado y almacenamiento.				
	La central de beneficio establece e implementa un plan de capacitación al				
2.7	personal vinculado con cualquier actividad relacionada al proceso				
	productivo del cacao desarrollado en establecimiento sea de manera				
2.0	El personal manipulador de la central de beneficio, cuenta con el carné de				
2.8	manipulación de alimentos vigente.				
	El personal manipulador de la central de beneficio porta la dotación				
2.9	necesaria para su protección personal y del producto, ejecutando los				
	procesos bajo condiciones higiénicas.				
2 10	El personal manipulador de cacao en la central de beneficio se encuentra				
2.10	laborando en optimo estado de salud y de no estarlo es asignado a labores que no represente riesgo de contaminación para el cacao.				
1	Ique no represente nesgo de contaminación para el cacao.				

3.	Operaciones en proceso	PMX:	40	Observaciones
	La central de beneficio posee un programa de proveedores, donde		0	
3.1	identifica o codifica a dueños y fincas productoras para trazabilidad en sus			
3.2	Los flujos de proceso ejecutados en la central no representan riesgo de contaminación cruzada de cacao fresco con cacao seco y se realizan de forma lógica y secuencial.			
3.3	La central cuenta con un programa mediante el cual ejecuta y registra el control de variables de procesos en las fases de recepción, fermentación, secado y almacenamiento.			
3.4	Existe protocolo, cronograma, registros, criterios de aceptación y rechazo en la recepción de materia prima de la central de beneficio.			
3.5	Se monitorean las variables fisicoquímicas de peso, pH, temperatura y granos enfermos durante la recepción de cacao fresco.			
3.6	Se realiza inspección de las condiciones sanitarias del vehículo en el que se transportó el cacao fresco.			
3.7	En caso de desviación en condiciones de aceptación del cacao, la central tiene definido el protocolo de acción frente a estas situaciones.			
3.8	La central conforma lotes de producción a partir de núcleo o zona, variedad y calidad del cacao fresco. No mezcla cacao de diferentes días de recepción.			
3.9	La central tiene identificado y documentado su proceso de fermentación, así como el registro de variables fisicoquímicas durante el mismo.			
3.10	Los cajones de fermentación se encuentran en buen estado, limpios y están codificados para el seguimiento y trazabilidad del cacao.			
3.11	El material con el que se recubre la masa de cacao para fermentación, es de carácter higiénico y no representa riesgo de contaminación.			
3.12	Durante la fermentación los volteos se realizan de acuerdo con el protocolo y empleando herramienta de carácter sanitario que no represente riesgo de contaminación para el cacao.			
3.13	El personal manipulador emplea los elementos de seguridad necesarios para evitar afectaciones por la generación de vapores durante los volteos en la fermentación.			
3.14	Se realiza monitoreo de variables fisicoquímicas temperatura y pH durante cada volteo de la masa de cacao, al finalizar la fermentación se realiza prueba de corte para verificar el estado del cacao.			
3.15	La central tiene identificado y documentado su proceso de secado de cacao natural o mecánico, así como el registro de variables fisicoquímicas durante el mismo.			
3.16	Los elementos o herramientas usadas en la remoción y volteo de cacao durante el secado se encuentran en condición integra e higiénica.			
3.17	El cacao seco en grano obtenido en la central es envasado en material que no represente riesgo de contaminación y se ubica por lotes sobre estibas separado del suelo y paredes.			
3.18	La central dispone de un protocolo de almacenamiento de cacao seco en condiciones controladas, asi como registro del control de variables realizado y rotulado de los lotes.			
3.19	La central aplica un programa de trazabilidad mediante el cual identifica a sus clientes, así como el protocolo, registros de rotación, liberación o despacho, rotulado y medidas en caso de devoluciones de producto.			
3.20	La central aplica con un programa de muestreo aleatorio para el seguimiento del cacao seco en grano que se produce en el establecimiento mediante laboratorio interno u externo para el análisis físico y sensorial			
4.	Análisis de peligros y PCC	PMX: PMO:	20	Observaciones
4.1	La central posee un equipo multidisciplinario para el control de calidad del producto e identificación de puntos críticos.			
4.2	Está claramente definido y documentado el organigrama y funciones de los diferentes estamentos o roles de la central de beneficio.			
4.3	La central tiene bajo su custodia y de fácil acceso, el plano de distribución de áreas, flujo de personal y producto.			
4.4	La central documenta mediante ficha técnica de producto, el cacao que es procesado en el establecimiento.			
4.5	Se evidencia documento de diagrama de flujo de proceso del cacao seco en grano así como sus fases o etapas.			

4.6	La central tiene identificado los peligros físicos, químicos y biológicos potenciales, que presenta su proceso productivo.			
4.7	En la central se identifican los puntos críticos de control por parte de la central de beneficio.			
42	Están establecidos los límites críticos para los puntos críticos de control en la central de beneficio.			
4.9	De acuerdo con los límites críticos, la central cuenta con un procedimiento de vigilancia sensible y de rápida respuesta.			
4.10	La central de beneficio dispone de medidas correctivas en caso de desfase en uno o varios límites críticos, así como los registros las mismas.			
5.	5. Índice Global de cumplimiento		РМО	% Cumplimiento
				%

Observaciones Generales		


	Resumen Perfil Sanitario Central de Beneficio												
Ítem	Aspecto	Estado	Observaciones por Aspecto										
1.	Requisitos Higiénicos	%											
2.	Aseguramiento de la calidad	%											
3.	Operaciones en proceso	%											
4.	Análisis de peligros y PCC	%											
5.	Índice Global de cumplimiento	%											

PERFIL DE CUMPLIMIENTO 100% 80% 60% 40% 20% 0% 0% Requisitos Higiénicos Aseguramiento de la Operaciones en Análisis de peligros y calidad proceso Emitido por: Recibido por: Firma Firma Nombre del evaluador Nombre del Representante Documento: Entidad: Cargo: Cargo:

Aplicación: Con la herramienta finalizada, se procedió a su aplicación en las centrales de beneficio de cacao en los municipios de Rivera, Campoalegre, Algeciras y Gigante. Identificando el cumplimiento de estos requisitos enfocado en las 4 temáticas abordadas por la lista de inspección, dando como resultado lo siguiente:

Figura 14.

Perfil sanitario, Diagnóstico inicial centrales de beneficio de cacao Huila.

Como meta de cumplimiento se estableció cumplir con el 70% de los requisitos, puesto que el 30% restante se estima para tiempo superior al correspondiente a la investigación y dependerá de los administradores de la central de beneficio. A partir de lo anterior y analizando los resultados expresados en la figura 14, se deduce que respeto a los requisitos higiénicos y operaciones en proceso, la central de Algeciras es quien alcanzó un cumplimiento importante, cercano al 70% y 40% respectivamente lo que representaría para el proyecto, poder mantener lo presente y potencializarlo, mientas que para las demás centrales se requiere de una mayor intervención en los aspectos relacionados para el mejoramiento de las misma. Los factores de aseguramiento de calidad y análisis de peligros y PCC, su cumplimiento es mínimo, representando una oportunidad de intervención significativa en los establecimientos evaluados, además que son dos temáticas que están estrictamente relacionada con los sistemas de aseguramiento y gestión, lo que permite identificar la necesidad de establecer un sistema de control adaptado a las condiciones del proceso y con el nivel de exigencia para garantizar la calidad e inocuidad del cacao.

Estimación de confiabilidad: Para evaluar la confiabilidad de la herramienta, se utilizó el coeficiente alfa de Cronbach (Ecuación 1) aplicada a los resultados obtenidos durante el diagnóstico o fase inicial, dando como confiabilidad de la herramienta, el valor de α=0.949, demostrando consistencia alta de los resultados según la clasificación de Castillo-Sierra et al. (2018). Con esto no solo se ha realizado la caracterización de las centrales del beneficio de cacao relacionadas con el proyecto, sino que también se dispone al sector productivo, una herramienta con capacidad de ser empelada para el diagnóstico de este tipo de establecimiento, a nivel nacional e internacional

6.2. Plan de mejora

A partir del diagnóstico, se identifican los ítems en los que la central evaluada presenta oportunidades de mejora, y con ello, se procede a identificar cual aspecto es relevante para su intervención, así como la propuesta de actividades relacionadas para alcanzar un cumplimiento a cabalidad, con efecto en su perfil sanitario, este plan se detalla a continuación:

Tabla 5.Plan de mejora de requisitos sanitarios en centrales de beneficio de cacao del departamento del Huila.

						RIVERA					CAMPOALEGRE					ALGECIRAS					GIGANTE
			Tipo	de A	ción			Tipo d	e Ac	ción			Tipo	de A	cción			Tipo	de Ad	ción	
	ítem	Evaluación	Infraestructura / Eauipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Eauipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones
	1.1	4				N/A	4				N/A	4				N/A	4				N/A
	1.2	1		•	•	Registro de LyD de zonas externas. Limpiar alrededores y podar césped.	1			•	Gestión de poda del césped, registro de limpieza de alrededores	0		•	•	Realizar registro de limpieza de áreas externas y desarrollar jornadas aplicadas.	2		•	•	Retirar elementos en desuso en la zona externa de la central, controlar malezas y registrar actividad.
	1.3	1	•			Adecuar sistema de protección del área de secado.	0	•			Implementar protección mediante barrera física de las áreas área: recepción, fermentación y secado.	2	•			Adecuar protección de área de fermentación y de secado.	1	•		•	Proteger el área de secado, reforzar las barreras físicas de la zona de fermentación y almacenamiento.
	1.4	2	•			Adecuar el área de recepción.	1			•	Re-Organizar la linea de producción, poner en funcionamiento las áreas en desuso.	4				N/A	2			•	Adecuar la secuencia de proceso para mejorar la fluidez de actividades y producto.
iénicos	1.5	1	•			Implementar avisos y delimitar las áreas, incluye el ítem 1.4	0	•			Las áreas de recepción y fermentación requiere de mayor separación física mediante barrera. Identificar y señalizar áreas.	3			•	Adecuar las demarcaciones limítrofes de la central.	0	•			Realizar separación física entre áreas tanto de secado como de fermentación y al macenamiento.
1. Reauisitos Higiénicos	1.6	1	•		•	Ventanas requieren mantenimiento.	0	•			Adecuar el área de Recepción y fermentación implementando barreras de protección física que proteja del ambiente externo.	3				Adecuar techo de la marquesina y pared de la área de fermentación implementando mallas o angeos.	1			•	Realizar la limpieza de cortinas y techos con mayor frecuencia.
	1.7	1				Dotar elementos de aseo e higiene persona mínimos necesarios.	1			•	Dotar las unidades sanitarias con los elementos de aseo y de higiene personal mínimos requeridos.	2			•	Poner en funcionamiento las baterías sanitarias y dotarlas con los implementos necesarios.	2			•	Dotar con los elementos de aseo mínimos necesarios la zona de sanitarios y vestidores.
	1.8	1	•			Ajustar la protección del sistema de drenaje.	0				Adecuar el sistema de drenaje para un mejor transporte y disposición de residuos líquidos.	3				Adecuar las canaletas y drenajes externos.	2	•		•	Gestionar la adecuación de rejillas en todos los desagües de la central.
	1.9	1			•	Rotular recipientes de residuos y clasificación.	0			•	Gestionar contenedores de residuos con su respectiva señalización y de capacidad suficiente.	2			•	Aumentar la cantidad o capacidad de los recipientes y documentar la generación y seguimiento.	1			•	Incrementar la capacidad de los recipientes de residuos y frecuencia de remoción.
	1.10	1	•			Realizar mantenimiento a equipos de madera. Emplear elementos de primer uso para contacto con el cacao.	1			•	Realizar mantenimiento a los elementos de madera y reemplazar lo demás con afectación a su integridad.	4			•	Gestionar y adquirir equipos básicos para medición de variables fisicoquímicas.	1	•		•	Gestionar equipos para medición de variables fisicoquímicas para control de variables en proceso.

						RIVERA					CAMPOALEGRE					ALGECIRAS					GIGANTE
			Tipo d	e Acc	ión			Tipo de Acción				Tipo	de A	cción			Tipo	de A	cción		
Í	tem	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Fauinos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones
	2.1	0				Documentar e implementar programa de mantenimiento	0		•	•	Documentar e implementar el programa de mantenimiento de equipos.	0			•	Realizar la gestión y documentación del plan de mantenimiento de equipos, herramientas e infraestructura.	0		•	•	Documentar e implementar el programa de mantenimiento y soportes.
	2.2	0				Documentar e implementar programa de calibración.	0		•	•	Documentar e implementar el programa de calibración de equipos e instrumentos de medición.	0			•	Elaborar e implementar el programa de calibración de instrumentos de medición con sus respectivos soportes.	0		•	•	Documentar e implementar el programa de calibración y soportes.
	2.3	0				Documentar e implementar un programa de abastecimiento de agua.	0		•	•	Documentar el programa de abastecimiento de agua con los respectivos soportes y formatos.	0			•	Documentar el programa respectivo y ejecutar las actividades que implica.	0		•	•	Documentar e implementar el programa de agua potable y soportes.
p	2.4	0				Documentar e implementar un programa de manejo de residuos.	0		•		Documentar e implementar el programa de manejo integrado de residuos	0		•	•	Documentar el programa respectivo y ejecutar las actividades que implica.	0		•	•	Documentar e implementar el programa de manejo de residuos y soportes.
ito de la calida	2.5	0				Documentar e implementar un programa de control de plagas.	0		•	•	Documentar e implementar el programa de control de plagas.	0			•	Documentar el programa respectivo y ejecutar las actividades que implica.	0		•	•	Documentar e implementar el programa de control de plagas y soportes.
. Aseguramiento de la	2.6	1				Documentar e implementar un programa de limpieza y desinfección.	1		•		Documentar el programa de limpieza y desinfección con los formatos respectivos para registro de actividades.	1		•		Documentar el programa y registrar las actividades realizadas.	1		•		Documentar programa y demás para realizar el registro de actividades ejecutadas.
2	2.7	0				Documentar e implementar un plan de capacitación de personal.	0		•		Documentar e implementar el programa de capacitación del personal y sus gestiones respectivas.	0				Documentar el programa y soportes, así como gestionar su implementación.	0		•	•	Documentar e implementar el programa de capacitación e higiene del personal.
	2.8	0				Gestionar carné de manipulación de los manipuladores.	0			•	Gestionar y facilitar el proceso de obtención del carné a los manipuladores.	0			•	Gestionar el carné de manipulación para los trabajadores.	0			•	Gestionar carné de manipulación para los trabajadores de la central.
	2.9	1			1	Dotar de EPP al persona y capacitarlo en su uso.	0			•	Suministrar la dotación y EPP necesarios a los trabajadores de acuerdo con la actividad que desarrolla.	2			•	Capacitar a los trabajadores en el uso de acuerdo de EPP.	2			•	Gestionar los EPP respectivos para los trabajadores de la central; Porta indumentaria incompleta.
	2.10	2			1	Capacitar el personal manipulador en BPM y gestionar chequeos médicos regulares.	2			•	Gestionar el certificado médico que constate la aptitud para el cargo de cada una de los trabajadores.	2			•	Gestionar el certificado médico del personal de la central.	2			•	Gestionar el certificado médico de aptitud laboral para los trabajadores.

						RIVERA					CAMPOALEGRE					ALGECIRAS					GIGANTE
			Tipo	de A	ción			Tipo	de A	cción			Tipo	de A	cción			Tipo	de A	ción	
	ítem	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Fauinos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Eauipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones
	3.1	0				Documentar programa de proveedores y formatos.	0		•		Documentar e implementar el programa de materias primas, insumos y proveedores, así como la identificación de	1				Documentar programas y ejecutar su aplicación.	0		•	•	Documentar e implementar el programa de proveedores con los respectivos soportes y anexos.
	3.2	4				N/A	1			•	Gestionar el flujo de proceso y documentación del mismo.	4				N/A	0			•	Adecuar el flujo de proceso para evitar cruces de líneas de proceso y producto.
	3.3	1				Documentar programa de trazabilidad y formatos.	0		•	•	Documentar y ejecutar el plan de control de proceso que abarque las fases del sistema productivo.	2		•	•	Documentar el programa y actualizar los formatos existentes.	0		•	•	Documentar e implementar el programa de trazabilidad.
	3.4	0				Documentar protocolo de recepción de cacao fresco.	0				Establecer los criterios de aceptación o rechazo en el suministro de cacao.	1		•		Documentar protocolo así como formatos necesarios.	0		•		Documentar el protocolo de aceptación y rechazo de cacao fresco.
3. Operaciones en proceso	3.5	0			•	Adquisición de elementos de medición fisicoquímica. Documentar formatos y registros.	0	•		•	Gestionar la adquisición y uso de instrumentos de medición de variables y documentar formatos para el registro respectivo.	1			•	Adquirir los instrumentos de medición y realizar registros de variables de los lotes de producción.	0		•	•	Adquirir instrumentos de medición de variables fisicoquímicas.
peraciones	3.6	0				Documentar formato de inspección en vehículos.	0				Documentar criterios de evaluación de vehículos de transporte de cacao.	0		•	•	Documentar y realizar la actividad.	0		•	•	Documentar e implementar control.
3.0	3.7	0				Documentar protocolo y formato de devolución.	0		•		Documentar programa de trazabilidad, protocolo y formato de devoluciones.	0		•		Documentar el protocolo de aceptación con los respectivos límites máximos.	0		•		Documentar el protocolo y sus límites máximos.
	3.8	1		•		Documentar formato de recepción y fermentación. Establecer cronograma de recolección.	0			•	Capacitar al personal para no mezclar lotes de diferentes días de recepción.	2		•		Registrar las actividades realizadas y su clasificación respectiva.	1		•		No se documenta la conformación de lotes, por tanto se requiere del formato para registro de actividad.
	3.9	1				Documentar protocolo y formatos para registro de variables en fermentación.	0		•		Documentar el proceso de fermentación realizado en la central de beneficio.	1		•		Documentar y aplicar el formato de fermentación de acuerdo con las condiciones de la central.	1		•		Documentar el proceso de fermentación y registro de variables, diseñar formato y aplicarlo.
	3.10	1			•	Realizar mantenimiento preventivo de cajones. Ajustar protocolo de limpieza del cajón fermentador.	1				Realizar mantenimiento preventivo a los cajones asi como la limpieza diaria y registro.	4				N/A	1			•	Mejorar técnica de limpieza de cajones.

						RIVERA					CAMPOALEGRE					ALGECIRAS					GIGANTE
			Tipo	de A	cción			Tipo	de A	cción			Tipo	de A	cción			Tipo	de A	cción	
í	tem	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones
	3.11	0			•	Cambiar el material de cubierta de los cajones de fermentación.	0	•		•	Gestionar cubierta en material sanitario, en buen estado y limpio.	3			•	Cambiar el material de cubierta de cajones, por uno de tipo sanitario.	2				Aumentar la frecuencia de cambio de material, lavar después de cada fermentación.
	3.12	0		•		Ajustar protocolo de fermentación y limpieza de la herramienta.	1		•	•	Definir claramente el protocolo de fermentación y documentarlo.	2		•		La central conoce su protocolo pero no lo está documentado, debe registrar su procedimiento y controles respectivos.	1		•		Documentar el protocolo de fermentación y registro de volteos.
	3.13	1			•	Dotar y capacitar en el uso de EPP a los empleados.	1			•	Suministrar al personal los EPP requeridos para el cumplimiento de sus funciones sin afectar su salud e integridad.	2				Se debe gestionar la dotación completa, se evidencia uso parcial.	1			•	Gestionar los EPP mínimos necesarios para los trabajadores.
proceso	3.14	0		•		Realizar protocolo de fermentación y formato de registro de variables de control.	0	•	•	•	Gestionar lo instrumentos necesarios y capacitar al personal para la medición e interpretación de resultados.	2		•		Se evidencia seguimiento sin embargo no hay registro de ello, se debe diseñar e implementar formatos de control.	1		•	•	Diseñar el formato y registrar el seguimiento de variables fisicoquímicas de la masa de cacao.
eraciones en	3.15	0		•		Realizar el protocolo de secado de cacao en la central.	0		•		Definir el protocolo de secado y documentarlo.	0				Se debe identificar y documentar el protocolo de secado de las centrales, pues no se posee.	0		•	•	Documentar y registrar las actividades de secado en la central de beneficio.
3. Op	3.16	1		•		Revisar y ajustar protocolo de limpieza de las herramientas.	1	•		•	Realizar mantenimiento a los elementos de madera y reemplazar los afectados en su integridad.	3				Mejorar las acciones de limpieza y desinfección de herramientas.	1			•	Mejorar el protocolo de limpieza de las herramientas, así como su frecuencia.
	3.17	2			•	Envasar el cacao seco en grano en envases de primer uso.	1			•	Gestionar costales de primer uso y organizar las estibas del almacén para el libre tránsito y circulación de aire.	4				N/A	2			•	Establecer que todos los lotes sean envasado en material de primer uso.
	3.18	0		•		Documentar protocolo y formatos de almacenamiento de cacao.	0		•		Definir el protocolo de almacenamiento y documentarlo con sus respectivos formatos.	0				Definir protocolo de almacenamiento el cual puede ser anexo al de trazabilidad.	0		•	•	Documentar e implementar protocolo que puede anexarse al programa de trazabilidad.
	3.19	1		•		Rediseñar el programa de trazabilidad y actualizar los formatos existentes.	0		•		Documentar e implementar el programa de trazabilidad y demás criterios relacionados.	1			•	Documentar e implementar el programa de trazabilidad y formatos respectivos.	1			•	Documentar e implementar el programa con su respectivos soportes y anexos.
	3.20	0				Documentar un programa de muestreo.	0				Documentar e implementar el programa de muestreo de acuerdo con las condiciones de la central y normatividad vigente.	0				Documentar e implementar el programa de muestreo de acuerdo con las necesidades de la central.	0		•	•	Documentar e implementar el programa de muestreo para la central de beneficio.

						RIVERA					CAMPOALEGRE					ALGECIRAS					GIGANTE
			Tipo	de A	cción			Tipo	de Ac	ción			Tipo	de A	cción			Tipo	de Ad	ción	
í	tem	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones	Evaluación	Infraestructura / Equipos	Documentación	Gestión	Observaciones
	4.1	0			•	Conformar el equipo de análisis de PCC.	0			•	Conformar el equipo de análisis de PCC.	0			•	Conformar el equipo de análisis de PCC.	0			•	Conformar el equipo de análisis de PCC.
	4.2	1				Documentar el manual de funciones de los estamentos de la central de beneficio.	1		•		Documentar el manual de funciones de los estamentos de la central de beneficio.	1				Documentar el manual de funciones de los estamentos de la central de beneficio.	1		•		Documentar el manual de funciones de los estamentos de la central de beneficio.
	4.3	0			•	Gestionar y diseñar los planos de la central de beneficio.	0			•	Gestionar y diseñar los planos de la central de beneficio.	0				Gestionar y diseñar los planos de la central de beneficio.	0			•	Gestionar y diseñar los planos de la central de beneficio.
y PCC	4.4	0		•	•	Documentar la ficha técnica del cacao seco en grano e implementarla.	0		•	•	Documentar la ficha técnica del cacao seco en grano e implementarla.	0		•	•	Documentar la ficha técnica del cacao seco en grano e implementarla.	0		•	•	Documentar la ficha técnica del cacao seco en grano e implementarla.
peligros y F	4.5	0		•		Documentar el flujo de proceso de la central de beneficio.	0				Documentar el flujo de proceso de la central de beneficio.	0		•		Documentar el flujo de proceso de la central de beneficio.	0		•		Documentar el flujo de proceso de la central de beneficio.
Análisis de	4.6	0		•		Identificar los peligros F,Q y B.	0				Identificar los peligros F,Q y B.	0		•		Identificar los peligros F,Q y B.	0		•		Identificar los peligros F,Q y B.
4. /	4.7	0				Identificar los PCC del proceso de la central.	0				Identificar los PCC del proceso de la central.	0		•		Identificar los PCC del proceso de la central.	0		•		Identificar los PCC del proceso de la central.
	4.8	0		•		establecer los límites críticos de control del proceso ejecutado en la central.	0		•		establecer los límites críticos de control del proceso ejecutado en la central.	0		•		establecer los límites críticos de control del proceso ejecutado en la central.	0				establecer los límites críticos de control del proceso ejecutado en la central.
	4.9	0		•		establecer un procedimiento de vigilancia sensible.	0		•		establecer un procedimiento de vigilancia sensible.	0		•		establecer un procedimiento de vigilancia sensible.	0				establecer un procedimiento de vigilancia sensible.
	4.10	0		•		Establecer las acciones correctivas a implementar en caso de desfase.	0		•		Establecer las acciones correctivas a implementar en caso de desfase.	0		•		Establecer las acciones correctivas a implementar en caso de desfase.	0				Establecer las acciones correctivas a implementar en caso de desfase.
		Total:	8	30	24		Total:	8	29	29		Total:	4	30	30		Total:	4	30	35	

Lo anterior, brinda una pauta de acción en la que se identificó que los mayores tipos de acciones a intervenir son de tipo documentativos y de gestión, presentando una relación muy cercana en la que, al intervenir en uno de ellos, se afectaría significativamente el otro. Para el caso de la infraestructura y equipos, la intervención en baja, debido a que las centrales ya contaban con gran parte de las condiciones de instalaciones y maquinaria requerida para sus procesos productivos, no obstante, se identificó la necesidad de adquisición de instrumentos de medición, así como la adecuación de algunos aspectos del área, especificados en la Tabla 5.

En consecuencia, con el diagnóstico y lo abordado por el plan de mejora, se presenta le necesidad de documentación y gestión en cada una de las centrales de beneficio de cacao objetos de investigación, además de que sus necesidades son homogéneas, por lo cual, se decidió la formulación de un sistema de aseguramiento bajo el enfoque de planes y programas de buenas prácticas de manufactura con enfoque en el análisis de puntos críticos de control que conlleven al impacto en la calidad física, química y sensorial del cacao en estos establecimientos de procesamiento.

6.3. Sistema de aseguramiento

Partiendo de las actividades y observaciones dadas en el plan de mejora para las centrales de beneficio una vez analizados los factores en común de cada una de ellas se decide abordar un sistema de aseguramiento con enfoque en el análisis de puntos críticos, adaptado a las condiciones de cada central que brinde las condiciones necesarias para el cumplimiento de los requisitos higiénicos y que a su vez permitan el control y seguimiento de la calidad, sin la intervención de cambios o reestructuraciones severas que significaran inversiones monetarias altas. Como resultado se designa el "Sistema de Aseguramiento de la calidad e inocuidad en centrales de beneficio de cacao" tambien llamado "Sistema de aseguramiento CECAO" comprendido por 4 planes de buenas prácticas de manufactura cada uno con sus respectivos programas, formatos y anexos además de la identificación de peligros y establecimiento de límites máximos permisibles.

Figura 15.

Codificación de la documentación.

Para la respectiva identificación, a cada documento dependiendo su tipo y el ejercicio trazable se asigna un código único según la tabla 6 y su secuencia respectiva (véase figura 15), acompañada también por la versión y fecha del mismo, que en conjunto se estipula en el encabezado de cada plan, programa y formato, representado en la figura 16.

Tabla 6.Asignación de códigos para la documentación del sistema CECAO.

CÓDIGO	DESCRIPCIÓN
	PLANES
PSAN	Plan de saneamiento
PPER	Plan de personal manipulador
PTRZ	Plan de trazabilidad
PGES	Plan de gestión
	PROGRAMAS
A	Programa de abastecimiento de agua potable
L	Programa de limpieza y desinfección
R	Programa de manejo de residuos
Р	Programa de control de plagas
Н	Programa de Higiene y capacitación
V	Programa de control de proveedores
С	Programa de control de proceso y rastreabilidad
M	Programa de muestreo
Т	Programa de Mantenimiento
В	Programa de Calibración
	ANEXOS
A	Documentos Anexos (Protocolos, fichas técnicas, etc.)
F	Formatos
	SECUENCIA
01	Inicia en 01 con incremento en unitario

Figura 16.

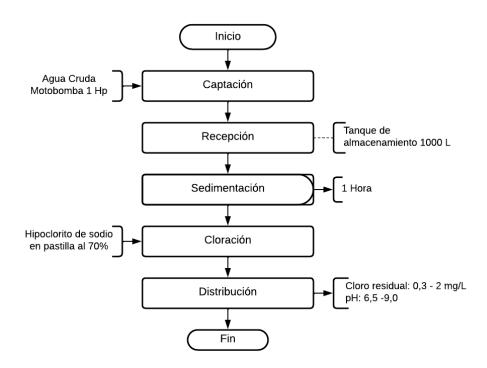
Encabezado de los documentos del Sistema CECAO.

AGROSAV/A Corporación colombiana de investigación agropecuaria	Programa de Central de Ber	E TRAZABILIDAD Control de Proveedores neficio de Cacao - Rivera	Sistema de Aseguramiento CECAO Código: PTRZ_VF02 Versión: 01
	Recepción de	Cacao Fresco (En baba)	Fecha: Octubre / 2023
Elaborado por: Jeai	n Carlo Quintero Garcia	Aprobado por: Jenifer	Criollo Nuñez

6.3.1. Plan de personal manipulador

Este plan tiene como objetivo capacitar a los productores y trabajadores de la industria del cacao en la correcta implementación y mantenimiento de las Buenas Prácticas de Manufactura (BPM). Se enfoca especialmente en la higiene del personal, fundamental para garantizar la inocuidad del producto, así como en el manejo adecuado de los granos de cacao durante el proceso de beneficio. Además, aborda la prevención de la contaminación cruzada asegurando que cada etapa cumpla con los estándares de calidad e inocuidad alimentaria, comprendido por un programa.

6.3.1.1. Programa de higiene del personal y capacitación: De cumplimiento obligatorio, según la legislación sanitaria, así como el control de enfermedades, características de los elementos de protección, reglamento de higiene y seguridad, y a su vez plantea estrategias de capacitación continuada con el respectivo cronograma y parámetros para su desarrollo eficiente, dando soporte a través de los formatos para registro de "informe de asistencia a jornada de capacitación" y "lista de chequeo del personal".


6.3.2. Plan de saneamiento

Compendio de programas que se ajustan a las condiciones de las centrales de beneficio de cacao, con la finalidad de controlar condiciones relacionadas con el aseguramiento de la inocuidad, con enfoque en actividades básicas de la industria que garanticen condiciones higiénico-sanitarias, en cumplimiento de lo establecido en el capítulo VI "Saneamiento" de la Resolución 2674 de 2013 del ministerio de Salud y Protección Social (MinSalud, 2013). Estos programas se distribuyen de la siguiente manera:

6.3.2.1. Programa de Abastecimiento de agua: Busca garantizar que el agua empleada para las actividades de procesamiento, limpieza, desinfección y/o consumo en las centrales de Beneficio de cacao, es de carácter potable, no representa riesgo de contaminación para el producto, superficies o al consumidor y cumple con los parámetros indicados en la legislación sanitaria, en su estructura se identifica la fuente de captación del agua, el tratamiento de potabilización aplicado (véase figura 17), suministro, sustancias empleadas y formato para "Dosificación y seguimiento de agua potable".

Figura 17.

Tratamiento de potabilización de agua.

6.3.2.2. Programa de Limpieza y Desinfección: Orientado a la generación de ambientes seguros para el desarrollo de las actividades de fermentación, secado y almacenamiento de cacao en las centrales de beneficio, mediante la ejecución de procedimientos estandarizados de limpieza y desinfección de superficies, equipos y herramientas empleados durante el proceso de beneficio. Compuesto por el componente normativo, identificación de superficies, Productos de Limpieza y Desinfección (LyD), Concentraciones, procedimientos y recomendaciones, además de sus anexos como fichas técnicas de sustancias, Procedimientos Operativos Estandarizados de Saneamiento POES como el indicado en la tabla 7 y formato de "Control de actividades de LyD".

Tabla 7.POES Cajón fermentador.

	POES - CAJÓN FERMENTADOR
ZONA	Central de beneficio de cacao.
SUPERFICIE	Cajones de fermentación de la central de beneficio de cacao.
OBJETIVO	realizar la limpieza de los cajones de fermentación de la central de beneficio.
MATERIALES	Cepillo con cerdas de acero, espátula, Toallas de único uso, recogedor, escoba.
FRECUENCIA	Semanal o cada vez que se termine la fermentación de un lote de cacao.
DOSIFICACIÓN	Limpieza en seco.
INSTRUCCIONES	 Una vez retirado el cacao fermentado, dejar secar el cajón fermentador de 4 a 6 horas. Empleando el cepillo con cerdas de acero, frotar con movimientos ascendentes y descendentes en toda la superficie interna del cajón, para retirar material adherido como cacao, mucilago, hojas u otros. Con una espátula metálica refinar la limpieza de material que no se logró retirar. Recoger los residuos que hayan quedado en el fondo del cajón empleando recogedor y escoba de uso exclusivo para esta actividad Con un paño limpio de único uso, frotar la superficie interna para garantizar que no haya quedado material que pueda desprenderse posteriormente. Para la parte externa del cajón y tapa, realizar la limpieza con una toalla o paño de único uso retirando la suciedad adherida. Lavar con abundante agua y jabón neutro el material de cubierta de la masa de cacao. Lavar con abundante agua y Jabón las herramientas de volteo y transporte de la masa de cacao. Verificar la limpieza del equipo. Registrar la actividad.

6.3.2.3. Programa de Manejo Integrado de Residuos: Su finalidad es Identificar y caracterizar los tipos de residuos sólidos y líquidos generados en las centrales de beneficio de cacao, resultantes de los procesos de fermentación, secado y almacenamiento, para evitar fuentes de contaminación que se puedan generar dentro de las distintas áreas del establecimiento. Este programa se estructura con base en la clasificación de residuos establecida en la Resolución 2184 de 2019 del Ministerio de Ambiente y Desarrollo Sostenible (MinAmbiente, 2019), incluyendo aspectos como las fuentes, características, rutas y procesos de recolección, así como la disposición final de estos.

Para su establecimiento, se realizó una caracterización de la generación semanal de residuos en las etapas de postcosecha, la cual arrojó una producción baja o no significativa: Residuos sólidos <5 kg (principalmente orgánicos); y residuos líquidos < 80 litros, compuestos por de lixiviados de cacao y aguas jabonosas resultantes de jornadas de limpieza y desinfección. Se propone realizar esta caracterización de manera semestral, con registro directo en el programa, a fin de detectar posibles variaciones y establecer medidas de control cuando sea necesario. Por esta razón, no se incluyen anexos o formatos específicos para este programa.

6.3.2.4. Programa de control de plagas: Concebido para minimizar la presencia de cualquier tipo de plagas las centrales de beneficio de cacao, ejerciendo las actividades necesarias que garanticen la eliminación de sitios de anidamiento o alimentación de insectos y roedores, identificando las causas que facilitan la proliferación. Conformado por un diagnóstico, identificación de accesos, caracterización de especies abordado en la tabla 8, métodos de prevención, control, capacitación y erradicación. Como formato anexo al programa se estipula una "lista: diagnóstico de plagas".

 Tabla 8.

 Caracterización de especies (plagas) en centrales de beneficio de cacao.

Especie	Evidencias	Posibles anidamientos	Características de la especie
Insectos silvestres	Restos de insectos muertos, Animales vivos.	Zona de almacenamiento.	Insectos de carácter rastrero o volador, con capacidad de saltar y caminar por las paredes, tamaño entre 2 hasta 5 cm, como grillos, saltamontes, ciempiés, arañas, mosquitos pulgas, escarabajos, cucarrones, hormigas, mariposas, abejas, libélulas, (Moncada et al., 2021).

6.3.3. Plan de trazabilidad

La trazabilidad en el beneficio del cacao es un elemento clave para asegurar la calidad y seguridad en cada etapa de la cadena productiva. A medida que la industria alimentaria responde a las crecientes exigencias de los consumidores frente a estas propiedades; la capacidad de rastrear y documentar el flujo de los granos de cacao desde su cosecha hasta la producción de chocolate se vuelve indispensable. Este proceso permite a las centrales de beneficio identificar proveedores confiables, garantizar la consistencia en las variables de proceso, y asegurar el cumplimiento de las normativas de inocuidad alimentaria. Además, la trazabilidad es crucial para responder rápidamente ante situaciones de no conformidades, protegiendo al consumidor y fortaleciendo su confianza. En resumen, la trazabilidad respalda las actividades de beneficio del cacao y permite a la industria cumplir con las expectativas de un mercado en constante evolución.

El sector cacaocultor, siendo una industria en constante crecimiento, requiere de factores de trazabilidad para el seguimiento en procesos, establecimiento de estrategias comerciales y la generación de lotes estandarizados con la capacidad de competir con calidad en mercados globalizados, por tanto la implementación de este plan es de gran relevancia, brindando apoyo para las asociaciones que se encaminan a fortalecer lazos mercantiles a nivel nacional e internacional, facilitando la capacidad de conocer su proceso, producto así como las propiedades físicas y organolépticas como mínimo, además de proveedores y variables de proceso. Este plan está compuesto por 3 programas que se convierten en pilar fundamental para la ejecución de actividades de postcosecha para las centrales de beneficio de cacao del departamento del Huila.

6.3.3.1. Programa de control de proveedores: Está enfocado hacia la Identificación y control de materia prima e insumos empleados en los procesos de fermentación, secado y almacenamiento en las centrales de beneficio de cacao asegurando la calidad e inocuidad de estos, mediante el reconocimiento de los proveedores que intervienen como aliados estratégicos además del establecimiento de condiciones y variables propicias para el proceso de compra, procesamiento y venta del grano. En su contenido se identifican los responsables, así como la clasificación de proveedores, suministro de Materias primas e insumos, procedimiento de recepción, cabe resaltar que el departamento del Huila debido a su alta variabilidad de material genético de cacao, las prácticas de cosecha presentan falencias respecto a mezclas entre cacao en óptimas condiciones (blanco) y afectado (negro) debido a avanzado grado de maduración y afectación por plagas evidenciándose mediante observación visual (Figura 18), siendo un punto de control para el cacao fresco en grano que es recepcionado en las centrales, por tanto se requiere de un protocolo que brinde las características de aceptación y rechazo del mismo (Tabla 9); el cual fue documentado y establecido mediante el programa (Figura 19), así como un formato de identificación o ficha de proveedor que permita conocer las personas o asociados de los cuales se componen los lotes del grano, también se formula un formato tipo base de datos que facilita el seguimiento y control de lotes de fermentación de la central de beneficio, con mayor disponibilidad de información de acuerdo con la codificación de cada establecimiento (Figura 20).

Figura 18. Cacao fresco óptimo Vs Cacao afectado.

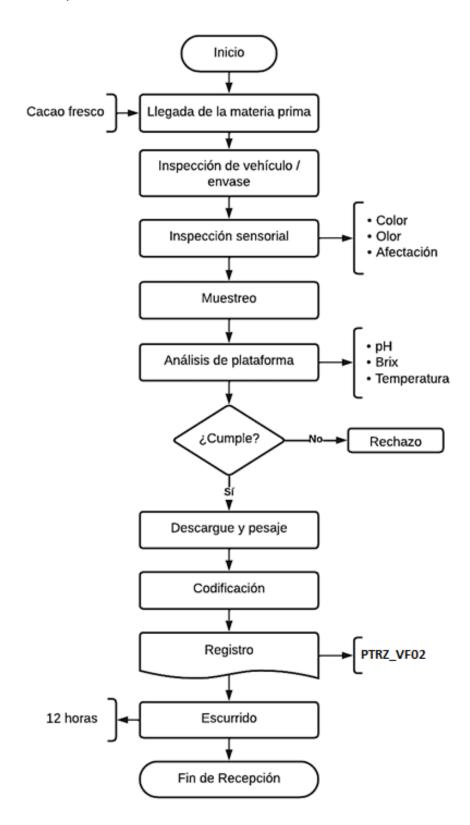
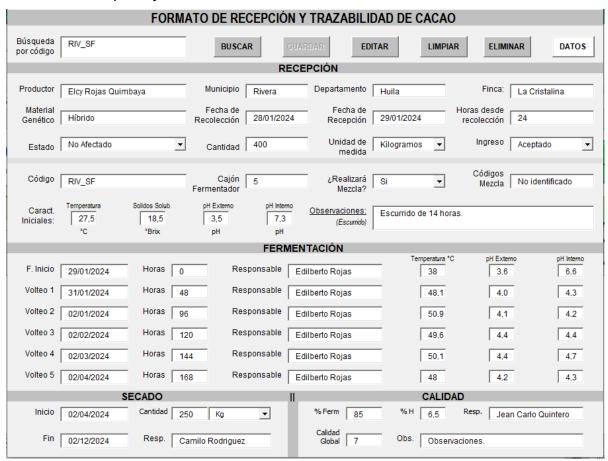
Tabla 9.Criterios de aceptación y rechazo de cacao fresco.

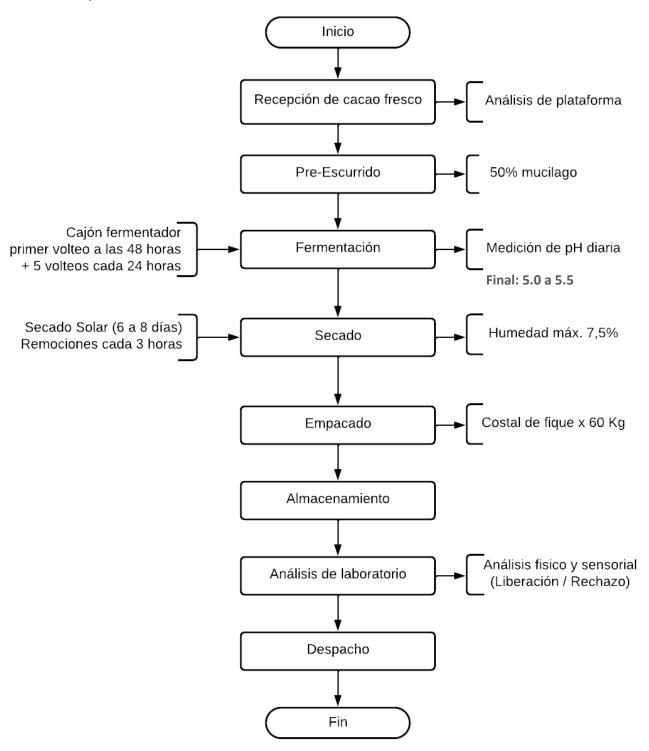
Aspecto	Límite mínimo	Límite máximo	Referencia
Envase	Óptimo		El envase del cacao fresco que llega a la central deberá estar integro, limpio y no haber estado en contacto con agroquímicos, jabones u otras sustancias que puedan transmitirse al grano.
pH mucilago	5,3	6,5	Lares Amaiz, M., Pérez Sira, E., Álvarez Fernández, C., Perozo González, J., & El Khori, S. (2013). Cambios de las propiedades físico-químicas y perfil de ácidos grasos en cacao de Chuao, durante el beneficio. Agronomía Tropical, 63(1-2), 37-47.
Solidos solubles	16 °Brix	<20° Brix	Red cacaotera., (2020). Protocolo de calidad como debe llegar la materia prima a los centros de beneficio, recomendaciones para que los productores realicen la cosecha en finca, definir tipo de producto a cosechar, generar elementos para que el cacao llegue lo mejor posible al centro de beneficio, Recuperado de: https://issuu.com/redcacaotera/docs/manejo_cacao_baba
Cacao Afectado	<10%		Análisis sensorial visual y muestra de 1 kg, separación de afectados. % Definido por la central de beneficio.
Temperatura	<32°C		De acuerdo con la zona de producción, definido por la central de beneficio.

Nota: La información presentada es el resultado de una búsqueda de información para la generación de márgenes de referencia, sin embargo, cada central de beneficio de acuerdo con sus condiciones y mercado las adecua y adopta bajo los lineamientos de calidad.

Figura 19.

Flujograma de recepción de cacao fresco en las centrales de beneficio de cacao.


Figura 20.
Formato de recepción y trazabilidad de cacao.

6.3.3.2. Programa de control de proceso y rastreabilidad: Busca establecer las actividades de aseguramiento de inocuidad y control de variables de proceso en las centrales de beneficio de cacao con el propósito de garantizar la calidad y seguridad del grano seco producido, además de habilitar un sistema efectivo de rastreabilidad en la cadena de producción. Dentro de su estructura se presentan los responsables, el sistema de codificación de lotes, vida útil estimada, proceso productivo (Véase figura 21), liberación o rechazo, ruta de salida, recuperación, devolución y baja, distribución y rastreabilidad inversa en caso de retornos, como apoyo, se establecen los formatos para "Modificación de documentos", "Variables ambientales", "Almacenamiento y despacho", "Recuperación y baja", siendo complementario al programa de proveedores y al formato de recepción, incluyendo el registro de variables.

Figura 21.

Proceso postcosecha de cacao en centrales de beneficio.

Nota: En la figura, se presenta el proceso recomendado para las condiciones de las centrales de beneficio, no obstante, de acuerdo con los requerimientos del mercado, cada establecimiento puede realizar sus respectivas modificaciones.

6.3.3.3. Programa de muestreo: destinado a diseñar un plan de muestreo para las centrales de beneficio de cacao, con el fin de realizar control de cacao fresco, en proceso y seco en grano que asegure la calidad según la legislación sanitaria, se articula con el programa de control de proceso para el seguimiento y control respectivo, de modo que permita tomar acciones inmediatas sin poner en riesgo la calidad e inocuidad del producto y por ende la salud del consumidor, se especifica el procedimiento de muestreo comprendido desde la toma de muestra, codificación, procesamiento, emisión de resultados y e identificación de límites. Para soportar este programa, se anexaron, las normas técnicas de referencia, protocolo para medición de variables fisicoquímicas, protocolo para análisis sensorial asi como los formatos de "toma de muestras", "Reporte de resultados de análisis físico de cacao" basado en la Norma Técnica Colombiana 1252/2021 (ICONTEC, 2021) y "Reporte de análisis sensorial de cacao", para el caso de la evaluación sensorial tanto el protocolo como el reporte corresponde al material generado por cacao de la excelencia - COEX (2023) con la finalidad de abarcar el estándar internacional.

6.3.4. Plan de Gestión

En las centrales de beneficio de cacao como en el sector alimentario, es crucial asegurar el correcto funcionamiento de los equipos e instrumentos utilizados en fases importantes como fermentación, secado y almacenamiento. Evitar fallas o pérdida de control en estas etapas se torna esencial para preservar la calidad del cacao y prevenir riesgos durante el proceso. Este plan se compone de dos programas que funcionan en pro de garantizar la operación continua y la disminución de eventualidades que afecten la productividad.

- 6.3.4.1. Programa de mantenimiento: Su énfasis esta dado hacia mantener los equipos y herramientas en óptimas condiciones de desempeño, protegiendo la inocuidad del cacao atendiendo los requerimientos de control sanitario en la central de beneficio, mediante el establecimiento de actividades de mantenimiento, registros y actividades de soporte técnico. Su estructura se basa en la identificación de equipos, programación, rutinas de arranque, BPM y documentación, como apoyo, se diseñan los formatos de "Inventario de equipos" y "Ficha técnica Hoja de vida".
- **6.3.4.2. Programa de calibración:** Describe las actividades de calibración y verificación de equipos e instrumentos de medición garantizando resultados confiables en mediciones realizadas durante el proceso de fermentación, secado y almacenamiento de cacao, permitiendo la ejecución de acciones preventivas o correctivas según requerimientos. En él, se describen las consideraciones generales, se identifican los instrumentos y equipos, establece procedimientos de verificación de resultados, frecuencia, registros, calibración y certificación.

Nota: Para el fortalecimiento del sistema de aseguramiento CECAO, mediante recursos del proyecto de regalías se gestionó la compra, entrega, capacitación y puesta en funcionamiento de instrumentos de medición en las 4 centrales de beneficio de cacao del departamento del Huila en los municipios de Rivera, Campoalegre, Algeciras y Gigante, Los cuales fueron: Potenciómetro portátil + Soluciones Buffer 4 y 7., Termómetro de bulbo largo, elementos de protección personal.

Adicionalmente para las fases de fermentación y secado se realizó la entrega de módulos para el fortalecimiento de estas actividades: Cajón fermentador de 1 escalón horizontal y secador solar tipo marquesina (véase figura 22).

Figura 22.

Elementos suministrados a las centrales de beneficio de cacao.

6.3.5. Análisis de peligros y puntos críticos de control

Encaminados a la identificación de peligros y con ello establecer los límites críticos y acciones preventivas o correctivas a establecer en las centrales de beneficio, se desarrolló según el planteamiento del Codex Alimentario para alcanzar los objetivos de este sistema, con la finalidad de mejorar la inocuidad del cacao y por tanto la calidad del mismo, para ello, se abordó lo siguiente:

- 1. Programas pre-requisitos: Son aquellos establecidos en los ítems del 6.3.1. al 6.3.4. donde se gestionan los requerimientos básicos de procesamiento en la central de beneficio, bajo lineamientos establecidos a partir de la legislación sanitaria colombiana de referencia. Estos planes y programas constituyen una base sólida para el desarrollo y adopción de estrategias de prevención de peligros para cualquier tipo de procesamiento de alimentos de acuerdo con Cortes y Esquivel (2015), que para este caso su enfoque está dado en la etapa de postcosecha de cacao llevado a cabo en los centros de acopio en fresco de este grano, en el departamento del Huila.
- 2. Conformación del equipo de calidad: Para el desarrollo exitoso del sistema CECAO y su enfoque preventivo para la disminución de riesgos relacionados con peligros que atentan contra la inocuidad del cacao, es necesario que el personal desde sus diferentes dependencias se vincule con la implementación de acciones que promuevan de la mejora continua de procesos y actividades de seguimiento y control diario de variables durante todas las fases productivas ejecutadas, así como determinar las responsabilidades y funciones de cada uno, Para el caso de las centrales de beneficio de cacao del departamento del Huila, aprovechando su estructura organizacional como asociación, luego de un consenso con cada una de las organizaciones que administran los establecimientos se definió que quienes conformarían el equipo de calidad serán aquellos miembros que conforman la junta administradora y dos personas de producción.

Líder del equipo: el rol de 'presidente' de la asociación de productores de cacao asume esta responsabilidad cuyo enfoque se basa en la coordinación y dirección de las actividades del equipo, teniendo como funciones, velar por el correcto funcionamiento del sistema de calidad, supervisar la implementación y manutención de acciones de seguridad e inocuidad, facilitar reuniones de seguimiento, además de asegurar que las actividades de control se desarrollen de manera efectiva.

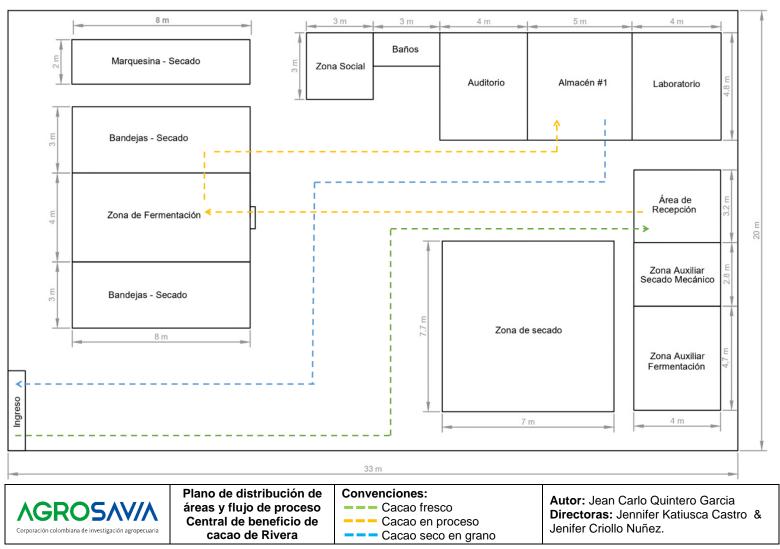
Especialistas: Aquellos que apoyan al líder en la supervisión y seguimiento de operaciones en el sitio, por tanto, fueron capacitados en temas relacionados con calidad en alimentos, así como el sistema CECAO, además ejercen el papel de inspectores y solucionador de problemas relacionados con la central y su proceso, para ello, se distribuyeron cargos así:

- Producción: El rol de "Vicepresidente" es quien coordina las labores de recepción, fermentación, almacenamiento y despacho de cacao en la central, siendo quién vigila y evalúa el desempeño, así como la conformidad de variables relacionadas con el cacao procesado en la central, a través de vigilancia, registros y suministro de información por parte de los trabajadores.
- Calidad: El rol de "Fiscal" de la junta administradora, se encarga de la coordinación del área de calidad, y es quien se encuentra en la total capacidad de emitir lineamientos a los empleados no solo para el cumplimiento de las buenas prácticas de manufactura, sino también el registro de la información y actualización de esta en el sistema.
- Mantenimiento: Los roles de "Vocal" y "Tesorero" son los responsables de realizar la administración y gestión del mantenimiento requerido en el establecimiento relacionado con la parte locativa, pero también de equipos e instrumentos, son quienes vigilan las prácticas vinculadas con los peligros hacia el producto y establecen medidas de prevención, manifestando al equipo y gestionando lo necesario para la adopción de estas y subsanación de inconformidades del área.
- Representantes de áreas: Para este caso, las centrales de beneficio de cacao con 1 o 2 personas en ocupaciones productivas operando en el establecimiento, siendo esta la fuerza humana mínima necesaria para el volumen manejado, por tanto, estas personas se vinculan al sistema como representantes, pues conocen el proceso; además de estar directamente implicados, siendo los primeros responsables de las novedades frente al producto, por tanto su compromiso en la prevención de peligros es de gran relevancia para la central y deben estar articulados para alcanzar la seguridad e inocuidad de los lotes de cacao seco en grano que se despachan en la central. Ejecutan labores de medición, registro, reporte y apoyo en demás actividades de supervisión y control.
- **Consultores o asesores:** Para la estructuración y planteamiento del sistema CECAO se contó con el respaldo de personal experto en el área (profesionales en ingeniería de alimentos, agrícola y agroindustrial), vinculados a la Corporación colombiana de investigación agropecuaria AGROSAVIA, Universidad

Surcolombiana USCO y el Servicio Nacional de Aprendizaje SENA, canalizados a través del investigador-autor quien, a través de los conocimientos adquiridos por parte de estas entidades, brindó el acompañamiento y asesoría requerida para llevar a cabo la recopilación de información, documentación de procesos y establecimiento práctico de las condiciones sanitarias y de calidad en las centrales de beneficio.

3. Organigrama del establecimiento: Para que el sistema funcione de manera paralela a las actividades productivas sin afectar las labores básicas del personal profesional vinculado u otro factor, y logrando que se potencie la aplicación de las buenas prácticas de manufactura, así como la prevención y control de peligros; se requiere de conocer la estructura organizacional para identificar funciones, responsabilidades, el debido proceso a seguir y los diferentes agentes vinculados, para este caso, es una organización de tipo asociativo con perfiles o cargos de acuerdo a lo seleccionado por acción democrática, con homogeneidad para las 4 centrales, pues aunque cada una es independiente, su modelo asociativo y jerárquico es igual, teniendo un esquema como el expresado en la figura 23.

Figura 23.Estructura organizacional de las centrales de beneficio.



- 4. Plano del establecimiento: Cada central cuenta con el plano de distribución de áreas del establecimiento en el cual ejecutan sus laboras productivas relacionadas con el cacao desde su estado fresco hasta obtener grano seco, su estructura se basa en 4 espacios físicos para cada fase las cuales son:
 - Zona de recepción: en superficie suficiente para la actividad de recibo de cacao fresco, disponiendo de elementos para el pesaje y escurrido.

- Zona de fermentación: espacio cerrado y protegido de corrientes de aire o acceso de plagas, cuenta con cajones de fermentación en cantidad y volumen suficiente.
- Zona de Secado: ambiente con disponibilidad de acceso de luz solar y circulación de aire para que mediante procesos de arrastre de vapor se realice el secado del grano; se realiza mayormente mediante bandejas sobrepuestas con ruedas, marquesinas o patios protegidos mediante barrera o lámina con alta transmitancia.
- Zona de almacenamiento: Espacio cerrado protegido de las condiciones ambientales con área en capacidad suficiente de albergar la cantidad de cacao seco en grano producido y altura para la circulación de flujos de aire, con disponibilidad de estibas para proteger los saos de cacao del contacto directo con el suelo, salvaguardando su integridad y seguridad.
- 5. Descripción del producto: El conocimiento de los atributos del cacao en el mercado es una herramienta muy útil para el acceso a nuevos clientes y líneas comerciales, así como también la estandarización del mismo permite identificar falencias en caso de desfases, el cacao de las centrales de beneficio, requería disponer de esta información, para lo cual se abordó desde dos ejes, la caracterización física y sensorial, expresados mediante los reporte de resultados del programa de muestreo del ítem 6.3.3.3. donde se presentan las propiedades del cacao, sin embargo, este debe ser realizado por cada lote productivo entendiendo que las naturalezas de las mezclas de variedades de la zona darán paso a micro lotes con características únicas las cuales deben ser identificadas mediante ficha técnica, no solo como ventaja competitiva sino también como garantía trazable del proceso, corroborando condiciones de calidad e inocuidad del grano.
- 6. Flujo de proceso: Para identificar las fases y actividades ejecutadas en la postcosecha del cacao en cada central y con ello identificar los peligros que pueden generarse, se hace necesario establecer el flujo de proceso, planteado las etapas y variables de control. Esto fue articulado con el programa de control de proceso y rastreabilidad, soportado por las fases expresadas en la figura 21. Partiendo de ello se establecen las estrategias y controles que correspondan a la disminución de riesgos, bajo un enfoque preventivo; a su vez, de este modo se garantiza que, en caso de rotación de personal, el proceso no se verá afectado, pues las indicaciones son sólidas y secuenciales bajo parámetros claros y precisos.
- 7. Diagrama en sitio: Se planteó la secuencia de las operaciones, vinculando el flujo del mismo y el plano de áreas de la central de beneficio (véase figura 24), corroborando que no haya cruce de materias primas y productos de manera simultánea, llevando a cabo un proceso continuo, lógico y secuencial, considerando los tiempos de cada fase productiva.

Figura 24.

Diagrama de sitio – Central de beneficio Rivera.

8. Identificación de peligros: De acuerdo con el proceso productivo y las etapas identificadas, se realizó una búsqueda de información bibliográfica de tipo científico con el objetivo de identificar situaciones que se hayan presentado referente a la calidad del cacao en su postcosecha, relacionándolo con los peligros físico, químico y biológico, en ellos, se reconocieron los riesgos potenciales, para posteriormente determinar su viabilidad como punto crítico.
Los peligros identificados en las centrales de beneficio de cacao, fueron los

Tabla 10.

Identificación de peligros en centrales de beneficio de cacao.

presentados en la tabla 10:

Etapa	Peligro	Justificación	Medidas preventivas
1. Recepción	1.1. Físico	El grano puede contener objetos de tipo metálico, plástico, madera u otro que afecte la inocuidad e integridad del cacao.	Programa de proveedores. Programa de capacitación. Programa de trazabilidad.
	1.2. Químico	El cacao al llegar desde diferentes fincas, puede ser contaminada por compuestos químicos como desinfectantes, herbicidas, plaguicidas y otros a través del almacenamiento y reutilización de envases.	Programa de proveedores. Inspección en recepción. Criterios de aceptación. Programa de capacitación. Programa de trazabilidad.
	1.3. Biológic	En la recolección de frutos se pueden presentar alteraciones por mazorcas afectadas por enfermedades y plagas que generan contaminación por hongos.	Inspección en recepción. Programa de capacitación. Programa de trazabilidad.
2. Fermentación	2.1. Físico	Residuos del material de cobertura o desprendimiento de las herramientas de remoción.	Programa de mantenimiento. Selección y clasificación del cacao seco en grano.
	2.2. Químico	Acumulación de sustancias químicas de la fermentación debido a deficiencia en volteos.	Programa de control de proceso. Programa de trazabilidad Registro de volteos y control de variables.
	2.3. Biológica	Proliferación de microorganismos indeseables como hongos por exceso de humedad y acumulación de lixiviados en el cajón.	Programa de limpieza y desinfección. Protocolo de fermentación y frecuencia de volteos. Pre-Escurrido de la masa fresca.

Etapa	Peligro		Justificación	Medidas preventivas	
3. Secado		Físico	Objetos extraños en el cacao por desprendimiento de partes por desgaste, fricción en remociones y personal. Presencia de partículas indeseables como plumas, pelos u otros.	Programa de mantenimiento. Programa de personal manipulador. Programa de control de plagas.	
4. Almacenamiento	3.2.	Químico	Contaminación por agentes externos a través de corrientes de aire. Generación de toxinas por deficiencias en secado y proliferación de hongos.	físicas para la separación de áreas.	
	3.3.	Biológico	Contaminación por agentes biológicos externos como animales o el personal. Generación de hongos por deficiencias en remociones.	Programa de control de plagas. Programa de personal manipulador. Protocolo de secado y remociones frecuentes.	
	4.1.	Físico	Contaminación por agentes externos a través del personal manipulador.	Programa de personal manipulador	
	4.2.	Químico	Contaminación por higroscopia del grano por presencia de agentes químicos como pintura, jabones, perfumes o agroquímicos.	Programa de personal manipulador. Capacitación de BPM. Distribución y separación de áreas	
	4.3.	Biológico	Contaminación por plagas como hormigas, gorgojos, polillas u otros.	Envasado en material de primer uso. Programa de control de plagas. Protocolo de secado y de almacenamiento	

9. Determinación de puntos críticos de control (PCC): Realizando la aplicación del árbol de decisiones (Figura 16) establecido como metodología evaluativa para la identificación de puntos críticos de control y teniendo en cuenta las medidas preventivas de la Tabla 8, se identificaron los factores de mayor relevancia para las centrales de beneficio de cacao objetos de la investigación y que representan riesgo para la inocuidad del producto; esta actividad fue realizada partiendo del hecho de que la estructura y procesos en las cuatro centrales son homólogos, obteniéndose la información expresada en la tabla 11.

Tabla 11.Determinación de PCC en centrales de beneficio de cacao.

Day word								
Etapa	Peligro	P1	Pregi	untas P3	P4	¿Es un PCC?	Motivo	
1	1.1	Si	No	Si	Si	No	De no identificarse en las etapa de secado y selección se elimina el material extraño.	
	1.2	Si	No	Si	No	Si	Si el grano fresco es contaminado con sustancias que no afecten sus atributos sensoriales se convierte en un punto crítico.	
	1.3	Si	No	No	-	No	El protocolo de recepción establece el control de material afectado por enfermedades en cultivo.	
2	2.1	Si	No	No	-	No	Es un peligro cuyo riesgo es bajo debido a las medidas preventivas establecidas.	
	2.2	Si	No	Si	Si	No	Al producirse compuestos ácidos o fenólicos, en la fase de secado la volatilización de compuestos disminuirán su concentración.	
	2.3	Si	No	Si	No	Si	Es una fase con dinámica microbiana, en la cual se debe tener un control estricto para evitar la proliferación de aquellos indeseables como hongos.	
3	3.1	Si	No	No	Si	No	La presencia de material exógeno se retira durante el envasado y selección del grano.	
	3.2	Si	Si	-	-	Si	Estos peligros están relacionados, debido a que la etapa está diseñada para disminuir la humedad del grano hasta un nivel seguro evitando la	
	3.3	Si	Si	-	-	Si	proliferación de microrganismo como hongos y demás de plagas o microrganismos que generen toxinas y afecten la inocuidad del cacao.	
4	4.1	Si	No	Si	Si	No	Las medidas preventivas establecidas para este peligro y su control en fases posteriores lo dan un riesgo bajo.	
	4.2	Si	No	No	-	No	Es una etapa de baja susceptibilidad debido a las medidas implementadas.	
	4.3	Si	No	Si	Si	No	Con las acciones de prevención su riesgo es considerado bajo.	

10. Establecimiento de límites críticos: Partiendo de la premisa que los límites críticos, se establecieron de acuerdo con las principios de higiene y seguridad, pero adaptado a las condiciones de las centrales de beneficio quienes se encuentran en proceso de mejora continua de su cadena productiva, de acuerdo con los puntos críticos de control de manera articulada con el sistema CECAO y el programa de trazabilidad, así como el de control de proceso, se formularon los lineamientos presentados en la tabla 12:

Tabla 12.

Límites críticos para control de peligros.

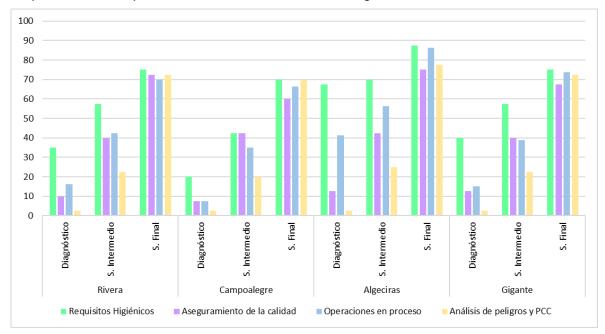
Etapa	Peligro	Descripción	Límites críticos
Recepción	1.2	Contaminación química del grano desde la finca.	No se evidencia coloración y olores ajenos a la naturaleza de cacao fresco.
Fermentación	2.3	Contaminación biológica por microorganismos no deseados.	No se evidencia coloración extraña y ajenas al proceso.
Secado	3.2 3.3	Contaminación por hongos y micotoxinas.	No se evidencia proliferación de esporas en la superficie y parte interna del grano

El enfoque de estos límites críticos esta dado hacia verificación sensorial de los granos, así como su verificación física mediante corte, esto, debido a las condiciones actuales de cada central y la disposición de recursos físicos, tecnológicos y humanos, de modo que se permita controlar las condiciones de inocuidad. Se recomienda realizar un control mediante análisis de laboratorio tanto químico como microbiológico de frecuencia semestral para validar los procesos ejecutados en el establecimiento y en caso de desviaciones poder tomar decisiones acertadas que conlleven a la mejora continua.

Estos puntos críticos concuerdan con los plateados por Villacís (2022), cuya investigación posee una línea de acción orientada a cacao, abarcando también la fase productiva. Identificó los riesgos de la cadena de valor, bajo un enfoque de Buenas Prácticas Agrícolas (BPA), dando como fases de intervención significativa la fermentación y el secado, realizando posteriormente el diseño e implementación de acciones preventivas y correctivas, llevando a un complimiento satisfactorio al finalizar el estudio.

11. Procedimiento de vigilancia: Respecto a los procedimientos de vigilancia, estos estarán ligados a los registros de control y verificación establecidos en el plan de trazabilidad en los programas de proveedores, rastreabilidad, control de proceso, así como el de muestreo, en ellos, es establecido el procedimiento de forma articulada para la vigilancia de estos puntos críticos, resaltando los desfases con las observaciones correspondientes que dan paso a reacciones inmediatas, sin afectar la calidad del cacao. Este procedimiento obedece a la integralidad de los programas establecidos y dependerá del equipo de calidad su funcionamiento orientado a garantizar el cumplimiento de los límites críticos en armonía con los demás planes.

- 12. Medidas correctivas: Las medidas correctivas a su vez están a disposición y decisión del equipo de calidad, sin embargo, debido a los puntos críticos identificados, se recomienda que, en caso de desfases mediante el límite superior, se realice la destrucción del material para evitar que acceda al mercado y pueda generar riegos de salud pública.
- 13. Verificación del plan: Estas acciones deben ser supervisadas de acuerdo con los perfiles del personal de la central especialmente por el equipo de calidad quienes fueron capacitados en cada una de las cuatro centrales de beneficio de cacao respecto al funcionamiento del sistema CECAO, registro de información, medición de variables, toma de decisiones, vigilancia y monitoreo del cacao en sus fases de postcosecha, estas orientaciones se realizaron tanto de forma presencial como virtual, grupales o personalizadas de acuerdo con la temática abordada explicando cada programa, peligros y puntos críticos, límites de control, sus beneficios, además de oportunidades de mejora, bajo un enfoque adaptado a las condiciones de cada establecimiento tal como fue diseñado la documentación, de modo que permitiera una implementación paulatina y eficaz. Lo anterior permite que todos los directamente involucrados con la calidad e inocuidad desde un abordaje de liderazgo realicen la inspección o verificación de condiciones del plan de peligros, así como su accionar preventivo en las centrales de beneficio, disminuyendo riesgos que puedan representar afectaciones para el consumidor final y por tanto al sector público que abarca el mercado de este cacao.
- 14. Mantener registros: Para que el registro de actividades sea de forma articulada, de fácil manejo, interpretación y evitando la duplicidad, se decidió que la información consignada en los programas pre-requisitos, se consideran como el eje principal para las acciones de supervisión. Verificando conforme a los enfoques preventivos y correctivos establecidos por el sistema CECAO, complementados con la identificación de peligros y los correspondientes límites críticos.


Desde la identificación de peligros, se constituye un factor de gran relevancia pues permite a las asociaciones de productores de cacao, conocer su proceso, mejorar las condiciones del mismo, garantizando que su producto cuente con ventajas competitivas en el mercado, debido a la información de respaldo; así como el control de variables que conlleven a asegurar la inocuidad del grano, mejorar las propiedades físicas, químicas y sensoriales las cuales con estrategias dinámicas de mercados generarán mejores precios y con ello, impactos en la calidad de vida de los productores del departamento del Huila. Así como lo concluye Ruíz-Cárdenas et al. (2023) quienes en su estudio de 19 empresas de la industria de cacao y chocolate en Perú identificaron el cumplimiento de los requisitos HACCP, encontrando oportunidades de mejora en su diseño, implementación y control, pero a la vez relaciona positivamente el crecimiento económico de estos establecimientos con la aplicación de estos sistemas. Además, complementado con los resultados obtenidos por Perez-Castillo quien en 2023 determinó en su investigación una relación positiva entre el sistema HACCP y la exportación del grano de cacao, siendo esto el complemento de lo que presenta Vassos (2024), Okpala y Korzeniowska (2023), así como Awuchi (2023), quienes estudiaron y concluyeron el mejoramiento de la confiabilidad y durabilidad de los productos a través de la aplicación de sistemas de gestión de calidad.

6.4. Seguimientos

De acuerdo con el planteamiento metodológico para realizó seguimiento del avance en relación al establecimiento del sistema y su relación con el mejoramiento de las características físicas, químicas y sensoriales del grano que se produce en cada central se realizaron dos seguimientos, uno intermedio después de establecer el sistema CECAO y el final, donde se abordó el análisis de peligros; como herramienta se empleó la lista de control desarrollada en el ítem 6.1, dando como resultado la información expresada en la figura 25.

Figura 25.

Cumplimiento de requisitos sanitarios con relación al seguimiento.

De acuerdo con la investigación y mediante la aplicación de la herramienta diseñada y aplicada, se identifica el porcentaje de avance durante las tres fases de estudio que se abordaron, como se menciona en los resultados de diagnóstico, respecto a requisitos higiénicos y operaciones en proceso, la central de Algeciras fue líder, manteniéndose durante el estudio; también se reconocieron los puntos a intervenir en cada central así como aquellos para trabajar de manera conjunta de modo que se alcanzaran condiciones homólogas para las cuatro centrales de beneficio de cacao del departamento del Huila. Se observó que el modelo aplicado en los establecimientos de acopio, contaban con potencial de uso coordinado, construyendo redes de trabajo articulado que permitieran un progreso beneficioso para las mismas, obedeciendo a los planteamientos de Yoo (2022) y de este modo potenciar la cadena productiva del departamento.

Con relación al avance y satisfacción de requisitos sanitarios, se identifica que la intervención del sistema de aseguramiento CECAO resultado de la investigación fue favorable e incremental, observándose un cumplimiento igual o superior a la meta planteada del 70% en las 3 centrales de beneficio que participaron activamente para gestionar las adecuaciones e implementación de recomendaciones, controles y registros de variables dados por el equipo ejecutor siendo: Rivera, Algeciras y Gigante. La central que no alcanzó

el cumplimiento de la meta estipulada, fue Campoalegre, no obstante, superó el 60% subsanando falencias en aspectos documentales, lo que supone que, mediante el desarrollo de la mejora continua a partir de los criterios de evaluación planteados, es posible aumentar la conformidad de los aspectos sanitarios y de calidad en general como lo abordado en el estudio de Nowicka-Skowron y Stegăroiu (2014).

Aunque los anteriores resultados fueron favorables, era necesario que fueran contrastados respecto al seguimiento y evaluación de las muestras de cacao de cada central de beneficio durante los tres momentos de estudio considerando sus propiedades físicas, químicas y sensoriales. Destacando que tal como es mencionado por Vujatović et al. (2023) así como por Reznikova y Kravets (2022), los sistemas de gestión de calidad potencian las características del producto; lográndose constatar en razón a la tendencia incremental obtenida en cada característica, con mejoría frente a los índices de cumplimiento planteados en la normatividad vigente y demás metodología adoptada.

6.5. Análisis físico

Uno de los factores de gran relevancia en el mercado del cacao, es el índice de fermentación, siendo esta el resultado de una prueba de corte de 100 granos en los cuales mediante la conformación de la estructura interna, color y demás consideraciones, se clasifican los granos para identificar su nivel de fermentación como: no fermentado, insuficientemente fermentado y completamente fermentados; además de considerar otros factores como presencia de plagas o componentes no deseables, humedad y tamaño de grano, estos valores en Colombia son regulados bajo la Norma Técnica Colombiana 1252:2021 (ICONTEC, 2021) y que es el punto de partida de los establecimientos comerciales para realizar la compra de este alimento (Ramón et al., 2022), es importante aclarar que esta norma no es de obligatorio cumplimiento, sin embargo se recomienda como un protocolo claro y conciso, por tanto la investigación basó su análisis y expresión, considerando esta norma, aplicando la metodología por personal entrenado y con experiencia en el campo, correspondiente al autor y las entidades de apoyo (AGROSAVIA, SENA, USCO). En la Tabla 13 se exponen los resultados obtenidos respecto a especificaciones sensoriales del cacao en grano para las fases de diagnóstico, intermedio y final correspondiente a los seguimientos realizados en cada una de las 4 centrales de beneficio y en la Tabla 14 se presentan los resultados correspondientes a los requisitos físico y químicos de los mismos.

Tabla 13.Resultados de análisis físico de cacao seco en grano – Especificaciones sensoriales.

Central	Diagnóstico	Intermedio	Final
Rivera	color marrón, poco rugoso, cascarilla dificil de desprender, sabor a cacao, predominando sabores ácidos, amargo y astringente, olor típico pungente	Grano limpio y homogéneo, color marrón, rugoso y quebradizo, cascarilla fácil de desprender, sabor característico cacao fermentado, ausencia de atípicos, olor típico característico cacao fermentado, pungente acético, libre de olores extraños.	marrón, rugoso y quebradizo, cascarilla fácil de desprender, sabor característico cacao fermentado, ausencia de atípicos, olor típico característico cacao

Central	Diagnóstico	Intermedio	Final
Campoalegre	Grano limpio, no Homogéneo, color marrón, poco rugoso, cascarilla dificil de desprender, sabor a cacao, predominando sabores ácidos, amargo y astringente, olor típico pungente acético, libre de olores extraños, notas a descomposición.	cascarilla fácil de desprender, sabor característico cacao fermentado, ausencia de atípicos, olor típico	marrón, rugoso y quebradizo, cascarilla fácil de desprender, sabor característico cacao fermentado, ausencia de atípicos,
Algeciras	Grano limpio, no Homogéneo, color marrón, poco rugoso, cascarilla dificil de desprender, sabor a cacao, predominando sabores ácidos, amargo y astringente, olor típico pungente acético, libre de olores extraños.	desprender, sabor característico cacao fermentado, notas a sobre fermentación, olor típico:	marrón, rugoso y quebradizo, cascarilla fácil de desprender, sabor característico cacao fermentado, ausencia de atípicos, olor típico característico cacao fermentado, pungente acético,
Gigante	Grano limpio y homogéneo, color marrón, poco rugoso, cascarilla dificil de desprender, sabor a cacao, predominando sabores ácidos, amargo y astringente, olor típico pungente acético, libre de olores extraños	marrón, rugoso y quebradizo, cascarilla fácil de desprender, sabor característico cacao fermentado,	marrón, rugoso y quebradizo, cascarilla fácil de desprender,

Lo anterior indica que en la fase inicial de la experimentación, se encuentra que las centrales respecto a especificaciones sensoriales del cacao seco en grano que obtenían, presentaban condiciones de mezclas de lotes de fermentación y secado alcanzando diferencias en tamaños y color, situación que estaría afectando el nivel de fermentación alcanzado, debido a la alta variabilidad de granos y variedades de cacao, por tanto en el sistema CECAO se plantearon las condiciones descritas en acápites anteriores para alcanzar la estandarización de estos, y lograr un producto con mayor homogeneidad de características, logrando que para el segundo seguimiento, hubiese una mayor satisfacción de este requerimiento con la excepción de que Algeciras presentó resultado atípico por proliferación de mohos, atribuyéndose a la temporada de lluvias y deficiencias en el control de volteos almacenamiento, por lo cual se estudió como fase importante para la identificación de peligros, a la vez que, se fortalecieron los programas de capacitación del personal y de trazabilidad, subsanando estas no conformidades, dando paso al seguimiento final con resultados satisfactorios, representados por un mayor compromiso por parte de las partes involucradas en las funciones administrativas y operativas del establecimiento.

En términos de especificaciones sensoriales para el análisis físico donde los evaluadores aplicaron la tabla B.1. de la Norma Técnica Colombiana 1252:2021 (ICONTEC, 2021) se determinó que para la fase final en las cuatro centrales de beneficio se dio alcance satisfactorio de las características, no obstante, es un análisis de estructura y superficie del grano, por tanto, era de gran relevancia realizar el estudio de las características establecidas en la Tabla B.2. de la Norma Técnica Colombiana 1252:2021 (ICONTEC, 2021), obteniendo la información correspondiente a la tabla 14:

Tabla 14.Resultados de análisis físico de cacao seco en grano – Requisitos físicos y químicos.

Código	IG	Н	I	BF	IF	М	DIG	Р	SF	Α	рН	FT
LBR	132	7,60	0,00	36,70	26,70	0,00	2,00	4,00	30,60	82,35	4,63	63,40
LBC	140	7,50	1,51	44,00	17,70	0,00	2,70	7,40	28,20	84,78	5,48	61,70
LBA	148	6,90	0,00	46,00	29,00	0,00	0,00	0,30	24,70	83,33	5,19	75,00
LBG	187	7,50	0,00	45,30	29,00	0,00	1,00	0,00	24,70	83,75	4,68	74,30
IMR	120	5,40	0,05	70,00	12,00	0,00	12,00	0,00	6,00	82,50	4,80	82,00
IMC	104	6,40	1,20	65,00	20,00	0,00	0,00	0,00	15,00	80,00	5,20	85,00
IMA	134	6,30	0,20	80,00	7,00	4,00	7,00	1,00	1,00	85,00	6,30	87,00
IMG	140	6,60	0,05	76,00	12,00	0,00	0,00	0,00	12,00	85,00	4,70	88,00
FNR	154	6,90	0,40	81,00	14,00	0,00	0,00	0,00	5,00	82,00	5,10	95,00
FNC	117	6,40	0,30	80,00	15,00	0,00	0,00	0,00	5,00	84,00	5,60	95,00
FNA	145	6,00	0,40	77,00	16,00	1,00	0,00	0,00	6,00	90,00	5,50	93,00
FNG	152	6,20	0,00	85,00	11,00	0,00	0,00	0,00	4,00	87,50	5,00	96,00

Nota: LB=Linea base/diagnóstico; IM=Intermedio; FN=Final; R=Rivera; C=Campoalegre; A=Algeciras; G=Gigante; IG= índice de grano (masa en g de 100 granos); H= Porcentaje de humedad; I= Contenido de impurezas (%); BF=Granos bien fermentados (%); IF= Granos insuficientemente fermentados (%); M= Grano con moho interno (número de granos/100 granos); DIG= Granos dañados por insectos o germinados (número de granos/100 granos); P=Granos partidos (número de granos/100 granos); SF= Granos sin fermentar (%); A= Contenido de almendra (%); pH=Unidades de pH; FT= Fermentación total (BF+IF).

A partir de los resultados obtenidos en el análisis físico mediante la prueba de corte y lineamientos normativos, se evidencia que la intervención del sistema de aseguramiento de calidad en centrales de beneficio CECAO planteado en la investigación además de la identificación de peligros, establecimiento de límites de control y generación de acciones preventivas, mejoran las condiciones físicas del grano relacionadas con la fermentación siendo este un factor determinante para la calidad del cacao fino y de aroma, así como el secado que brinda las condiciones de equilibrio y estabilidad para el almacenamiento, transporte y comercialización (Mougang et al., 2024).

Partiendo de la información obtenida y tomando como referencia la fermentación total (FT) que para el caso de estudio es la variable que presenta mayor alineación para la interpretación de datos, debido a que a través de esta, es posible realizar comparación estadística determinando su comportamiento como característica física frente a la aplicación del sistema en cada central de beneficio así como la identificación negativa, no significante o positiva y por tanto la influencia del sistema CECAO; para ello, se aplicó un análisis de varianza ANOVA multifactorial teniendo la "fermentación total" como variable dependiente, "seguimiento" y " central" como factores, y empleando el método Tukey HSD con un nivel de confianza del 95% (Véase tabla 15); esto permitió identificar diferencias entre los diferentes tratamientos llevados a cabo en la investigación relacionándolos con los objetos de estudio, los tiempos de muestreo estimados de acuerdo con la intervención del sistema de aseguramientos, a la vez que se analizó los resultados de estos a través del total de fermentación obtenido a partir del análisis físico estándar ejecutado bajo los lineamientos normativos colombianos establecidos para cacao como matriz alimentaria.

Tabla 15.

Análisis de Varianza para Total de Fermentación (%) - Suma de Cuadrados Tipo III.

Fuente	Suma de Cuadrados	GI	Cuadrado Medio	Razón-F	Valor-P
EFECTOS PRINCIPALES					
A:Seguimiento	1406,66	2	703,33	46,56	0,0002
B:Central	83,2167	3	27,7389	1,84	0,2411
RESIDUOS	90,6333	6	15,1056		
TOTAL (CORREGIDO)	1580,51	11			

Nota: Todas las razones-F se basan en el cuadrado medio del error residual.

El análisis del valor de significancia (Valor-P) indica que no existen diferencias significativas entre las centrales de beneficio, lo que sugiere una estandarización efectiva del proceso. Sin embargo, se evidenciaron variaciones significativas a lo largo de los seguimientos, reflejando cambios relevantes en el porcentaje de fermentación, lo cual era esperado, dado el objetivo de lograr una fermentación homogénea en los establecimientos evaluados.

Tabla 16.Pruebas de Múltiple Rangos para Total de Fermentación (%) por Seguimiento

Método: 95,0 porcentaje Tukey HSD.

Seguimiento	Casos	Media LS	Sigma LS	Grupos Homogéneos
Diagnóstico	4	68,6	1,94329	X
Intermedio	4	85,5	1,94329	X
Final	4	94,75	1,94329	X

Contraste	Sig.	Diferencia	+/- Límites
Diagnóstico - Final	*	-26,15	8,43239
Diagnóstico - Intermedio	*	-16,9	8,43239
Final - Intermedio	*	9,25	8,43239

Nota: * indica una diferencia significativa.

Se identificaron tres grupos homogéneos (p<0,05) expresados en la tabla 16, asociados al incremento del porcentaje de fermentación en cada uno, respaldando la relación positiva dada entre la fermentación y el establecimiento del sistema CECAO a través de las 3 fases abordadas, observables en la figura 26.

Figura 26.

Análisis de Varianza Total de Fermentación (%) vs Seguimiento.

Con esto, se sustenta la hipótesis de investigación planteada, desde las propiedades físicas, ya que se observó una mejora en el porcentaje de fermentación a medida que se establecía el sistema de aseguramiento, este resultado es coherente con lo reportado por Bustamante y Murillo (2023), quienes, en un centro de acopio de cacao en Ecuador, aplicaron buenas prácticas de manufactura mediante una metodología de diagnóstico y formulación de acciones de mejora, lo cual derivó en un aumento tanto en el cumplimiento de dichos principios como en la calidad del producto final, cacao seco en grano. De igual forma, Sopla y Jara (2020) abordaron variables como el tiempo, la temperatura y las remociones durante la fase de fermentación; aspectos que también fueron considerados por Mariño-Palacios (2024). Estas condiciones fueron incorporadas en el presente estudio mediante la implementación del sistema CECAO, orientado al mejoramiento y estandarización del proceso, con repercusiones positivas en la comercialización de cacao, tal como lo describen Mora et al. (2022)

6.6. Análisis químico

Método: 95.0 porcentaie Tukey HSD.

Las características químicas constituyen una de las variables de estudio de gran relevancia para la consideración e interrelación de los atributos físicos y sensoriales, por tanto, durante los muestreos ejecutados, se realizó el análisis de polifenoles totales e índice de fermentación mediante espectrofotometría aplicando la metodología planteada; obteniendo la información correspondiente a la tabla 17, a partir de ANOVA multifactorial, confianza 95%, Tukey HSD:

Tabla 17.

Análisis de Varianza para Polifenoles Totales EAG (mg/g) - Suma de Cuadrados Tipo III.

Fuente	Suma de Cuadrados	GI	Cuadrado Medio	Razón-F	Valor-P
EFECTOS PRINCIPALES					
A:Seguimiento B:Central RESIDUOS TOTAL (CORREGIDO)	0,00842611 0,00265944 0,00357221 0,0146578	2 3 6 11	0,00421305 0,00088648 0,000595369	7,08 1,49	0,0264 0,3097

Nota: Todas las razones-F se basan en el cuadrado medio del error residual.

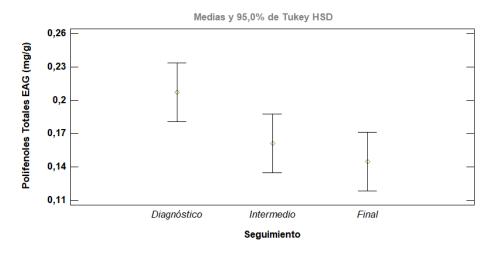
El contenido de polifenoles totales para el estudio de las centrales no presentó variaciones relevantes, lo cual se atribuye a la homogeneidad de procesos en ellas, y para el caso de los seguimientos como se observa diferencias estadísticamente significativas p<0,05.

Tabla 18.Pruebas de Múltiple Rangos para Polifenoles Totales EAG (mg/g) por Seguimiento.

Seguimiento	Casos	Media LS	Sigma LS	Grupos Homogéneos
Final	4	0,1447	0,0122001	X
Intermedio	4	0,161208	0,0122001	XX
Diagnóstico	4	0,207318	0,0122001	X

Contraste	Sig.	Diferencia	+/- Límites
Diagnóstico - Intermedio		0,04611	0,052939
Diagnóstico - Final	*	0,0626175	0,052939
Intermedio - Final		0,0165075	0,052939

Nota: * Indica una diferencia significativa.


De acuerdo con lo expresado en la tabla 18, se conformaron dos grupos homogéneos siendo el seguimiento intermedio el que interviene en ambos lo cual se vincula con el proceso de transición durante la fase de establecimiento del sistema de aseguramiento; para el diagnóstico y final, es donde se presenta la diferencia considerable, lo que denota en que el objetivo de la investigación con respecto al contenido de polifenoles tienen incidencia con tendencia disminuir mientras la fermentación aumenta.

En el cacao, en su composición, se estima que cuenta con tres grandes grupos de polifenoles, las proantocianidinas, las catequinas y las antocianinas, con el 58%, 37% y el 4% respectivamente, y estas se relacionan con la calidad sensorial puesto que a las primeras se les atribuye la sensación de astringencia y a la segunda, la percepción de amargor, por tanto, cuando el cacao posee en mayor cantidad estos compuestos, su sabor se verá afectado en estos dos atributos (Menéndez y Burgos, 2021).

Con lo anterior como punto de partida, y teniendo como referencia lo expresado por López-Hernández y Criollo-Nuñez (2023) quienes establecen que el contenido de polifenoles de cacao están determinados por el fruto y su genotipo a la vez que por la calidad fermentativa, secado y demás procesamiento del grano que dependiendo de su control, puede disminuir hasta un 60% de su contenido que se estima entre el 10 y el 20% de su peso seco (Menéndez y Burgos., 2021).; razón por la cual se llevó a cabo la determinación de este compuesto en el cacao de las centrales de beneficio, sin embargo es importante destacar que la muestra para la cuantificación, correspondía a licor o masa de cacao, lo que corresponde al sometimiento de las etapas de tostión y refinado.

Figura 27.

Análisis de Varianza Polifenoles totales EAG (mg/g) vs Seguimiento.

Como resultado, en la figura 27, se obtuvo que las muestras presentaron valores entre los 0,11 y 0,25 mg/g EAG, siendo una composición que no se ajusta a los resultados expresados en investigaciones como la realizada por Muhammad et al. (2018) los cuales obtuvieron contenido de polifenoles de cacao de Indonesia de 96,94 ± 5,83 mg/g además

que referencia reportes en cacao de Camerún cercano a los 150 mg/g, del mismo modo, investigadores como Grassia et al. (2019) presentan estimaciones que oscilan entre los 11 y los 20 mg/g para cacao de Ghana e incluso 33 mg/g (Huang et al., 2014), Esto se relaciona al tipo de tratamiento que fue aplicado en la muestra correspondiente a la extracción, además de la variedad genética y condiciones agroclimáticas las cuales intervienen significativamente, No obstante, los resultados obtenidos se ajustan a los descrito por Ibrić y Ćavar (2014), cuyo rango osciló entre 0,03 y 0,3 mg/g para muestras de cacao del continente Americano. Así mismo Vera-Chang et al. (2024) estudiaron diferentes clones de cacao, obteniendo contenido de polifenoles totales entre 50 y 89 mg/g resaltando que su muestra era de cacao sin fermentar y por tanto la expresión de polifenoles se considera mayor pues no hubo pérdidas del compuesto debido al proceso; para el caso de Daza (2023) quien experimentó con diferentes tratamientos de fermentación y secado de cacao peruano, obtuvo contenidos entre 1 y 12 mg/g, lo que reafirma que el tratamiento también es de gran influencia.

Para el caso de la muestra de estudio, fueron mezcla de clones de cacao de las diferentes zonas de influencia de las centrales, sin alterar las condiciones en las cuales fue cosechado para ajustar los protocolos a las mismas: recepción de cacao sin afectación, fermentación de siete días y secado al por convección natural al sol durante 5-6 días, además fue sometido a tostión media de 120°C durante 25 minutos (ISCQF, 2020), indicando que estas fases bioquímicas y las altas temperaturas, a su vez, deben ser consideradas minuciosamente para este tipo de procesos.

Al contrastar los resultados del total de fermentación (Figura 26) y el contenido de polifenoles totales (Figura 27) se observa una relación inversamente proporcional, pues mientras mayor sea la fermentación, menor es el contenido de estos componentes y si la fermentación es menor, mayor será la presencia de polifenoles que se presentarán en el cacao seco en grano, obedeciendo a lo concluido por Alvarado et al. (2020) en su estudio del contenido de polifenoles respecto a diferentes tratamientos efectuados durante la poscosecha de cacao. además, desde el ámbito sensorial se indica que la percepción de amargo y astringente tendrá menos incidencia y de este modo mayor expresión de sabores como cacao, acidez y complementarios, con alta aceptación en el mercado de confitería y la chocolatería fina (Álvarez et al., 2023).

Tabla 19.

Análisis de Varianza para Índice de fermentación - Suma de Cuadrados Tipo III.

Fuente	Suma de Cuadrados	GI	Cuadrado Medio	Razón-F	Valor-P
EFECTOS PRINCIPALES					
A:Seguimiento B:Central RESIDUOS TOTAL (CORREGIDO)	3,65508 0,800062 1,47937 5,93451	2 3 6 11	1,82754 0,266687 0,246561	7,41 1,08	0,0239 0,4254

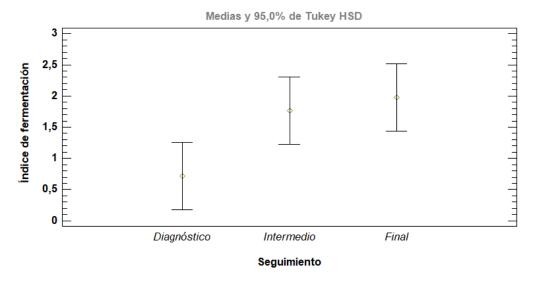
Nota: Todas las razones-F se basan en el cuadrado medio del error residual

Para el caso del índice de fermentación, datos expresados en la tabla 19; el resultado se relaciona con el de polifenoles, pues no existen divergencias destacadas para las centrales de beneficio, pero para los seguimientos estas diferencias si se estimaron como significativas p<0,05.

Tabla 20.Pruebas de Múltiple Rangos para Índice de fermentación por Seguimiento.

Método: 95,0 porcentaje Tukey HSD.

Seguimiento	Casos	Media LS	Sigma LS	Grupos Homogéneos
Diagnóstico	4	0,71525	0,248274	X
Intermedio	4	1,7611	0,248274	XX
Final	4	1,98	0,248274	X


Contraste	Sig.	Diferencia	+/- Límites
Diagnóstico - Intermedio		-1,04585	1,07732
Diagnóstico - Final	*	-1,26475	1,07732
Intermedio - Final		-0,2189	1,07732

Nota: * indica una diferencia significativa.

Los resultados de la tabla 20, indican la conformación de dos grupos homogéneos, con discrepancia en el diagnóstico y el final siendo favorable para la investigación, comprobando una intervención beneficiosa del sistema CECAO con las diferentes propiedades del grano.

Figura 28.

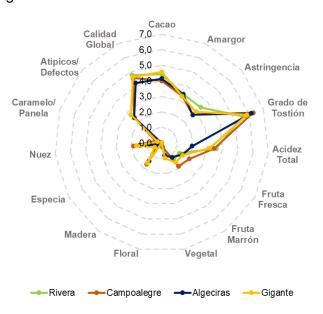
Análisis de Varianza - Índice de fermentación vs Seguimiento.

En la figura 28, se puede apreciar un incremento del índice de fermentación durante cada muestreo, para el caso del diagnóstico su media era inferior a 1.0, valor de referencia obtenido por Sunoj et al. (2016) con datos oscilantes entre 0.5 y 1.2, además de Ruiz-Santiago et al. (2024) quien en su estudio de cacao en Ecuador, propone este valor para clones de cacao trinitario y forastero y de 2,5 para variedad criollo, lo cual es consistente con los resultados obtenidos, además que el departamento del Huila y las cuatro centrales de beneficio de cacao ejecutan sus procesos productivos con mezclas de diferentes variedades genéticas y por tanto no es posible establecer un valor exacto, por lo cual se adopta la referencia, destacando el cumplimiento para las fases intermedia y final, con relación directamente proporcional al análisis físico e inversa con el contenido de polifenoles.

6.7. Análisis sensorial

La obtención de resultados relacionados con los atributos sensoriales de las muestras en cada sequimiento, fue llevada a cabo a través de la preparación de ésta, de acuerdo con la metodología planteada, correspondiente a cacao de excelencia descrita en la guía para la evaluación de la calidad y el sabor del cacao (2024), empleando tostión media en submuestras de 600 g ejecutado en horno de convección forzada marca Tornado, Ref: TX32M aplicando 125±1°C durante 25 minutos, seguido por descascarillado mecánico, molido en molino de cuchillas KitchenAid Negro ónice, en intervalos de 30 segundos, realizando un total de 20 acciones y finalmente refinado por 2 horas hasta obtener licor o masa de cacao en refinador Melanger Premier, almacenado en refrigeración 4ºC ±1ºC hasta el momento de la evaluación, donde fue fundido mediante aplicación de calor indirecto mediante vapor por "baño maría" hasta alcanzar 45°C ±2°C, y servido al panel de catación constituido por 7 personas previamente entrenadas para la identificación de intensidades y atributos de la matriz cacao y chocolate, quienes emitieron una puntuación y concepto para cada muestra, que posteriormente fueron compilados y procesados para determinar su media aritmética alcanzando desviación estándar σ <1, dando como resultado los datos descritos en la tabla 21:

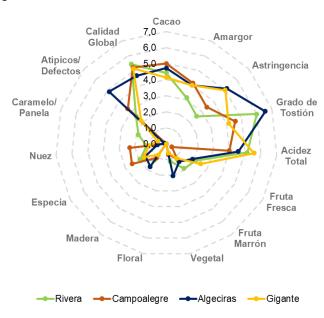
Tabla 21.Reporte de resultados de atributos sensoriales de cacao por seguimiento y central.


Código	Cacao	Amargor	Astringencia	Grado Tostado	Acidez Total	Fruta Fresca	Fruta Marrón	Vegetal	Floral	Madera	Especia	Nuez	Caramelo/ Panela	Atípicos/ Defectos	Calidad Global
LBR	4,40	3,40	3,40	5,60	3,60	1,30	1,30	0,30	0,00	1,60	0,50	1,40	0,00	2,40	4,80
LBC	4,00	3,30	2,70	6,30	3,40	2,10	1,90	0,30	0,00	1,70	0,00	1,90	0,40	2,40	4,60
LBA	4,10	3,40	2,70	6,10	2,00	1,50	1,10	0,80	0,00	1,40	0,30	1,40	0,00	2,40	4,20
LBG	4,60	3,30	3,00	5,90	3,10	1,60	1,50	1,00	0,00	1,60	0,50	1,70	0,30	2,70	4,60
IMR	4,40	3,10	2,60	6,00	5,10	2,10	1,90	1,10	0,00	1,30	1,90	1,30	1,90	2,60	5,40
IMC	5,00	4,10	3,40	4,60	4,00	0,40	1,20	0,70	0,00	1,10	2,50	2,30	0,00	3,30	5,20
IMA	4,70	4,00	5,10	6,60	4,60	1,90	1,40	2,00	0,00	1,80	1,50	0,60	0,10	4,90	4,60
IMG	4,10	4,00	5,00	4,10	5,60	2,50	1,10	0,60	0,00	0,90	1,60	1,10	0,60	2,10	5,10
FNR	4,30	2,70	2,00	5,00	3,30	3,00	2,40	1,60	0,00	1,90	2,60	1,70	1,30	0,00	7,30
FNC	5,00	3,30	2,30	5,70	3,30	2,60	2,40	1,30	0,00	2,40	1,70	2,20	1,00	0,00	7,30
FNA	5,70	3,30	1,70	5,00	2,30	3,70	1,80	0,70	0,30	2,40	1,90	1,60	0,70	0,00	7,70
FNG	4,70	2,70	2,00	6,00	2,70	2,60	2,20	0,30	0,00	2,20	1,30	1,60	0,00	0,30	6,80

Nota: LB=Linea Base/Diagnóstico; IM=Seguimiento Intermedio; PF=Seguimiento Final; R=Rivera; C=Campoalegre; A=Algeciras; G=Gigante.

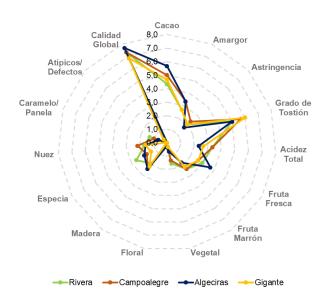
Esta información permitió la construcción de los perfiles sensoriales para cada seguimiento y de este modo, mediante diagramas radiales observar el comportamiento de estos atributos con relación a las fases de implementación del sistema de aseguramiento, para la cual se determina que en el diagnóstico (véase figura 29) las muestras de las cuatro centrales presentaban perfiles sensoriales similares, no obstante se destaca que su calidad global no fue superior a 5, indicando desbalance de sabor, además de que sus tributos principales (Cacao, amargo, astringencia y acidez) fueron calificadas de intensidad media baja con poco atributos complementarios (frutal, especia, madera, nuez) y se identifica presencia de sabores atípicos o defectos, los cuales se correlacionan con aquellos encontrados durante en análisis físico.

Figura 29.


Perfil sensorial – Diagnóstico.

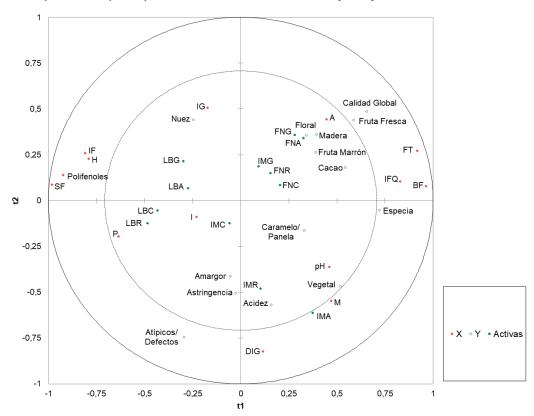
En la fase intermedia, resultados observables en la figura 30, denotan que se presentó mayor diferencia entre centrales, identificando un cambio en sus atributos principales con incremento en la percepción de amargo y acidez, pues el sistema de calidad para este momento estaba en proceso de aplicación y por tanto su intervención afectó directamente estas variables; así mismo, para alcanzar la propuesta final se modificaron tiempos y técnicas de volteo hasta adoptar un procedimiento adecuado para los establecimientos de acopio. No obstante, los atributos complementarios fueron más perceptibles y por tanto hay una mayor participación de los mismo en el perfil; nuevamente los defectos encontrados en el análisis físico de las muestras intervinieron en su puntuación, convirtiéndose en un factor de análisis para identificar los límites críticos que fueron establecidos, tomando las respectivas medidas de prevención. Para el caso de Algeciras en razón a sus variaciones climáticas, exige una mayor frecuencia en el seguimiento y estricta supervisión en las variables propuestas en el sistema CECAO, Además a Campoalegre se recomendó adecuaciones de tipo estructural para una menor intervención de factores ambientales. Es importante aclarar que posterior a este seguimiento y para fortalecer las actividades de procesamiento, vigilancia y control, fueron entregadas a las centrales diferentes equipos y herramientas que permitieran el mejoramiento de las condiciones operativas.

Figura 30.


Perfil sensorial – Seguimiento Intermedio.

Finalmente, al culminar la investigación y haberse establecido todas los criterios propuestas de sanidad y calidad, se obtuvo puntuación y perfil destacados como se muestra en la figura 31: Atributos principales como cacao pronunciado-sostenido, amargo y astringencia de baja intensidad, acidez frutal cítrica, con mayor expresión de sabores complementarios, como fruta fresca, fruta marrón, nuez, madera y especias, menor percepción de defectos y calidad global igual o superior de 7.0, Resaltando por su sabor balanceado.

Figura 31.


Perfil sensorial – Seguimiento Final.

Relacionando los resultados con las propiedades físicas y químicas, se evidencia la interacción directa que tienen éstas, con los atributos sensoriales, pues como se indicó anteriormente, con un porcentaje menor de fermentación, mayor expresión de polifenoles totales se evidenciaba, logrando distinguirse en la percepción de amargo y astringencia tal como se distingue en los seguimientos de diagnóstico e intermedio, mientras que para el final cuya fermentación fue mayor y polifenoles en menor proporción, estos atributos disminuyeron significativamente y se dio la expresión de los complementarios. Así que, considerando lo previamente señalado, se identifica la relación del sistema con la obtención de perfiles sensoriales mayormente balanceados en las centrales; pasando de un cacao con apreciación gustativa de defectos y notables oportunidades de mejora, a alcanzar una muestra de cacao con atributos de sabor balanceados y expresando sabores complementarias que podrían destacarse como característicos de la zona donde se cultiva el fruto, pues se observa que para el seguimiento final, aunque las cuatro centrales se ubican en diferentes municipios, corresponden a una ubicación geográfica bajo condiciones similares de cultivo lo cual generó cuatro perfiles similares entre sí, siendo éste, uno de los descubrimientos de mayor relevancia, pues para potenciar el cacao Huilense se requiere de estrategias asociativas y de trabajo en equipo entre establecimientos de este tipo, que aunque ejecutan sus procesos de manera particular, al que al implementar el sistema de aseguramiento pueden generar resultados homólogos, que conlleven a posicionar en el mercado el cacao del departamento, y a través de ello, mejorar las condiciones socioeconómicas de los pequeños y medianos cacaocultores, además de brindar la posibilidad de replicar el modelo a nivel nacional e internacional.

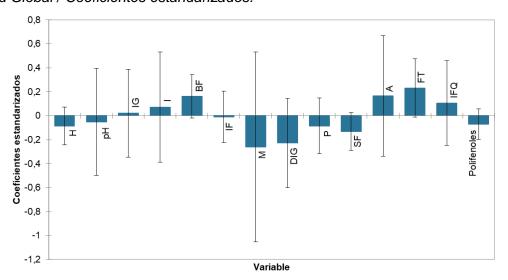
Figura 32.

Análisis por componentes principales – Correlaciones sobre eje t1 y t2.

Para observar la interacción de los datos entre las propiedades físicas, químicas y sensoriales analizadas durante la investigación, se aplicó la regresión de mínimos cuadrados parciales PLS por sus siglas en inglés (Partial least squares) con el fin analizar los componentes principales del estudio y con ello establecer la correlación entre estos identificando patrones y agrupaciones que explican la variabilidad de los datos. En la figura 32, Los ejes principales (t1 y t2) explican la varianza de los datos, permitiendo una interpretación clara de las relaciones entre las variables. Observándose que los atributos sensoriales de "calidad global", "fermentación total", "bien fermentados", "fruta fresca" y "cacao" se encuentran agrupados en el cuadrante superior derecho, permitiendo deducir una correlación positiva entre ellos y por tanto la identificación de estos dan paso a una percepción de calidad mayor, Por otro lado, la "astringencia", "amargor" y "acidez" se ubicaron en el cuadrante inferior izquierdo, lo que sugiere que estas características están relacionadas con factores menos deseables en el perfil sensorial, es decir que al alcanzar calificaciones mayores, menor será percepción de calidad tal como lo expresa Fernández et al. (2022) en su revisión referente a los atributos del cacao con la calidad de este; no obstante al hacer parte de la composición natural del cacao, estas deben estar en equilibrio y brindar armonía en el sabor, por lo cual intensidades bajas pueden ser valorados positivos si en conjunto exaltan sabores como cacao y complementarios así como lo plantea Wilches-Molano (2022) en su estudio sensorial de cacao mediante nariz electrónica; lo cual se logra mediante la aplicación de protocolos de fermentación y secado controlados y encaminados hacia la disminución de compuestos aportantes de sabores poco deseables considerados atípicos o defectos, permitiendo desarrollar perfiles sensoriales refinados conforme a lo presentado por Liszkowska y Berlowska (2021) en su investigación de adaptación y control de variables en la postcosecha de cacao para la obtención de perfiles especiales.

Se evidencia que parámetros químicos como el "contenido de polifenoles", en articulación con los físicos como "granos sin fermentar" e "insuficientemente fermentados", ubicado en la parte izquierda de la gráfica, presentan una correlación con atributos como "Astringencia" y "Amargor", lo que confirma su influencia en la percepción sensorial del producto como describe Colognes et al. (2022) y Fayeulle et al. (2020) quienes atribuyen estas características al contenido de polifenoles y por tanto la fermentación dada. Adicional a ello se identifica que la humedad tambien interviene en factores como el desarrollo de defectos y sabores atípicos lo que corresponde a la determinación de punto final seguido por el almacenamiento del cacao bajo condiciones idóneas y de equilibrio, de modo que se le permita mantener sus condiciones naturales sin ser afectado significativamente por el ambiente, debido a la alta higroscopicidad que posee el grano, permitiéndole adquirir componentes de aroma y sabor que se encuentran en su medio, lo que puede generar contaminación, pero que con controles efectivos y entorno propicio en temperatura, ventilación y sanidad, mantienen sus atributos, en concordancia con lo expuesto por Saza-Coaji y Jiménez-Forero (2020).

Por otro lado, el pH, ubicado en el cuadrante inferior derecho, muestra una relación con características como "Acidez" y "Vegetal" correspondiente a los procesos de cosecha, estado de madurez del grano, la fermentación realizada así como el proceso de secado en concordancia con lo abordado por Camargo et al. (2024) así como Torres-Segura et al., (2024); partiendo del hecho de que en la estandarización de procesos para la postcosecha del cacao se busca alcanzar un margen adaptado por el establecimiento y partiendo de referencias como Konan et al. (2024), Camargo et a. (2024) y Haruna et al. (2024), los


cuales indican valores de pH entre 4.5 y 5.7 en el que se puede alcanzar una óptima fermentación y por tanto el desarrollo de atributos deseables; para el caso de las centrales de estudio se estableció un rango de 5.0 a 5.5 debido a las características agronómicas de cultivo, variedades y clones de la zona, además del manejo actual de mezclas genéticas del cacao generado en las fincas (Peraza, 2022).

La distribución de los puntos en la gráfica indica la diferenciación entre las muestras analizadas, mostrando cómo en los distintos seguimientos fueron impactados en los atributos sensoriales y fisicoquímicos del cacao. La proximidad de las variables sugiere relaciones directas, mientras que aquellas que se encuentran en direcciones opuestas pueden interpretarse como características inversamente proporcionales, observándose que las muestras del seguimiento diagnóstico se correlacionaron con factores de consideración negativo, mientras que el intermedio presentó una transición hacia los positivos, para que, al seguimiento final, las cuatro centrales se relacionaron positivamente entre sí y con aspectos como la calidad global, cacao, floral, frutal y buena fermentación.

Finalmente, tomando la calidad global como estimación de mayor relevancia en el balance de la muestra de cacao y por tanto la relación con sus atributos y aceptación en el mercado, se estima los coeficientes estandarizados que definen la relación que tiene cada factor con la variable y como afecta a la misma.

Figura 33.

Calidad Global / Coeficientes estandarizados.

Nota: Eje X: Variables que influyen en la calidad global; Eje Y: Indica la magnitud y dirección del impacto de cada variable sobre la calidad global.

A partir de la figura 33. Se observa con intervalos de confianza del 95% la participación de los aspectos físicos y químicos que afectan la calidad global de las muestras, permitiendo determinar que variables como "FT - Fermentación total" y "BF - Bien fermentados" presentan coeficientes con intervalos que no cruzan el valor de cero, lo que sugiere una influencia significativa y positiva sobre la calidad global. Por otro lado, variables como "M – Moho", "DIG – dañado por insectos o germinados", "SF - Sin fermentar", "Polifenoles" muestran coeficientes negativos, lo que indica que un aumento en su valor podría impactar negativamente en la calidad global desde el ámbito sensorial.

Cabe destacar variables como "H – Humedad", "pH", "IG – índice de grano", "I - Impurezas", "IF – Insuficientemente fermentados", "P - Partidos", "A – Contenido de almendra" e "Índice de fermentación" presentan un coeficiente cercano a cero, lo que sugiere una relación débil o no significativa con la calidad global dentro del rango de confianza analizado.

Con lo anterior, se respalda el planteamiento inicial encaminado hacia la aplicación de un sistema de aseguramiento con impacto en el mejoramiento de las condiciones de calidad física, química y sensorial del grano de cacao en centrales de beneficio de cacao de departamento del Huila, teniendo gran influencia la fase de fermentación corroborado por Mosquera et al. (2020) a través de los diferentes tratamientos aplicados en cacao, caracterizando tiempo-temperatura. Igualmente, el secado se debe considerar como un punto crítico de control y que, de acuerdo con los resultados obtenidos desde los diferentes aspectos analizados en este estudio, se evidencia el mejoramiento de las propiedades del grano para con ello buscar la participación en nuevos mercados con mayor retribución económica que beneficie a las familias cacaocultoras del departamento y del país de acuerdo con Hernández y Granados (2021) quien no solo relaciona la calidad, también hace referencia a los atributos únicos dados por el origen del cacao, contando el departamento del Huila con un gran potencial de explotación frente a este aspecto.

6.8. Análisis estadístico de resultados

Para tratar los datos obtenidos se establecieron como los de mayor interés los siguientes: Total de fermentación, contenido de polifenoles, índice de fermentación y calidad global, los cuales abordan las propiedades físicas, químicas y sensoriales del cacao y que fueron objeto de estudio durante la investigación. Habiéndose abordado de forma individual y establecidas las primeras aproximaciones a la relación entre variables a partir de referencias científicas, se procedió al desarrollo de un análisis multivariado para establecer correlaciones, determinando el modo de influencia entre sí. Dando como resultado los datos correspondientes a la tabla 22:

Tabla 22.Resumen estadístico de correlación entre variables físicas, químicas y sensoriales.

Resumen Estadístico	Total de Fermentación (%)	Índice de fermentación	Polifenoles Totales EAG (mg/g)	Calidad Global
Recuento	12	12	12	12
Promedio	82,95	1,48545	0,171083	5,63333
Desviación Estándar	11,9868	0,734507	0,0364972	1,2673
Coeficiente de Variación	14,4506%	49,4468%	21,333%	22,4965%
Mínimo	61,7	0,382	0,108	4,2
Máximo	96,0	2,8284	0,2309	7,7
Rango	34,3	2,4464	0,1229	3,5
Sesgo Estandarizado	-1,01021	0,372768	0,118785	0,954674
Curtosis Estandarizada	-0,467045	-0,398607	-0,493549	-0,961291

Se determina con base al sesgo estandarizado y la curtosis, que los datos provienen de una distribución normal sin desviaciones significativas, no obstante, la alta variabilidad observada respecto al total de fermentación y la calidad global, sugiere que se deben implementar medidas de control más estrictas durante la fermentación y otros procesos

post-cosecha para lograr una mayor consistencia en los productos obtenidos, aun así, los datos permiten establecer correlaciones de importancia para la ejecución de procesos en las centrales de beneficio, tal como se señala en la tabla 23.

Tabla 23.Correlación Pearson entre las variables físicas, químicas y sensoriales.

Correlaciones momento producto de Pearson	Total de Fermentación (%)	Índice de fermentación	Polifenoles Totales EAG (mg)	Calidad Global
Total de Fermentación (%)		0,7369	-0,8071	0,7612
		0,0063	0,0015	0,0040
Índice de fermentación	0,7369		-0,6581	0,5883
	0,0063		0,0200	0,0442
Polifenoles Totales EAG (mg)	-0,8071	-0,6581		-0,5205
	0,0015	0,0200		0,0827
Calidad Global	0,7612	0,5883	-0,5205	
	0,0040	0,0442	0,0827	

Nota: Tamaño de muestra = 12, el primer dato corresponde a la correlación y el siguiente al Valor-P.

A través de la correlación momento producto de Pearson se observa la existencia de correlación positiva-fuerte entre el total de fermentación, el índice de fermentación y la calidad global, pero negativa respecto a los polifenoles, es decir, si la fermentación e índice aumentan, pueden afectar favorablemente la percepción de calidad, mientas que con los polifenoles se presenta la situación inversa.

Tabla 24.Covarianzas entre las variables físicas, químicas y sensoriales.

COVARIANZAS	Total de Fermentación (%)	Índice de fermentación	Polifenoles Totales EAG (mg/g)	Calidad Global
Total de Fermentación (%)	143,6830	6,4876	-0,3531	11,5636
Índice de fermentación	6,4876	0,5395	-0,0176	0,5476
Polifenoles Totales EAG (mg)	-0,3531	-0,0176	0,0013	-0,0241
Calidad Global	11,5636	0,5476	-0,0241	1,6061

Nota: Tamaño de muestra = 12.

En complemento a las correlaciones, en la tabla 24 se presenta la estimación de las covarianzas entre las variables analizadas, lo que permitió establecer resultados consistentes y, en consecuencia, corroborar las interacciones tanto positivas como negativas entre ellas. Estas interacciones son, a su vez, monitoreadas mediante actividades de seguimiento, supervisión y control, lo que respalda científicamente el enfoque planteado inicialmente en la investigación. Y de este modo, los resultados obtenidos, tanto de manera individual como conjunta, permiten concluir que la implementación de un sistema de aseguramiento de calidad tipo HACCP, basado en el análisis de peligros y puntos críticos de control en las 4 centrales de beneficio de cacao del Huila, genera impactos positivos en el mejoramiento de la calidad física, química y sensorial del grano seco.

7. CONCLUSIONES

Se identificaron las etapas de recepción, fermentación y secado como fases críticas en la postcosecha o beneficio de cacao, con influencia directa sobre la calidad del grano. El análisis de peligro permitió clasificar los riegos físicos, químicos y biológicos presentes, sentando las bases para implementar acciones preventivas, efectivas y estandarizadas, que mejoran el control del proceso.

El diseño del sistema CECAO, Conformado por 4 planes, 10 programas y 12 formatos, constituyó una respuesta estructurada a las necesidades sanitarias, técnicas y de gestión observadas en las centrales. Este sistema permitió establecer un modelo de mejora continua, contextualizado y adaptado a las condiciones de las centrales, promoviendo la implementación progresiva de buenas prácticas de manufactura y fortaleciendo la capacidad productiva de las asociaciones vinculadas.

El establecimiento del sistema CECAO, evidenció mejoras consistentes en la calidad del grano, observadas en los tres momentos de evaluación. Se incrementó el porcentaje de fermentación, se redujeron defectos físicos, y se obtuvieron perfiles sensoriales con atributos balanceados en cada una de las cuatro centrales, lo que sugiere una incidencia positiva del sistema sobre la estandarización del proceso y parámetros de calidad que potencien el valor comercial del producto en el mercado.

8. RECOMENDACIONES

En vista de los resultados obtenidos, se recomienda continuar con el proceso de mejora continua por parte de las centrales de beneficio y las partes involucradas con el desarrollo de la región desde el ámbito educativo hasta el gubernamental, para que mediante una sinergia de trabajo se vele por el sostenimiento de las estrategias planteadas de tipo documentativos así como de implementación, siendo demostrado que este tipo de sistemas permiten mejorar las condiciones de proceso y propiedades del producto, además de que el nivel de exigencia puede ser incrementado a la par de que se realizan las adecuaciones respectivas para ajustarse cada vez más a la legislación sanitaria, siendo este el primer paso para ser un referente a nivel nacional en control y supervisión de variables bajo el enfoque de puntos críticos para la matriz alimentaria "cacao".

Es importante que las centrales en su proceso productivo destine recursos para adelantar mejoras en infraestructura y tecnología, lo que le permitirá avanzar significativamente en el manejo de la trazabilidad del cacao que se procesa en el establecimiento; a la vez que se podría realizar experimentaciones de diferentes procesos de fermentación y secado que conlleven al establecimiento de nuevos perfiles sensoriales para mercados específicos, puesto que aunque la investigación centró sus esfuerzos en obtener un estándar, las centrales podrían probar diferentes métodos que se ajusten a los requerimientos de clientes dispuestos a compensar económicamente estos esfuerzos y por ende lograr un desarrollo particular con influencia regional.

Finalmente, es de gran relevancia el compromiso por parte de cada uno de los involucrados y responsables de las centrales de beneficio para que la implementación del sistema de aseguramiento continúe y no se presente un retroceso de lo ya logrado con la investigación, tomándolo como punto de partida y avanzando significativamente para alcanzar metas más ambiciosas en productividad y competitividad para el sector, estableciendo lazos y equipos de trabajo entre asociaciones como la conformación de un panel de catación regional con productores o análisis de cacao intercentrales de forma periódica permitiendo identificar medidas de optimización que incrementen sus índices económicos y de ventas, con el fin de que retribuir a la región las inversiones dadas bajo este tipo de proyectos a través de la compensación a los productores y por ende el mejoramiento de sus condiciones de vida.

9. REFERENCIAS BIBLIOGRÁFICAS

- Abbott, P., Benjamin, T., Burniske, G. R., Croft, M. M., Fenton, M., Kelly, C. R., & Wilcox,
 M. D. (2018). Análisis de la cadena productiva de cacao en Colombia. USAID, Cali,
 Colombia.
- Aguilar, H. (2016). Manual para la evaluación de la calidad del grano de cacao. *La Lima, Honduras, Editorial FHIA*.
- Alvarado, M. L., Portillo, E., Boulanger, R., Bastide, P., & Macia, I. (2020). Efecto del tratamiento poscosecha en los polifenoles del cacao de Biscucuy y Chabasquén, estado Portuguesa.
- Álvarez, C., Pérez, E., Silva, G., Silva, N., & Pavani, A. (2023). Valoración de la calidad y origen del cacao fino de aroma venezolano. *Ciencia en Revolución*, 9(25), 248-282.
- Andrade-Almeida, J., Rivera-García, J., Chire-Fajardo, G. C., & Ureña-Peralta, M. O. (2019). Propiedades físicas y químicas de cultivares de cacao Theobroma cacao L. de Ecuador y Perú. *Enfoque UTE*, *10*(4), 1-12.
- Apolinar, A. M. N., & Ibáñez, A. M. A. (2022). Factores críticos asociados a la implementación de un sistema HACCP en la industria de alimentos y bebidas en Colombia. @limentech, Ciencia y Tecnología Alimentaria, 20(1).
- Arenas, W., Salgado, J., & Ponce de León, P. (2023). 2018-2022 REPORTE CACAO, BOSQUES & PAZ. Bogotá: Alisos. Obtenido de https://worldcocoafoundation.org/storage/files/1-reporte-cbp-espanol.pdf
- Ávila-Santos, H. (2020). Cooperación internacional para el desarrollo: el caso del sector cacaotero colombiano y la cooperación suiza. Pontificia Universidad Javeriana, Bogotá D.C.
- Awuchi, C. G. (2023). HACCP, quality, and food safety management in food and agricultural systems. *Cogent Food & Agriculture*. https://doi.org/10.1080/23311932.2023.2176280
- Bahamón, M., & Torres, J. (2013). Construcción y evaluación de un secador solar parabólico en material no higroscópico. (Doctoral dissertation, Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).
- Barrientos, L. D. P., Oquendo, J. D. T., Garzón, M. A. G., & Álvarez, O. L. M. (2019). Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Research International, 115, 259–267. https://doi.org/10.1016/J.FOODRES.2018.08.084
- Barros, O. (1981). Origen, expansión y situación actual del cacao. ICA. Recuperado de: https://repository.agrosavia.co/bitstream/handle/20.500.12324/ 13384/22784 3775.pdf?sequence=1&isAllowed=y
- Batista, L. (2009). *Guía Técnica El Cultivo de Cacao*. Obtenido de CEDAF, Centro para el Desarrollo Agropecuario y Forestal: https://cedaf.org.do/wp-content/uploads/2022/08/cacao.pdf
- Benjamin, T. J., Lundy, M., Wilcox, M. D., Rodríguez Camayo, F., Kelly, C. R., Abbott, P. C., & Fenton, M. (2016). Cacao para la paz. Recuperado de: https://core.ac.uk/download/pdf/132687389.pdf

- Bermeo, Y. (2014). Caracterización socio-económica de los productores de cacao en los municipios de Elías y Saladoblanco vereda Oritoguaz, para establecer un plan de mejoramiento productivo de nuevos jardines clonales en el ámbito fortalecimiento cadena productiva de cacao. (Doctoral dissertation, Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).
- Bustamante, P. A., & Murillo, A. N. (2023). Implementación de normas sanitarias y de control en el proceso de fermentación y secado del cacao en un centro de acopio. *ESPOL. FIMCP*.
- Cacao de Excelencia. 2023. Impulsando la excelencia del cacao para que los productores prosperen. Bioversity International, CIAT, CATIE y Costa Esmeraldas Cacao Company.
- Cacao de Excelencia. 2024. Guía para la Evaluación de la Calidad y el Sabor del Cacao. Compilado por el programa Cacao de Excelencia de la Alianza de Bioversity International y CIAT, en colaboración con los miembros del Grupo de Trabajo de International Standards for the Assessment of Cacao Quality and Flavour ISCQF). Bioversity International. 216p.
- Calderon, D., Tejedor, W., Melgar, O., & Franco, A. (2022). Effect of the type of fermenter on the cocoa fermentation process and quality of the cacao beans. In 2022 8th International Engineering, Sciences and Technology Conference (IESTEC) (pp. 413-419). IEEE.
- Cámara de Comercio del Huila (2024). Iniciativas en materia de fortalecimiento empresarial y competitividad para el plan de desarrollo del departamento del Huila 2024-2027. Recuperado de: https://www.cchuila.org/wp-content/uploads/Iniciativas-empresariales-para-PDD-Huila-9042024.pdf
- Cámara de comercio del Huila. (2018). Análisis de la cadena de valor en el Huila: Competitividad de la cadena de valor y perspectivas de mercado, Recuperado de: https://www.cchuila.org/wp-content/uploads/Analisis-cadena-de-valor-del-cacao-en-el-Huila.pdf
- Camargo, I. D., Rodriguez Silva, L. G., Carreño-Olejua, R., Montenegro, A. C., & Quintana Fuentes, L. F. (2024). High temperature and nib acidification during cacao-controlled fermentation improve cadmium transfer from nibs to testa and the liquor's flavor. *Dental Science Reports*. https://doi.org/10.1038/s41598-024-62609-8
- Campoverde, P., Valdiviezo, G., & Vega, Y. (2022). Propuesta de la implementación de un plan HACCP en el proceso de elaboración de un licor de mucílago de cacao. (Theobroma cacao L.).
- Carrión-Astudillo, J. M., Álvarez-Gavilanes, J. E., & Olivo-Olivo, M. A. (2021). Calidad en los procesos de comercialización de cacao en marco de emergencia sanitaria COVID 19. CIENCIAMATRIA, 7(12), 97-123.
- Castellanos R, L. C., Villamil J, L. C., & Romero P, J. R. (2004). Incorporación del Sistema de Análisis de Peligros y Puntos Críticos de Control en la legislación alimentaria. Revista de Salud pública, 6(3), 289-301.
- Castro, J., & Ramírez, E. (2009). Diagnóstico de los niveles de gestión de la higiene y de la calidad en empresas del sector agroalimentario del departamento del Huila (Doctoral dissertation, Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).

- Chacón, J., & Rugel, S. (2018). Artículo de revisión. Teorías, modelos y sistemas de gestión de calidad. *Revista espacios*, *39*(50).
- Charry, A., Castro-Llanos, F., & Castro Nuñez, A. (2019). Colombian cacao, forests and peace initiative, Estudio de línea base de la cadena del cacao en Colombia. Centro Internacional de Agricultura Tropical (CIAT), Colombia.
- Codex Alimentarius. (2003). Código Internacional de prácticas recomendado. *Principios generales de higiene de los alimentos. CAC/RCP*, 1-1969.
- Colonges, K., Seguine, E., Saltos, A., Davrieux, F., Minier, J., Jimenez, J., Lahon, M.-C., Calderón, D., Subía, C. R., Sotomayor, I., Fernández, F., Fouet, O., Rhoné, B., Argout, X., Lebrun, M.-H., Costet, P., Lanaud, C., Boulanger, R., & Loor, G. S. (2022). Diversity and determinants of bitterness, astringency, and fat content in cultivated Nacional and native Amazonian cocoa accessions from Ecuador. *The Plant Genome*. https://doi.org/10.1002/tpg2.20218
- Contreras C. (2016). Análisis del mercado internacional del cacao fino y de aroma: Oportunidades para Colombia. Cacao de Oro.
- Cortés, M., & Esquivel, R. (2015) Propuesta para la implementación de prerrequisitos en el desarrollo de un sistema HACCP. Cortés Vázquez, M. F., & Esquivel Fiqueroa, R. Propuesta para la implementación de prerrequisitos en el desarrollo de un sistema HACCP. México.
- Crosby, P. B. (1979). Quality is Free. McGraw-Hill.
- Cuadros, I., & Pimentel, K. (2015). Diagnóstico de las buenas prácticas agrícolas del sector cacaotero en el Municipio de Rivera-Huila. (Doctoral dissertation, Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).
- Daza, A. (2023). Influencia de la fermentación y la temperatura de deshidratado en la capacidad antioxidante, polifenoles y ácidos grasos del cacao crudo. Universidad nacional del centro del Perú, Huancayo Perú}
- Deming, W. E. (1988). Out of the Crisis. MIT Center for Advanced Educational Services.
- Dewan, A., Malik, M., Chaudhary, V., & Sharma, A. (2024). Packaging Applications of Cocoa Pod Husk. In *Agro-Wastes for Packaging Applications* (pp. 264-287). CRC Press.
- Enriquez, G. A. (1985). Curso Sobre el cultivo de cacao. Turrialba, Costa Rica: Centro Agronómico Tropical de Investigación y Enseñanza. Obtenido de https://books.google.es/books?id=eZgOAQAAIAAJ&lpg=PA201&ots=lsqK14RI7N&dq=capitulo%201.%20origen%2Cexpansion%20y%20situacion%20actual%20del%20ca cao&lr&hl=es&pg=PP1#v=onepage&q&f=false
- Erazo, C. Y., Disca, V., Muñoz, J. M., Tuárez, D. A., Sánchez, M., Carrilo, M. D., & Rodríguez, R. (2023). Effect of drying technique on the volatile content of Ecuadorian bulk and fine-flavor cocoa. *Foods*, *12*(5), 1065.
- Farfán, J., (2012), Sistema de aseguramiento de calidad en la industrialización del cacao, Universidad Nacional del Callao, Perú.
- Fayeulle, N., Preys, S., Roger, J.-M., Boulanger, R., Hue, C., Cheynier, V., & Sommerer, N. (2020). Multiblock analysis to relate polyphenol targeted mass spectrometry and

- sensory properties of chocolates and cocoa beans. *Metabolites*. https://doi.org/10.3390/metabo10080311
- Feigenbaum, A. V. (1986). Total Quality Control (3rd ed.). McGraw-Hill.
- Fernández, C. O. Á., Salgado, N. D. L., Silva, E. E. P., Amaíz, M. D. C. L., & González, J. G. P. (2022). Revisión sobre los atributos físicos, químicos y sensoriales como indicadores de la calidad comercial del cacao. *Petroglifos Revista Crítica Transdisciplinar*, *5*(1), 12-25.
- Fernández, L., & Ortiz, J. (2014). Industrialización del cacao aplicando buenas prácticas de manufactura y normas el sistema de análisis de peligros y puntos críticos de control (HACCP) en la corporación pepa de oro de la ciudad de Vinces (Bachelor's thesis, Babahoyo: UTB. 2014).
- Fideles, S. O. M., Ortiz, A. D. C., Reis, C. H. B., Buchaim, D. V., & Buchaim, R. L. (2023). Biological Properties and Antimicrobial Potential of Cocoa and Its Effects on Systemic and Oral Health. *Nutrients*, *15*(18), 3927.
- Figueroa, A. (2021). Plan HACCP en la producción de chocolate de mesa en la empresa grupo alimenticio Alba del Fonce SAS. Universidad de Pamplona. Colombia.
- Fondo para el financiamiento del sector agropecuario FINAGRO. (2020). Ficha de inteligencia: Cacao, Unidad de Gestión de Riesgos Agropecuarios. Recuperado de: https://www.finagro.com.co/sites/default/files/ficha_de_inteligencia_-_cacao.pdf
- Food and Agriculture Organization of the United Nations (2011). General principles of food hygiene, Codex Alimentarius International Food Standards, Recuperado de: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?Ink=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B1-1969%252FCXC_001e.pdf
- Food and Agriculture Organization. (1997). Sistema de análisis de peligros y de puntos críticos de control (HACCP) y directrices para su aplicación. CAC/RCP-1 (1969), Rev. 3.
- Foster, K. A., Suarez-Guzman, L. M., Meza-Sepulveda, D. C., Baributsa, D., & Zurita, C. A. (2024). Effects of alternative hermetic bag storage on fermented and dried cocoa bean (Theobroma cacao L.). *Journal of Stored Products Research*, 107, 102351.
- Franco, L., Brandão, I., Tertius, L., Fonseca, H., Georg, C. (2016). Elucidating the structure of merocyanine dyes with the ASEC-FEG method. Phenol blue in solution.. Journal of Chemical Physics, doi: 10.1063/1.4967290
- Garcia, E., Serna A., Cordoba D., Marin J., Montalvo C., Ordoñez G. (2019). Estudio de la fermentación espóntanea de cacao (Theobroma Cacao 1.) y evaluación de la calidad de los granos en una unidad productiva a pequeña escala. Revista Colombiana de Investigaciones Agroindustriales, 6(1), 41-51
- Gobernación del Huila. (2015). Plantas de beneficio mejorarán el proceso productivo del cacao: Gobernador, Recuperado de: https://www.huila.gov.co/publicaciones/3063/plantas-de-beneficio-mejoraran-el-proceso-productivo-del-cacao-gobernador/
- Gorotiza-Vélez, G., & Romero-Vélez, E. (2021). El sistema de gestión de calidad con ISO 9001: 2015 como estrategia para el mejoramiento de los procesos de la

- Comercializadora ITM. *Polo del Conocimiento: Revista científico-profesional*, *6*(4), 270-294.
- Grassia, M., Salvatori, G., Roberti, M., Planeta, D., & Cinquanta, L. (2019). Polyphenols, methylxanthines, fatty acids, and minerals in cocoa beans and cocoa products. *Journal of Food Measurement and Characterization*. https://doi.org/10.1007/s11694-019-00089-5
- Gutiérrez, N., Bonilla, E. P., & Ramírez, E. (2010). Desarrollo de un instrumento para evaluar prerrequisitos en el sistema HACCP. Biotecnología en el Sector Agropecuario y Agroindustrial: BSAA, 8(1), 106-119.
- Haruna, L., Abano, E. E., Teye, E., Adu, S., Agyei, K., Kuma, E., Yeboah, W., Lukeman, M., & Tukwarlba, I. (2024). Effect of partial pulp removal and fermentation duration on drying behavior, nib acidification, fermentation quality, and flavor attributes of Ghanaian cocoa beans. *SSRN*. https://doi.org/10.2139/ssrn.4698105
- Hernandez, C. E., & Granados, L. (2021). Quality differentiation of cocoa beans: Implications for geographical indications. *Journal of the Science of Food and Agriculture*. https://doi.org/10.1002/jsfa.11077
- Higuera, F. (2017). *Actualización de la Herramienta HACCP de Elaboradora de Productos Vegetales* (Doctoral dissertation, Universidad Austral de Chile). Recuperado de: http://cybertesis.uach.cl/tesis/uach/2017/fah638a/doc/fah638a.pdf
- Hoyer, R., & Brooke, B. (2001). ¿Qué es calidad?, Revista Quality Progress, 34(2).
- Huamán, O., Sánchez, K., & Romero C. (2022). Boletín trimestral N°2, observatorio de commodities, cacao, Ministerio de desarrollo agrario y riego, Perú. Recuperado de: https://repositorio.midagri.gob.pe/bitstream/20.500.13036/1363/1/Commodities%20Ca cao_%20abr-jun%202022.pdf
- Huamán, O., Sánchez, K., & Romero C. (2023). Boletín trimestral N°1, observatorio de commodities, cacao, Ministerio de desarrollo agrario y riego, Perú. Recuperado de: https://cdn.www.gob.pe/uploads/document/file/5264502/%20Commodities%20Cacao%3A%20ene-mar%202023.pdf?v=1697059698
- Huang, X., Teye, E. L. K., Sam-Amoah, L. K., Han, F., Yao, L., & Tchabo, W. (2014). Rapid measurement of total polyphenols content in cocoa beans by data fusion of NIR spectroscopy and electronic tongue. *Analytical Methods*, *6*(14), 5008–5015. https://doi.org/10.1039/C4AY00223G
- Hütz-Adams, F., Campos, P., Fountain, A.C. (2022): Barómetro del cacao Base de referencia para Latinoamérica, 2022
- Ibrić, A., & Ćavar, S. (2014). Phenolic compounds and antioxidant activity of cocoa and chocolate products. *Bulletin of the Chemists and Technologists of Bosnia and Herzegovina*, 42, 37-40.
- ICONTEC (2002). Procedimientos de muestreo para inspección por atributos. Parte 1: planes de muestreo determinados por el nivel aceptable de calidad (NAC) para inspección lote a lote. Instituto Colombiano de Normas Técnicas y Certificación.
- ICONTEC (2009). Análisis sensorial. Metodología. Métodos del perfil del sabor. Instituto Colombiano de Normas Técnicas y Certificación

- ICONTEC (2021). NTC 1252: Cacao. Método de prueba para la determinación de la calidad del grano. Instituto Colombiano de Normas Técnicas y Certificación.
- Instituto Nacional de normalización (2011). Sistema de análisis de peligros y de puntos críticos de control (HACCP) Directrices para su aplicación. Chile.
- International Organization for Standardization. (2017). ISO 6658 Sensory analysis Methodology General guidance.
- ISCQF. 2020. Primer borrador del Protocolo para Tostado de Granos de Cacao: parte de los Estándares Internacionales para la Evaluación de la Calidad y el Sabor del Cacao (ISCQF, de su nombre en inglés). Compilado por la Alianza entre Bioversity International y el CIAT, en colaboración con miembros del Grupo de Trabajo de ISCQF.
- Ishikawa, K. (1985). ¿Qué es el control total de calidad? El modelo japonés. Prentice Hall.
- Juran, J. M. (1988). Manual de control de calidad (4.ª ed.). McGraw-Hill.
- Kandar, J. F., Rochmanti, M., Wungu, C. D. K., & Qurnianingsih, E. (2024). Cacao, the origin of chocolate, can lower lipid profiles? A systematic review. *World Journal of Advanced Research and Reviews*, *21*(1), 573-578.
- Konan, K. A., Coulibaly, I., Kra, A. K., Foba, S. F., Coulibaly, A., & Konaté, I. (2024). Impact of new fermentation systems on the health quality of cocoa beans (*Theobroma cacao* L. 1753) in the main cocoa-growing regions of Côte d'Ivoire: Nawa, Bas-Sassandra and Haut-Sassandra. *Journal of Advances in Microbiology*. https://doi.org/10.9734/jamb/2024/v24i8845
- Lahidji, B., & Tucker, W. (2016). Continuous quality improvement as a central tenet of TQM: History and current status. *Quality Innovation Prosperity*, *20*(2), 157-168.
- Laviana, M. (2007). Investigación e Integración. La Ruta del Cacao en América Latina. Tierra Firme, 100 (25) 485-499. Recuperado de: https://digital.csic.es/handle/10261/26636
- Lee, A. (2024). Food Safety and Quality Management Systems. En *Elsevier eBooks* (pp. 185-194). https://doi.org/10.1016/b978-0-12-822521-9.00243-4
- Liszkowska, W., & Berlowska, J. (2021). Yeast fermentation at low temperatures: Adaptation to changing environmental conditions and formation of volatile compounds. *Molecules*. https://doi.org/10.3390/molecules26041035
- López-D´Sola, P., Sandia, M. G., Bou Rached, L., & Hernández Serrano, P. (2012). Diseño de un programa de Análisis de Peligros y Puntos de Control Crítico en el proceso productivo de cacao en polvo en una industria alimentaria. Archivos Latinoamericanos de Nutrición, 62(4), 355-362.
- López-Hernández, M. D. P., & Criollo-Nuñez, J. (2022). Cambios fisicoquímicos en la fermentación y secado de materiales de cacao en Colombia. *Ciencia en Desarrollo*, 13(2), 25-34.
- Mariño-Palacios, L. S. (2024). *Incidencia del estado de madurez, tiempo y temperatura de fermentación sobre los parámetros de calidad en granos de cacao para exportación* (Bachelor's thesis, Babahoyo, Ecuador).

- Medina, D., & Ortiz, C. (2013). determinación de la cinética de secado del cacao (Theobroma Cacao L.) a temperaturas de 40, 50 y 60°C y evaluación de los productos resultantes. (Doctoral dissertation, Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).
- Méndez, J. A. (2007). Estudios, diseños, construcción y operación de sistemas de riego por surcos para la implementación del programa de cacao en el municipio de Campoalegre departamento del Huila en el marco del convenio ongnanyanva USCO (Doctoral dissertation, Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).
- Menéndez, L. T., & Burgos, G. A. (2021). Efectos de la fermentación y secado en el contenido de polifenoles y alcaloides del cacao. *Dominio de las Ciencias*, 7(5), 1280-1304.
- Ministerio de Agricultura y Desarrollo Rural MinAgricultura (2021). Cadena de cacao, Dirección de Cadenas Agrícolas y Forestales
- Ministerio de Ambiente y Desarrollo Sostenible. (2019). Resolución 2184 de 2019: Por la cual se establece la clasificación de los residuos y se dictan otras disposiciones. Diario Oficial No. 51.061. https://www.minambiente.gov.co/
- Ministerio de Salud y Protección Social. (2013). Resolución 2674 de 2013: Por la cual se reglamenta el manejo de alimentos y se dictan otras disposiciones. Diario Oficial No. 48.820. https://www.invima.gov.co/documents/20143/494708/Resolucion_2674_de_2013.pdf
- Ministerio de Salud. (2002). Decreto 60 de 2002. Por el cual se reglamenta el sistema de análisis de peligros y puntos críticos de control (HACCP). Diario Oficial de Colombia.
- Moncada Álvarez, L. I., Quiñones, M. L., & Adler, P. H. (2021). Introducción al estudio de insectos de interés en salud pública. Editorial Universidad Nacional de Colombia. https://doi.org/10.15446/9789587944716
- Mora, F. C., Torres, L. A. A., Barzallo, A. A., & Quintanilla, M. O. (2022). Índices de calidad en la comercialización del cacao (Theobroma cacao I.) en Ecuador. *Journal of Science and Research: Revista Ciencia e Investigación*, 7(1), 42.
- Mosquera, J. A. N., Escobar, K. Y. R., Morejon, J. P. A., & Llaguno, S. S. (2020). Métodos de fermentación del cacao nacional (Theobroma cacao) y su influencia en las características físico-químicas, contenido de cadmio y perfiles sensoriales. *Alternativas*, *21*(3), 42-48.
- Mougang, N. N., Tene, S. T., Zokou, R., Kohole, H. A. F., Solefack, E. N., Mboukap, A. N., ... & Womeni, H. M. (2024). Influence of fermentation time, drying time and temperature on cocoa pods (Theobroma cacao L.) marketability. *Applied Food Research*, *4*(2), 100460.
- Muhammad, I., Dwijatmoko, B., Nurtama, N., Yuliana, D., & Misnawi, M. (2018). Characterization of polyphenols from various cocoa (*Theobroma cacao L.*) clones during fermentation. *Pelita Perkebunan: A Coffee and Cocoa Research Journal*, 34(2). https://doi.org/10.22302/ICCRI.JUR.PELITAPERKEBUNAN.V34I2.319
- Muñeton, O., & Quintana, V. (2012). Evaluación de la calidad del cacao en las etapas de recolección y beneficio en el municipio de Campoalegre Huila. (Doctoral dissertation, Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).

- Muñoz Álvarez, A. (2021). Estudio de prefactibilidad para la creación de una chocolatería artesanal, con cacao de origen Huila, en Neiva. Universidad EAFIT. Medellín. Colombia
- Nikolaenko, M., & Bal-Prylypko, L. (2020). Development of an integrated food quality management system. *Slovak Journal of Food Sciences*, *14*.
- Niquén, J., & Peña, F. (2015). Propuesta de implementación del Sistema HACCP para el aseguramiento de la calidad e inocuidad en la linea de producción de alfajor gigante (King Kong) en la empresa Estrella del Norte de Lambayeque.
- Nollet, L., & Gutierrez-Uribe, J. (2018). *Phenolic compounds in food: Characterization and analysis*. CRC Press.
- Nowicka-Skowron, M., & Stegăroiu, I. (2014). Strategies used to improve industrial companies' production quality. En *Handbook of Research on Industrial Applications for Improved Supply Chain Performance* (pp. 298–327). IGI Global. https://doi.org/10.4018/978-1-4666-6481-4.CH011
- Nuñez, J. C., Toro, C. R., Bolívar, G., Aldana, A. S., & Tovar, M. D. L. (2023). Effect of microencapsulated inoculum of Pichia kudriavzevii on the fermentation and sensory quality of cacao CCN51 genotype. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/JSFA.12433
- Ocaña, A. (2016). Diseño metodológico para implementar un sistema de inocuidad alimentaria (HACCP) aplicable a la planta procesadora de quinua Maquita en la Parroquia Calpi Catón Riobamba (Master's thesis, Universidad Central del Ecuador. Ecuador).
- Okpala, C. O. R., & Korzeniowska, M. (2021). Understanding the relevance of quality management in the agro-food product industry: From ethical considerations to assuring food hygiene quality safety standards and its associated processes. *Food Reviews International*. https://doi.org/10.1080/87559129.2021.1938600
- Oliveros, L., & Polo, M. (2022). Análisis comparativo de los procesos de beneficio evaluando diferentes variables en la fermentación del Theobroma Cacao L. En la central de beneficio de la asociación de productores de cacao Asocagigante del municipio de Gigante Huila. (Doctoral dissertation, Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).
- Ortiz S., J., Chungara, M., Ibieta, G., Alejo, I., Tejeda, L., Peralta, C., Aliaga-Rossel, E., Mollinedo, P., & Peñarrieta, J. M. (2019). Determinación de teobromina, catequina, capacidad antioxidante total y contenido fenólico total en muestras representativas de cacao amazónico boliviano y su comparación antes y después del proceso de fermentación. Revista Boliviana de Química, 1(36.1). https://doi.org/10.34098/2078-3949.36.1.4
- Osorio, I., & Sanchez, J. (2012). Diagnóstico de gestión de la inocuidad y elaboración de los programas de prerrequisitos en la planta de procesamiento de mojarra El Caqueteño mediante la identificación y análisis de peligros del sistema (HACCP). (Doctoral dissertation, Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).
- Oyola, W. (2010). Estudios, diseño, construcción, operación y capacitación de sistemas de riego por surcos para la implementación del programa de cacao clonado en el municipio

- de Palermo, departamento del Huila. (Doctoral dissertation, Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).
- Palga-Mejía, S. J. (2022). Propuesta del manual de inocuidad y control estadístico para el proceso de elaboración de Chocolate en barra.
- Pallares, A. P., Estupiñán, M., Villamil, J. A. P., & Giraldo, L. J. L. (2016). Impacto de la fermentación y secado sobre el contenido de polifenoles y capacidad antioxidante del clon de cacao CCN-51.
- Peraza, Y. (2022). La producción de cacao en el departamento del Huila: estrategias para promover su competitividad (Bachelor's thesis, Fundación Universidad de América).
- Perea, C., Vélez, A. F., Castro, F., Bunn, C., Vazquez Decastro, J. L., Santos, A., & Charry, A. (2022). Impactos en la cadena de valor del cacao en Ecuador como consecuencia del Reglamento (UE) No. 488/2014. Publicación CIAT.
- Perea, J. A., Ramirez, O. L., & Villamizar, A. R. (2011). Caracterización fisicoquímica de materiales regionales de cacao colombiano. *Biotecnología en el Sector Agropecuario y Agroindustrial*, *9*(1), 35-42.
- Perez-Castillo, A. L. (2023). Sistema HACCP Y exportación de semillas inocuas de la empresa Agrosymar al mercado asiático, Catacaos-Piura 2023.
- Pimentel, D. (2021). Validación De Una Lista De Chequeo Para La Mejora Del Proceso De Control De Las Medidas De Bioseguridad En Los Puestos De Venta Del Mercado Virgen De Las Mercedes Distrito De Lurín Provincia De Lima Región De Lima año 2021. Universidad Nacional Tecnológica De Lima Sur.
- Plank, D. W., Szpylka, J., Sapirstein, H., Woollard, D., Zapf, C. M., Lee, V., ... Baugh, S. (2012). Determination of Antioxidant Activity in Foods and Beverages by Reaction with 2,2'-Diphenyl-1-Picrylhydrazyl (DPPH): Collaborative Study First Action 2012.04. Journal of AOAC International, 95(6), 1562–1569. https://doi.org/10.5740/jaoacint.CS2012
- Platzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U., Eisner, P. (2021). How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay?. Antioxidants, doi: 10.3390/ANTIOX10050811
- Posso, A. M., Silva, J. C., Niño, J. P., & Hernandez, J. H. (2024). Characterization and Implementation of Cocoa Pod Husk as a Reinforcing Agent to Obtain Thermoplastic Starches and Bio-Based Composite Materials. *Polymers*, *16*(11).
- Proexport Colombia. (2012). Cacao colombiano fino y de aroma, Recuperado de: https://gestionparticipativa.pe.iica.int/getattachment/8010f039-fabc-465d-8c48-5a914c3da9da/Cacao-Colombiano-fino-y-de-aroma.aspx
- Puchol-Miquel, M., Palomares, C., Fernández-Segovia, I., Barat, J. M., & Perez-Esteve, É. (2021). Effect of the type and degree of alkalization of cocoa powder on the physicochemical and sensory properties of sponge cakes. LWT, 112241. https://doi.org/10.1016/J.LWT.2021.112241
- Puentes, J., & Ramos, A. (2015). Diagnóstico y manejo ambiental del cultivo de cacao, con énfasis en sus recursos hídricos en el municipio de Campoalegre Huila. (Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).

- Quintero, J., Chila, A., Saavedra, D., Guzman, G. (2020). Guía para la documentación e implementación de Sistema de Aseguramiento de Calidad e Inocuidad en plantas de procesamiento de alimentos, SENA, ISBN: 978-958-15-0594-4. Huila, Colombia.
- Ramírez, A. (2023). Implementación del plan de muestreo para el control sanitario en la planta de producción de la empresa somos Cacao SAS.
- Ramírez, A. F., Gutiérrez, G. A., Polanía, P. A., López, L. J., & Suárez, J. C. (2024). Fermentation and its effect on the physicochemical and sensory attributes of cocoa beans in the Colombian Amazon. *bioRxiv*, 2024-06.
- Ramón, V., Hernández, H. E., Polania, P., & Suárez, J. C. (2022). Spatial distribution of cocoa quality: Relationship between physicochemical, functional, and sensory attributes of clones from Southern Colombia. *Agronomy*. https://doi.org/10.3390/agronomy13010015
- Reznikova, V., & Kravets, I. M. (2022). Goods quality management and control systems. *Ekonomìka ta pravo*, **2022**(1), 3–18. https://doi.org/10.15407/econlaw.2022.01.003
- Rivera-Torrez, D. L. (2022). Caracterización fenológica de ocho clones de cacao y la evaluación de su calidad sensorial.
- Rueda, L. C., Prada, D. M. C., & Patiño, G. G. (2021). Contenido de Cadmio en el grano de cacao Theobroma cacao L. seco, obtenido en la fermentación con pre y sin pre escurrido, en San Vicente de Chucurí. CITECSA, 13(21), 35-44.
- Ruíz-Cárdenas, M. R., Orbe-Pezo, C. M., Vidaurre-Rojas, P., del Pilar López-Sánchez, T., & Ludeña-Cardenas, J. C. (2023). Sistema HACCP y crecimiento económico de las empresas productoras de San Martín, Perú. *Revista Amazónica de Ciencias Económicas*, 2(2), e599-e599.
- Ruiz-Santiago, F. J., Márquez-Rocha, P., García-Alamilla, A., Ramírez-López, C., Ocaranza-Sánchez, E., & Jiménez-Rodríguez, D. J. (2024). Physicochemical and biochemical changes in cocoa during the fermentation step. *Fermentation*, *10*(8), 405. https://doi.org/10.3390/fermentation10080405
- Sánchez-Arizo, V. H., Zambrano-Mendoza, J. L., & Iglesias, C. (2019). La cadena de valor del cacao en América Latina y el Caribe. Recuperado de: https://www.fontagro.org/new/uploads/adjuntos/Informe_CACAO_linea_base.pdf
- Sanchez-Cardozo, L. (2019). Elaboración del sistema de calidad HACCP del beneficio de cacao (Teobroma cacao) en la asociación de productores agropecuarios de Huicungo "APAHUI"-Juanjui. Universidad Nacional San Martín. Perú.
- Sánchez-Riaño, A. M., Solanilla-Duque, J. F., Méndez-Arteaga, J. J., & Váquiro-Herrera, H. A. (2020). Bioactive potential of Colombian feijoa in physiological ripening stage. Journal of the Saudi Society of Agricultural Sciences, 19(4), 299–305. https://doi.org/10.1016/j.jssas.2019.05.002
- Sanchez-Riaño, A., & Gutierrez-Guzmán, N. (2023). Protocolo de determinación de Contenido de fenoles totales método folin ciocalteu. Centro Surcolombiano de Investigación en Café Cesurcafé. Universidad Surcolombiana, Neiva, Colombia.
- Saza-Coaji, J. N., & Jiménez-Forero, J. A. (2020). Determinación de condiciones ambientales para la conservación de granos de cacao (*Theobroma cacao* L.) deshidratado durante el almacenamiento. https://doi.org/10.22579/22484817.461

- Shewhart, W. A. (1931). Economic Control of Quality of Manufactured Product. D. Van Nostrand Company.
- Siancas, A., & Quiñones, L. (2015). Análisis del nivel cumplimiento de prerrequisitos HACCP en una planta procesadora de grano de cacao, Lambayeque-Perú. Agroindustrial Science, 5(1), 89-93.
- Singh, M., Agarwal, S., & Agarwal, M. (2020). Benefits of Theobroma cacao and Its Phytocompounds as Cosmeceuticals. In *Plant-derived Bioactives* (pp. 509-521). Springer, Singapore.
- Sopla, P. M. H., & Jara, R. S. (2020). Efecto de la variedad, frecuencia de remoción y tiempo de fermentación en el rendimiento y calidad de granos de cacao, evaluado mediante visión computacional. *Agroindustrial Science*, *10*(3), 287-292.
- Sunoj, S., Igathinathane, C., & Visvanathan, R. (2016). Nondestructive determination of cocoa bean quality using FT-NIR spectroscopy. *Computers and Electronics in Agriculture*, 124, 234-242.
- Torres, E. G., Matos, A. R., Fernández, M. O., & Sánchez, O. M. (2005). El Análisis de Peligros y Puntos Críticos de Control (HACCP) como instrumento para la reducción de los peligros biológicos. *REDVET. Revista Electrónica de Veterinaria*, *6*(9), 1-14.
- Torres-Segura, D., Himbler-Minchán, H., de La Torre-Lacerda, S. M. C., & Campos, S. M. (2024). Fermentación de variedades y clones de cacao en cuatro tiempos y su efecto sobre calidad sensorial para chocolate de taza. *Pakamuros*. https://doi.org/10.37787/s80a2814
- Trujillo, A., & Perdomo, W. (2016). Impactos, amenazas y manejo ambientales de los cultivos de cacao en el municipio de Teruel, Huila, Colombia. (Doctoral dissertation, Tesis de pregrado. Universidad Surcolombiana, Neiva, Colombia).
- Universidad San Ignacio de Loyola. (2018). Cacao, tesoro de la amazonía. Perú: Fondo Editorial USIL. Recuperado el 2023, de https://repositorio.usil.edu.pe/server/api/core/bitstreams/ce43d8b2-ee08-4b8e-b6b5-040d64189e61/cont
- Vassos, V., Voltezou, A., Stavropoulos, A., Stavropoulou, E., Stefanis, C., Tsigalou, C., Nena, E., Chatzaki, E., Constantinidis, T. C., & Bezirtzoglou, E. (2024). The role of total quality management in the pharmaceutical, food, and nutritional supplement sectors. *Foods*. https://doi.org/10.3390/foods13162606
- Vera-Chang, J., Radice, M., Vásquez-Cortez, L., & Intriago-Flor, F. (2024). Perfil químico de 12 Clones Tipo Nacional de pasta de cacao (Theobroma cacao L.). *Revista Universidad y Sociedad*, *16*(1), 126-136.
- Vignati, F., & Gómez, R. (2020). Iniciativa latinoamericana del cacao: Boletín No. 8. Observatorio del cacao fino y de aroma para américa latina.
- Villacís, M. E. (2022). Diseño de un sistema de gestión de seguridad alimentaria para plantación de cacao, centro de poscosecha y acopio técnico basado en BPA e ISO 22000: 2018, para la hacienda "La Bella". Escuela Superior Politécnica de Chimborazo. Ecuador.

- Vujatović, B., Vujatović, M., Grubač, D., & Stojanović, N. (2023). Improvement of product quality by implementation QFD methods. *OTEH Journal*, 673–678. https://doi.org/10.5937/oteh24124v
- Wilches-Molano, L. S. (2022). Caracterización de nuevos orígenes de licor de cacao colombianos (Theobroma cacao).
- Yoo, Y. (2022). Food safety assurance systems: Food safety and quality management systems. En *Food safety and quality management systems*. https://doi.org/10.1016/b978-0-12-822521-9.00243-4
- Zambrano, J. (2017). Relaciones filogenéticas entre tipos de cacao (theobroma cacao L.): forastero, trinitario y nacional, basadas en marcadores morfológicos y secuencias nucleotídicas de la región ITS; y su posible uso en la identificación de clones.

10. ANEXOS

Durante el desarrollo de la investigación a través de la entidad ejecutora se realizaron diferentes actividades y procesos articulados que permitieron los siguientes resultados adicionales:

Anexo A. Fortalecimiento de comunidad científica y generación de nuevo conocimiento

 Artículo científico: DEVELOPMENT AND VALIDATION OF AN INSPECTION AND COMPLIANCE TOOL FOR SANITARY REQUIREMENTS APPLIED TO CACAO PROCESSING CENTERS IN THE DEPARTMENT OF HUILA.

Desarrollo y validación de una herramienta de inspección y cumplimiento de requisitos sanitarios aplicado a centrales de beneficio de cacao en el departamento del Huila.

Autores: Quintero-Garcia Jean Carlo, Castro-Camacho Jennifer Katiusca, Rodríguez-Polanco Leonora, Criollo-Nuñez Jenifer.

Estado: Enviado – Revista VITAE – Universidad de Antioquia.

Acceso: https://drive.google.com/drive/folders/1v_QJtpJEufqAD-KcAYFnHphqCWa2qSzC?usp=sharing

 Cartilla: GUIA PARA LA IMPLEMENTACIÓN DE SISTEMAS DE CALIDAD EN CENTRALES DE BENEFICIO DE CACAO.

Autores: Quintero-Garcia Jean Carlo, Andrade-Escalante Claudia Yurany, Guzmán-Pacheco Kathryn Yadira, Rodríguez-Polanco Leonora, Criollo-Nuñez Jenifer.

Estado: En Revisión – Editorial AGROSAVIA.

Acceso: https://drive.google.com/drive/folders/1yDiCDr9T9p3z1opqmHwYlt4c NuuSrxP?usp=sharing

 Documentación: Sistema de aseguramiento de calidad en centrales de beneficio de cacao del departamento del Huila.

Realizado por: Jean Carlo Quintero Garcia.

Aprobado por: Jenifer Criollo Nuñez.

Estado: Versión 01.

Acceso: https://drive.google.com/drive/folders/1wZw7DNVYJYK4evTVPUXWvtbfA7mhMRSg?usp=sharinQ

Anexo B. Divulgación y participación en eventos

 Inscripción y aceptación en XIV CIBIA 2024: Congreso Iberoamericano de ingeniería de alimentos – Ecuador, Código de resumen: S094C2.

CERTIFICATE OF ACCEPTANCE OF ABSTRACT

Tue Jul 23 2024

Dear Jean Carlo Quintero Garcia

On behalf of the international scientific committee, I am pleased to communicate that the abstract titled:

"Desarrollo y validación de una herramienta de inspección y cumplimiento de requisitos sanitarios aplicado a centrales de beneficio de cacao en el departamento del Huilar Quintero-Garcia, Jean Carlo", Castro-Camacho, Jennífer Katusca, Rodríguez-Polanco, Leonora, Criolio-Nuñez, Jenifer. (Abstract code: \$094C2)

submitted for the XIV Congreso Iberoamericano de Ingenieria de Alimentos (CIBIA XIV) and IX Congreso Ecuatoriano de Ingenieria en Alimentos (CEIAL IX), has been accepted.

We will let you know soon whether it has been accepted as an Oral communication or Poster presentation.

We kindly remind you that the presenter (oral or poster presentation) must register to the Congress. Each author is allowed to present up to 2 abstracts with a single paid registration.

Failure to register and pay will lead to the **cancellation** of the abstract from the Scientific Programme and the Abstract Book. Presenters can register at the webpage cibia14.epn.edu.ec. CIBIA XIV will be held from October 7 to 10, 2024, in Quito - Ecuador.

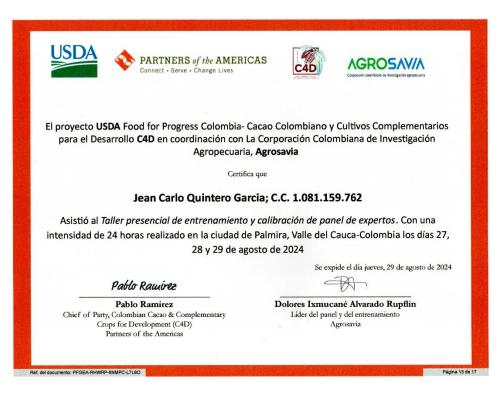
Detailed information about the presentation and the publication in the Abstract Book will be communicated within next weeks

With my personal regards,

Dr. Edwin Vera Chairman CIBIA XIV and CEIAL IX Ladrón de Guevara E11·253 [PO·Box 17-01-2759] Quito · Ecuador

 Apoyo técnico en el desarrollo del curso de análisis sensorial de cacao para la conformación del panel de catación regional conformado por productores de cacao del departamento del Huila.

 Participación como panelista en debate "Innovación en el sector cacaocultor del Huila" en 3ra Feria Internacional de Café, Cacao, y Agroturismo 2023 y divulgación del proyecto en Feria ExpoHuila Fest 2023.


• Participación en curso modular teórico-práctico: Formación de catadores de cacao y chocolate. Universidad Nacional Agraria La Molina (Lima - Perú), 2024.

Participación en taller de entrenamiento y calibración de panel de expertos para la evaluación de muestras de chocolate, 2024: proyecto de investigación Agrosavia C.I. Palmira, ejecutado bajo la financiación del proyecto Cacao For Development (C4D) "Desarrollo del sabor y aroma del cacao producido en 10 zonas climáticas localizadas en 3 departamentos de Colombia: Caldas, Tolima y Huila".

 Reconocimiento por participación en panel de catación del 1er concurso cacao de oro del municipio de Rivera, 2024.

Anexo C. Transferencia de conocimientos

 Seminario teórico-práctico en calidad física y sensorial de cacao a estudiantes del programa de ingeniería agroindustrial, semestre 2024A - 2024B. Curso: Tecnología en café y cacao.

• Capacitación a productores en el establecimiento del sistema de aseguramiento de calidad en centrales de beneficio CECAO.

