

CARTA DE AUTORIZACIÓN

ec IQNet

CÓDIGO

AP-BIB-FO-06

VERSIÓN

1

VIGENCIA

2014

PÁGINA

1 de 1

Neiva, 08 de abril de 2025

Señores CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN UNIVERSIDAD SURCOLOMBIANA Ciudad

El (Los) suscrito(s):

<u>Carol Andrea Muñoz Callejas</u>, con C.C. No. <u>1003952017</u>, Lizeth Vanessa Silva Castellanos, con C.C. No. 1003895059,

Autor(es) de la tesis y/o trabajo de grado titulado <u>"Formulación y evaluación fisicoquímica y organoléptica de un queso tipo "petit suisse" saborizado con dulce de fruta a base de curuba (*Passiflora tripartita*)" presentado y aprobado en el año 2025 como requisito para optar al título de Ingeniera Agroindustrial;</u>

Autorizo (amos) al CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN de la Universidad Surcolombiana para que, con fines académicos, muestre al país y el exterior la producción intelectual de la Universidad Surcolombiana, a través de la visibilidad de su contenido de la siguiente manera:

- Los usuarios puedan consultar el contenido de este trabajo de grado en los sitios web que administra la Universidad, en bases de datos, repositorio digital, catálogos y en otros sitios web, redes y sistemas de información nacionales e internacionales "open access" y en las redes de información con las cuales tenga convenio la Institución.
- Permita la consulta, la reproducción y préstamo a los usuarios interesados en el contenido de este trabajo, para todos los usos que tengan finalidad académica, ya sea en formato Cd-Rom o digital desde internet, intranet, etc., y en general para cualquier formato conocido o por conocer, dentro de los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión Andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia.
- Continúo conservando los correspondientes derechos sin modificación o restricción alguna; puesto que, de acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso conlleva la enajenación del derecho de autor y sus conexos.

De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, "Los derechos morales sobre el trabajo son propiedad de los autores", los cuales son irrenunciables, imprescriptibles, inembargables e inalienables.

EL AUTOR/ESTUDIANTE:

EL AUTOR/ESTUDIANTE:

Carol Andrea Muñoz Callejas

Lizeth Vanessa Silva Castellanos

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO

AP-BIB-FO-07

VERSIÓN

1

VIGENCIA

2014

PÁGINA

de 3

TÍTULO COMPLETO DEL TRABAJO:

AUTOR O AUTORES:

Primero y Segundo Apellido	Primero y Segundo Nombre
Muñoz Callejas	Carol Andrea
Silva Castellanos	Lizeth Vanessa

DIRECTOR Y CODIRECTOR TESIS:

Primero y Segundo Nombre
Jennifer Katiusca
TOTAL PROPERTY OF THE PROPERTY

ASESOR (ES):

Primero y Segundo Apellido	Primero y Segundo Nombre

PARA OPTAR AL TÍTULO DE: Ingeniera Agroindustrial

FACULTAD: Ingeniería

PROGRAMA O POSGRADO: Agroindustrial

CIUDAD: Neiva AÑO DE PRESENTACIÓN: 2025 NÚMERO DE PÁGINAS: 108

TIPO DE ILUSTRACIONES (Marcar con una X):

Diagramas X Fotografías X Grabaciones en discos Illustraciones en general X Grabados Láminas Litografías Mapas Música impresa Planos Retratos Sin illustraciones Tablas o Cuadros X

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO

AP-BIB-FO-07

VERSIÓN

VIGENCIA

2014

PÁGINA

SOFTWARE requerido y/o especializado para la lectura del documento:

MATERIAL ANEXO:

PREMIO O DISTINCIÓN (En caso de ser LAUREADAS o Meritoria):

PALABRAS CLAVES EN ESPAÑOL E INGLÉS:

Español	<u>Inglés</u>	Español	<u>Inglés</u>
1. Passiflora tripartita	Passiflora tripartita	6. Vida útil	Shelf life
2. Quesos frescos	Fresh cheeses	7. Análisis sensorial	Sensory analysis
3. Seguridad alimentaria	Food safety	8. Colorimetría	Colorimetry
4. Atributos texturales	Textural attributes	9. Sinéresis	Syneresis
5. Tecnología alimentaria	Food technology	10. Almacenamiento	Storage

RESUMEN DEL CONTENIDO: (Máximo 250 palabras)

En este estudio, se formularon y evaluaron diversos tratamientos de queso tipo petit suisse, saborizado con dulce de curuba (passiflora tripartita). El queso se preparó con diferentes proporciones de pulpa de fruta y azúcar, obteniéndose dos tratamientos en total. A estos se les realizaron análisis fisicoquímicos conforme a la normativa vigente y las Normas de calidad analítica preconizadas (AOAC), que incluyeron la medición de sólidos solubles (°Brix), pH, acidez titulable, colorimetría, actividad de agua, viscosidad, torque y fuerza de cizalla. Se realizaron pruebas microbiológicas, de análisis proximal y análisis sensorial, evaluando parámetros como color, acidez, consistencia, textura, aroma y sabor, de acuerdo con los estándares establecidos para productos lácteos. Así mismo, se aplicaron técnicas como la espectroscopia ATR-FTIR y el método de distribución de Weibull para la determinación de la vida útil del producto, teniendo en cuenta parámetros fisicoquímicos y sensoriales.

Los resultados obtenidos se analizaron por medio del método de varianza (ANOVA) y prueba de comparación múltiple (Tukey), donde se evidenció que la variabilidad de los porcentajes de pulpa de fruta y azúcar, hacen que haya diferencias significativas entre tratamientos, de igual forma, se determinó que el tratamiento con mejores características fisicoquímicas y sensoriales fue el tratamiento 1 (T1), donde se tenía menor porcentaje de fruta y menor contenido de sólidos solubles totales. Gracias a esta investigación se pudo demostrar que es posible realizar este tipo de productos con frutas autóctonas de la región, aprovechando las propiedades nutricionales de las materias primas y generando una formulación estable textural.

ABSTRACT: (Máximo 250 palabras)

DESCRIPCIÓN DE LA TESIS Y/O TRABAJOS DE GRADO

CÓDIGO

AP-BIB-FO-07

VERSIÓN

1

VIGENCIA

2014

PÁGINA

3 de 3

In this study, several treatments of petit suisse type cheese flavored with sweet curuba (passiflora tripartita) were formulated and evaluated. The cheese was prepared with different proportions of fruit pulp and sugar, obtaining two treatments in total. Physicochemical analyses were carried out in accordance with current regulations and the Recommended Analytical Quality Standards (AOAC), which included the measurement of soluble solids (°Brix), pH, titratable acidity, colorimetry, water activity, viscosity, torque and shear strength. Microbiological, proximate analysis and sensory analysis tests were performed, evaluating parameters such as color, acidity, consistency, texture, aroma and flavor, in accordance with the standards established for dairy products. Techniques such as ATR-FTIR spectroscopy and the Weibull distribution method were also applied to determine the shelf life of the product, taking into account physicochemical and sensory parameters.

The results obtained were analyzed by means of the variance method (ANOVA) and multiple comparison test (Tukey), where it was shown that the variability of the percentages of fruit pulp and sugar, make significant differences between treatments, likewise, it was determined that the treatment with better physicochemical and sensory characteristics was treatment 1 (T1), where it had lower percentage of fruit and lower content of total soluble solids. Thanks to this research, it was possible to demonstrate that it is possible to make this type of product with fruits native to the region, taking advantage of the nutritional properties of the raw materials and generating a texturally stable formulation.

APROBACION DE LA TESIS

Nombre Presidente Jurado: Néstor Enrique Cerquera Peña

Firma:

Nombre Jurado: Néstor Enrique Cerquera Peña

Firma:

Nombre Jurado: Jaime Daniel Bustos Vanegas

Firma:

Formulación y evaluación fisicoquímica y organoléptica de un queso tipo "petit suisse" saborizado con dulce de fruta a base de curuba (Passiflora tripartita)

Carol Andrea Muñoz Callejas Lizeth Vanessa Silva Castellanos

Universidad Surcolombiana
Facultad de Ingeniería
Programa de Ingeniería Agroindustrial

Neiva

2025

Formulación y evaluación fisicoquímica y organoléptica de un queso tipo "petit suisse" saborizado con dulce de fruta a base de curuba (Passiflora tripartita)

Carol Andrea Muñoz Callejas Lizeth Vanessa Silva Castellanos

Trabajo de grado presentado como requisito para optar al título de Ingeniera Agroindustrial

Directora

Dra. Jennifer Katiusca Castro Camacho

Universidad Surcolombiana
Facultad de Ingeniería
Programa de Ingeniería Agroindustrial
Neiva

2025

Dedicatoria

A Dios y a la vida.

Por habernos permitido llegar a este punto y cumplir nuestros objetivos. Su amor y sabiduría han iluminado nuestros días, brindándonos la claridad y la determinación necesaria para superar los desafíos que se han presentado. Cada logro y cada aprendizaje son en última instancia un reflejo de su gracia en nuestras vidas.

A nuestros padres y hermanos,

Que en el transcurso de nuestras vidas nos supieron inculcar el esfuerzo continuo, la tenacidad y la fortaleza, confiaron en nosotras depositando su entera confianza en cada reto que se nos presentaba sin dudar de nuestras capacidades, por la motivación constante y por su amor.

A nuestros amigos y colegas, quienes han sido una parte integral de este viaje. Su compañía y apoyo nos han motivado a seguir adelante, incluso en los momentos más difíciles. A nuestros mentores y profesores, quienes han compartido su conocimiento y sabiduría. Cada uno de ustedes ha dejado una huella profunda en nuestras vidas.

Finalmente, a todos aquellos que, de alguna manera, han influido en nuestras vidas, aportando conocimientos, experiencias y perspectivas. Cada interacción ha sido una lección valiosa que ha moldeado nuestros pensamientos y contribuido a nuestro desarrollo. Este trabajo es un reflejo de las experiencias y enseñanzas que hemos recibido a lo largo del camino.

Con gratitud y aprecio, dedicamos este trabajo a todos ustedes.

Agradecimientos

Quiero expresar mi sincero agradecimiento a Dios, cuya guía y fortaleza han sido fundamentales en mi vida. A mis padres, Paula Andrea Callejas y José Ricardo Muñoz, por su amor incondicional y apoyo constante; su confianza en mí ha sido mi mayor motivación. A mis hermanos, Alejandro Muñoz, por su apoyo y compañía, y a Jefferson Ricardo Muñoz, quien siempre me inspiró con su sabiduría y amor. Su recuerdo me acompaña en cada paso que doy y su influencia ha dejado una huella imborrable en mi vida. A mi pareja y amigos, por estar a mi lado durante este proceso y hacer de este viaje una experiencia inolvidable.

Carol Andrea Muñoz Callejas

Agradezco principalmente a Dios por habernos unido para realizar este trabajo de grado, por darnos la voluntad y la fortaleza de culminarlo. A mis padres, Denis Castellanos Andrade y Reinel Silva Polania, en especial a mi mamá, por ser mi inspiración, mi polo a tierra, y mi mayor soporte, por todo el apoyo y motivación que me ha brindado a lo largo de este proceso y por siempre haber confiado en mí. A los demás familiares y amigos que de una u otra forma me han aportado para seguir adelante y cumplir mis metas, haciendo de este proceso una gran experiencia.

Lizeth Vanessa Silva Castellanos

Agradecemos a nuestra directora de tesis, Jennifer Katiusca Castro Camacho, por su guía y acompañamiento en la realización de este trabajo de grado, al profesor Néstor Enrique Cerquera Peña, por los espacios de laboratorio brindados para el desarrollo de esta investigación, junto con su asesoramiento en los momentos requeridos, así mismo, a los profesores Andrés Felipe Bahamón y Jaime Daniel Bustos Vanegas, por asesorarnos, compartir su conocimiento y brindarnos las herramientas en el momento indicado. A María Alejandra Pinzón Cruz, que más que auxiliar de laboratorio, fue fuente de apoyo y motivación constante en la elaboración de este trabajo, y al centro de investigación Cesurcafé, por su disponibilidad y apoyo en el laboratorio.

A todos ustedes, gracias por ser parte de este logro.

Índice General

Capítulo I. Metodología de la investigación	
1.1 Resumen	
1.2 Abstract	13
1.3 Introducción	14
1.4 Planteamiento del Problema	
1.5 Objetivos	15
1.5.1. Objetivo general	15
1.5.2. Objetivos específicos	16
1.6 Justificación	16
1.7 Metodología General	17
1.7.1 Localización	17
1.7.2 Metodología general del trabajo de investigación	17
1.8 Diseño Experimental	
1.8.1 Pruebas piloto	
1.8.2 Proceso de elaboración del producto final	26
1.8.3 Porcentaje de rendimiento	
Referencia Bibliográfica	29
Capítulo II. Antecedentes	31
Queso petit suisse	31
Petit suisse como alimento funcional	34
Seguridad alimentaria y derivados lácteos	35
Passiflora tripartita en derivados lácteos	
Referencias	
Capítulo III. Análisis fisicoquímico, microbiológico y sensorial de un q	•
3.1 Resumen	
3.2 Abstract	
3.3 Introducción	
3.4 Metodología	
3.5 Resultados y discusión	
3.6 Conclusiones	58

Referencias	59
Capítulo IV. Determinación de vida útil mediante análisis fisicoquímico, dis colorimetría y sinéresis	
4.1 Resumen	62
4.2 Abstract	62
4.3 Introducción	62
4.3 Metodología	63
4.4 Resultados y discusión	66
4.5 Conclusiones	82
Referencias	83
Capítulo V. Análisis químico proximal y espectroscopia ATR-FTIR en u saborizado	
5.1 Resumen	86
5.2 Abstract	86
5.3 Introducción	86
5.3 Metodología	87
5.4 Resultados y discusión	88
5.5 Conclusiones	94
Referencias	95
Ficha Técnica y Etiqueta del queso petit suisse saborizado	97
Ficha técnica	97
Etiqueta	98
Información nutricional	99
Referencia	100
Conclusiones Generales	101
Recomendaciones	102
Anexos	103

Lista de figuras

Figura 1. Diagrama general de la elaboración del queso tipo petit suisse saborizado con dulc curuba	
Figura 2. Descenso de pH en el proceso de inoculación a 35°C durante 7 h	.5
Figura 3. Descenso de pH en el proceso de fermentación a 30°C durante 16 h	.5
Figura 4. Documentos publicados en el tema de búsqueda, queso petit suisse (parte I)	1
Figura 5. Documentos publicados en el tema de búsqueda, queso petit suisse (parte II)	1
Figura 6. Red bibliométrica sobre el tema de búsqueda, queso petit suisse	3
Figura 7. Red bibliométrica sobre el tema de búsqueda, Passiflora tripartita	6
Figura 8. Porcentaje de curvatura del gel	0
Figura 9. Comportamiento pH para T1 y T4	3
Figura 10. Comportamiento acidez titulable para T1 y T4	4
Figura 11. Comportamientos sólidos solubles para T1 y T4	6
Figura 12. Gráfica de viscosidad para T1 y T4	8
Figura 13. Gráfica de torque para T1 y T4	9
Figura 14. Gráfica de fuerza de cizalla para T1 y T4	0
Figura 15. Gráficas de los parámetros de calidad para T1 y T4 en niños y adultos	5
Figura 16. Prueba de bondad de ajuste Anderson-Darling para determinar las distribucione evaluadas (T1)	
Figura 17. Prueba de bondad de ajuste Anderson-Darling para determinar las distribucione evaluadas (T4)	
Figura 18. Función linealizada de Weibull para (T1)	4
Figura 19. Función linealizada de Weibull para (T4)	4
Figura 20. Determinación de sinéresis en T1 y T4	7
Figura 21. Determinación de sinéresis en T1 y T4	9
Figura 22. Determinación de sinéresis en T1 y T4	9

Figura 23. Determinación de sinéresis en T1 y T4	. 80
Figura 24. Determinación de compuestos químicos mediante FTIR en T1 y T4	. 92
Figura 25. Análisis de los compuestos químicos mediante FTIR en T1 y T4	. 93
Figura 26. Ficha técnica para el tratamiento (T1)	. 97
Figura 27. Logotipo de la empresa	. 99
Figura 28. Etiqueta para el tratamiento (T1)	. 99
Figura 29. Tabla nutricional para los tratamientos T1 y T4	100

Lista de tablas

Tabla 1. Pruebas fisicoquímicas para la determinación de calidad de los diversos tipos de leche 1
Tabla 2. Pruebas fisicoquímicas de un queso petit suisse de marca comercial y con dos tipos de leche
Tabla 3. Pruebas fisicoquímicas para la disolución 1, 2 y 3
Tabla 4. Pruebas fisicoquímicas de los agentes gelificantes o espesantes para el dulce de curuba
Tabla 5. Pruebas fisicoquímicas de los diferentes tratamientos para el dulce de curuba
Tabla 6. Pruebas fisicoquímicas de los cuatros tratamientos en el queso petit suisse
Tabla 7. Calificación parámetros de calidad para los cuatro tratamientos en el queso petit suisse
Tabla 8. Pruebas fisicoquímicas de las variables de fermentación
Tabla 9. Formulación del queso petit suisse sin saborizar
Tabla 10. Principales autores que investigación sobre el tema de búsqueda del queso petit suiss
Tabla 11. Determinación de parámetros fisicoquímicos para T1 y T4, junto con dos queso comerciales
Tabla 12. Análisis de varianza (ANOVA) para potenciometría
Tabla 13. Método de Tukey y LSD Fisher con una confianza de 95% para potenciometría 43
Tabla 14. Análisis de varianza (ANOVA) para acidez titulable
Tabla 15. Método de Tukey y LSD Fisher con una confianza de 95% para acidez titulable 4-
Tabla 16. Análisis de varianza (ANOVA) para sólidos solubles totales
Tabla 17. Método de Tukey y LSD Fisher con una confianza de 95% para sólidos solubles totale
Tabla 18. Coordenadas CIEL*a*b* obtenidas por dos métodos de colorimetría para T1 y T4 40
Tabla 19. Análisis de varianza (ANOVA) para viscosidad
Tabla 20. Método de Tukey y LSD Fisher con una confianza de 95% para viscosidad

Tabla 21. Análisis de varianza (ANOVA) para sólidos torque	. 50
Tabla 22. Método de Tukey y LSD Fisher con una confianza de 95% para torque	. 50
Tabla 23. Análisis de varianza (ANOVA) para sólidos fuerza de cizalla	. 51
Tabla 24. Método de Tukey y LSD Fisher con una confianza de 95% para fuerza de cizalla	. 51
Tabla 25. Porcentaje de curvatura para los tratamientos T1 y T4 en el transcurso de cuatro sema	
Tabla 26. Porcentaje de curvatura para un queso petit suisse comercial	. 52
Tabla 27. Resultados de determinación de agua para T1 y T4	. 53
Tabla 28. Resultados de ensayos microbiológicos según la NTC 750 de 2009 para produc lácteos T1 y T4	
Tabla 29. Calificación parámetros de calidad para T1 y T4	. 54
Tabla 30. Análisis de varianza (ANOVA) para factor color	. 56
Tabla 31. Método de Tukey y LSD Fisher con una confianza de 95% para factor color	. 56
Tabla 32. Análisis de varianza (ANOVA) para factor aroma y sabor	. 56
Tabla 33. Método de Tukey y LSD Fisher con una confianza de 95% para factor aroma y sa	
Tabla 34. Análisis de varianza (ANOVA) para factor acidez	. 57
Tabla 35. Método de Tukey y LSD Fisher con una confianza de 95% para factor acidez	. 57
Tabla 36. Análisis de varianza (ANOVA) para factor cuerpo y textura	. 58
Tabla 37. Método de Tukey y LSD Fisher con una confianza de 95% para cuerpo y textura	. 58
Tabla 38. Calificación parámetros de calidad para T1 y T4	. 66
Tabla 39. Método de Tukey y LSD Fisher con una confianza de 95% para factor color	. 67
Tabla 40. Método de Tukey y LSD Fisher con una confianza de 95% para factor aroma y sa	
Tabla 41. Método de Tukey y LSD Fisher con una confianza de 95% para factor acidez	. 68
Tabla 42. Método de Tukey y LSD Fisher con una confianza de 95% para cuerpo y textura	. 69
Tabla 43. Rechazo de los consumidores en función del tiempo (T1)	. 70

Tabla 44. Rechazo de los consumidores en función del tiempo (T4)
Tabla 45. Resumen de los rechazos de los consumidores en función del tiempo de T1 y T4 70
Tabla 46. Aplicación de la distribución de Weibull para los valores rechazados (T1)
Tabla 47. Aplicación de la distribución de Weibull para los valores rechazados (T4)
Tabla 48. Parámetros de la distribución de Weibull
Tabla 49. Vida útil estimada para los tratamientos a evaluar
Tabla 50. Determinación de parámetros fisicoquímicos y sinéresis en función del tiempo (T1). 75
Tabla 51. Determinación de parámetros fisicoquímicos y sinéresis en función del tiempo (T4). 76
Tabla 52. Método de Tukey y LSD Fisher con una confianza de 95% para parámetros fisicoquímicos y de sinéresis
Tabla 53. Variación del color de los diferentes métodos colorimétricos en función del tiempo 81
Tabla 54. Índice de amarillamiento de los métodos colorimétricos en función del tiempo 82
Tabla 55. Diferencia de color de los diferentes métodos colorimétricos para T1 y T4
Tabla 56. Análisis químico proximal para los tratamientos T1 y T4
Tabla 57. Análisis de varianza (ANOVA) para análisis lípidos
Tabla 58. Método de Tukey y LSD Fisher con una confianza de 95% para lípidos
Tabla 59. Análisis de varianza (ANOVA) para proteína
Tabla 60. Método de Tukey y LSD Fisher con una confianza de 95% para proteína
Tabla 61. Análisis de varianza (ANOVA) para humedad
Tabla 62. Método de Tukey y LSD Fisher con una confianza de 95% para humedad
Tabla 63. Análisis de varianza (ANOVA) para cenizas
Tabla 64. Método de Tukey y LSD Fisher con una confianza de 95% para cenizas

Lista de Anexos

Anexo A. Resultados de las pruebas microbiológicas T1	103
Anexo B. Resultado de las pruebas microbiológicas T4	104
Anexo C. Prueba hedónica (niños)	105
Anexo D. Prueba hedónica (adultos)	106
Anexo E. Prueba de diferenciación (vida útil)	107
Anexo F. Resultados del análisis químico proximal de los tratamientos	108

Capítulo I. Metodología de la investigación

1.1 Resumen

La combinación de diferentes cadenas productivas permite el aumento de los niveles de productividad y competitividad de las empresas, a partir de la elaboración de nuevos productos funcionales que aportan significativamente a la seguridad alimentaria y nutricional de la población. El queso *petit suisse*, es un queso fresco, blando de coagulación mixta, caracterizado por no tener corteza, y por su alto contenido de humedad, que destaca por su consistencia suave, ligera y cremosa. Productos agrícolas, como las pasifloras, específicamente la curuba (*Passiflora tripartita*), tienen poco reconocimiento sobre su valor nutricional y sus componentes bioactivos, destacándose en su alto contenido de vitamina A, C y niacina. Debido a esto, es necesario su aprovechamiento por la población en general y como materia prima por la agroindustria para favorecer su cadena productiva.

En este estudio, se formularon y evaluaron diversos tratamientos de queso tipo *petit suisse*, saborizado con dulce de curuba (passiflora tripartita. El queso se preparó con diferentes proporciones de pulpa de fruta y azúcar, obteniéndose dos tratamientos en total. A estos se les realizaron análisis fisicoquímicos conforme a la normativa vigente y las Normas de calidad analítica preconizadas (AOAC), que incluyeron la medición de sólidos solubles (°Brix), pH, acidez titulable, colorimetría, actividad de agua, viscosidad, torque y fuerza de cizalla. Se realizaron pruebas microbiológicas, de análisis proximal y análisis sensorial, evaluando parámetros como color, acidez, consistencia, textura, aroma y sabor, de acuerdo con los estándares establecidos para productos lácteos. Así mismo, se aplicaron técnicas como la espectroscopia ATR-FTIR y el método de distribución de Weibull para la determinación de la vida útil del producto, teniendo en cuenta parámetros fisicoquímicos y sensoriales.

Los resultados obtenidos se analizaron por medio del método de varianza (ANOVA) y prueba de comparación múltiple (Tukey), donde se evidenció que la variabilidad de los porcentajes de pulpa de fruta y azúcar, hacen que haya diferencias significativas entre tratamientos, de igual forma, se determinó que el tratamiento con mejores características fisicoquímicas y sensoriales fue el tratamiento 1 (T1), donde se tenía menor porcentaje de fruta y menor contenido de sólidos solubles totales. Gracias a esta investigación se pudo demostrar que es posible realizar este tipo de productos con frutas autóctonas de la región, aprovechando las propiedades nutricionales de las materias primas y generando una formulación estable textural.

1.2 Abstract

The combination of different production chains makes it possible to increase the productivity and competitiveness of companies by producing new functional products that contribute significantly to the food and nutritional security of the population. Petit Suisse cheese is a fresh, soft, mixed coagulation cheese, characterized by its rindless rind and high moisture content, which stands out for its smooth, light and creamy consistency. Agricultural products such as passion flowers, specifically curuba (Passiflora tripartita), have little recognition of their nutritional value and bioactive components, especially their high content of vitamin A, C and niacin. Because of this, it is necessary that it be used by the general population and as a raw material by the agroindustry to favor its productive chain.

In this study, several treatments of petit suisse cheese flavored with sweet curuba (passiflora tripartita) were formulated and evaluated in order to add value to its production and marketing. The cheese was prepared with different proportions of fruit pulp and sugar, obtaining two treatments in total. Physicochemical analyses were carried out in accordance with current regulations and the Recommended Analytical Quality Standards (AOAC), including the measurement of soluble solids (°Brix), pH, titratable acidity, colorimetry, water activity, viscosity, torque and shear strength. Microbiological, proximate analysis and sensory analysis tests were performed, evaluating parameters such as color, acidity, consistency, texture, aroma and flavor, in accordance with the standards established for dairy products. Techniques such as ATR-FTIR spectroscopy and the Weibull distribution method were also applied to determine the shelf life of the product, taking into account physicochemical and sensory parameters.

The results obtained were analyzed by means of the variance method (ANOVA) and multiple comparison test (Tukey), where it was evidenced that the variability of the percentages of fruit pulp and sugar, make significant differences between treatments, from what was obtained in the hedonic test applied, it was determined that the treatment with better physicochemical and sensory characteristics was treatment 1 (T1), where it had lower percentage of fruit and lower content of total soluble solids. Thanks to this research, it was possible to demonstrate that it is possible to make this type of product with fruits native to the region, taking advantage of the nutritional properties of the raw materials and generating a texturally and compositionally stable formulation in the final product.

1.3 Introducción

En la industria láctea colombiana, la innovación y la diversificación de productos son aspectos cruciales para la competitividad, de tal forma, la incorporación de sabores locales y exóticos ofrece una oportunidad única para la creación de productos diferenciados y atractivos para los consumidores (Gómez, 2023). Dentro de los productos agroindustriales de esta cadena, se destacan bebidas lácteas, como es el caso del yogur, kumis, leche pasteurizada y UHT; mantequillas, productos concentrados; y por supuesto, los quesos; siendo estos los más importantes, representando alrededor del 40% de la leche procesada en Colombia y el mundo (Morales y Ospina, 2017).

En esta línea, los quesos más populares en el país son el queso fresco y el queso doble crema, en los últimos años ha ganado popularidad el *petit suisse*, un queso blando fresco elaborado a partir de la coagulación mixta de la leche, caracterizado por su alto contenido de humedad y por no tener corteza, presentando una textura más similar a la de un yogur o un helado que a la de un queso fresco (Bautista, 2014). Destacándose como un producto diferenciador gracias a su valor agregado, su textura cremosa y su alto valor nutricional; según (Acero, 2014) estudios reportan que el 49,1% de los niños en Colombia, consumen queso tipo *petit suisse*, específicamente marca Alpinito de Alpina, siento este, el más representativo a nivel nacional.

A partir de actividades de investigación, innovación y desarrollo tecnológico en el sector lácteo, se puede llevar a cabo el diseño, prototipado y elaboración de nuevos productos funcionales que aporten a las condiciones de seguridad alimentaria y nutricional de la población, permitiendo incrementar los niveles de productividad y competitividad de las empresas junto con la conjugación de diferentes cadenas productivas como la láctea y la hortofrutícola (González, 2022), al implementar frutas tropicales, como es el caso de las pasifloras, convirtiéndolas en un

ingrediente prometedor para la elaboración de productos lácteos innovadores y culturalmente relevantes (Barrera et al., 2020).

Actualmente, el departamento del Huila tiene la mayor área dedicada a la producción de pasifloras del país, tratándose de 2.912,2 hectáreas empleadas en su cultivo (Gobernación del Huila, 2023), presentando un gran potencial en este sector productivo (Asociación Hortofrutícola de Colombia, 2018). De tal forma, se destaca el valor nutricional de estas frutas, donde se resalta su aporte vitamínico, de aminoácidos, minerales y proteínas dentro de la dieta (Carvajal et al., 2014). Por lo cual, debido al interés creciente en la promoción de la producción y consumo de productos locales y tradicionales ("incentivar consumo", 2024), se espera que este proyecto contribuya a la diversificación del sector lácteo colombiano y a la valorización de los ingredientes autóctonos, al desarrollar un proceso de formulación que garantice la estabilidad fisicoquímica de un queso *petit suisse* saborizado con dulce de curuba, manteniendo sus propiedades sensoriales características y su aceptabilidad en el mercado local.

1.4 Planteamiento del Problema

Entre los derivados lácteos se encuentra el queso tipo "petit suisse", siendo este un queso originario de Francia, elaborado a partir de cuajada inoculada y acidificada de leche de vaca, junto con la adición de crema y saborizante o salsas de frutas. Un queso tipo petit suisse se caracteriza por tener un alto contenido de humedad, específicamente, según un estudio realizado por (Merchán, 2011), se encuentra alrededor de 70,67% de humedad y tiene una duración de maduración de dos días, lo que indica que debe ser consumido fresco (Bautista, 2014). Los quesos en general constituyen una forma ancestral de conservación de las proteínas y de la materia grasa, así como una parte de calcio y fósforo de la leche (Espitia, 2016). Son de los alimentos más ricos en proteínas ya que su contenido es alrededor del 10% en quesos frescos. El queso petit suisse es uno de los quesos más frescos y de mayor importancia comercial, ya que es valorado por los niños, gracias a su dulce sabor (Hernández et al., 2007).

En este sentido, se señala como problemática la falta de productos novedosos y de calidad elaborados a base de frutas exóticas y endémicas de la región. La ausencia de un queso tipo "petit suisse" saborizado con dulce de curuba (passiflora tripartita) constituye una oportunidad desaprovechada tanto para los consumidores como para los productores locales. Por tal motivo, surgió la siguiente pregunta problema, ¿Cómo elaborar y formular un queso tipo "petit suisse" saborizado con dulce de curuba, y qué efecto tienen los diversos tratamientos y variables sobre la textura, apariencia, y las propiedades sensoriales del producto?

1.5 Objetivos

1.5.1. Objetivo general

Formular y elaborar un queso tipo *petit suisse* saborizado con dulce de curuba (*Passiflora tripartita*), evaluando el efecto de los tratamientos y las variables establecidas, con relación a los parámetros organolépticos, fisicoquímicos y microbiológicos.

1.5.2. Objetivos específicos

- Desarrollar la formulación y estandarización del proceso de elaboración de un queso *petit suisse* saborizado, garantizando su estabilidad y calidad, a partir de la normativa vigente.
- Determinar la vida útil del producto mediante análisis fisicoquímico, sensorial y estadístico.
- Realizar una evaluación sensorial del producto para determinar el grado de aceptación de los consumidores.
- Aplicar un análisis bromatológico al producto para determinar su composición nutricional.

1.6 Justificación

Según la Federación Colombiana de Ganaderos [FEDEGAN] (2019) en Colombia la cadena de productos lácteos es uno de los subsectores más estratégicos para el desarrollo, gracias a que se enfoca en un grupo alimenticio de primera necesidad, de vital importancia para la seguridad alimentaria debido a su aporte nutricional, su valor de la producción y la oferta de empleos tanto directos como indirectos (Meneses et al., 2015).

De esta manera, el desarrollo de productos alimentarios como quesos *petit suisse* saborizados con diferentes frutas, ha sido objeto de estudio en la industria alimentaria en los últimos años, ya que varios autores han explorado la formulación y caracterización de quesos *petit suisse* saborizados con diversos dulces de frutas. Silva (2021) investigó el efecto de ingredientes basados en frutas sobre las propiedades fisicoquímicas, sensoriales y nutricionales de quesos frescos, donde se evidencia cómo influye la adición de frutas en la composición y características del queso, un ejemplo de esto, es que en sus resultados se evidenció el efecto de la adición de extracto de arándano rojo sobre la textura del queso fresco, donde este aumentó la viscosidad y la fusión de componentes grasos, influyendo y mejorando la textura del producto, y de igual forma, añadió sabor, color y antioxidantes a la mezcla.

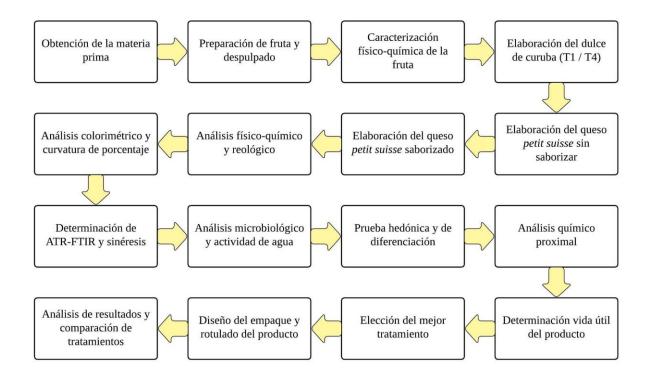
Así mismo, se han encontrado formulaciones de queso tipo "Petit Suisse" con diversas frutas con el fin de unificar sus cualidades nutricionales con un producto delicioso apto para el consumo de niños, jóvenes y adultos, como es el caso de la elaboración de un queso petit suisse saborizado con salsa de aguacate Hass. Este proyecto involucró actividades de investigación, innovación y desarrollo tecnológico en el sector lácteo, permitiendo el diseño y prototipado de estos nuevos productos funcionales que favorecen y aportan a la seguridad alimentaria y nutricional de la población (Barrera et al., 2020).

Acero (2014) evaluó el consumo de queso tipo *Petit Suisse*, encontrando una prevalencia en los niños de 5 a 8 años con una frecuencia de consumo de 1 a 5 veces por semana. De esta manera, es importante resaltar que el consumo de este derivado lácteo contribuye a alcanzar la recomendación diaria de ingesta de queso (Vela, 2020). De tal manera, estos estudios y artículos científicos reflejan y evidencian la importancia y potencial de formular un queso *petit suisse* saborizado con dulce de frutas tropicales y autóctonas, como es el caso de la curuba (*Passiflora tripartita*), en la industria alimentaria.

No obstante, es crucial destacar que la poca investigación sobre este tipo de fruto no solo deja un vacío en el conocimiento existente, sino que también presenta una valiosa oportunidad para contribuir al avance de múltiples áreas del saber. La exploración más profunda de este tema podría revelar aspectos hasta ahora no explorados, desencadenando potenciales descubrimientos y aplicaciones en campos tan diversos como la medicina, la alimentación, la agricultura y la biotecnología.

1.7 Metodología General

1.7.1 Localización


En el marco de este proyecto, se definió la localización en el municipio de Neiva-Huila con el propósito de asegurar el suministro de la materia prima a través de los centros de acopio, almacenes de cadena, supermercados y otros proveedores. La fase de elaboración del producto y la caracterización fisicoquímica se llevó a cabo de manera integral en los laboratorios de Procesos Agroindustriales, Control de Calidad y la sala sensorial de Cesurcafé de la Facultad de Ingeniería pertenecientes a la Universidad Surcolombiana sede Neiva. Las pruebas microbiológicas se realizaron en el laboratorio apoyo al Laboratorio Agualimsu S.A.S Neiva-Huila, y las pruebas de análisis proximal se realizaron en los laboratorios de la Universidad Nacional de Colombia sede Bogotá.

1.7.2 Metodología general del trabajo de investigación

Para el presente trabajo de investigación se empleó la metodología expuesta en la Figura 1.

Figura 1

Diagrama general de la elaboración del queso tipo petit suisse saborizado con dulce curuba

Caracterización del producto

- Parámetros fisicoquímicos (pH, %acidez titulable, sólidos totales)
- Vida útil (colorimetría, análisis sensorial, sinéresis)
- Viscosidad y retrogradación
- Análisis microbiológico y actividad de agua
- Análisis químico proximal y ATR-FTIR

1.8 Diseño Experimental

1.8.1 Pruebas piloto

En la fase inicial de la aplicación del proyecto, se definieron dos tipos de materia prima: leche en polvo de vaca y leche fresca de vaca. Este enfoque se adoptó con el propósito de evaluar diversos factores relacionados con la elaboración del producto, tales como textura, apariencia, sabor y aroma. Asimismo, se respetaron y siguieron los lineamientos establecidos en la normativa NTC 1036 de 2002, la NTC 399 de 2002 y el Decreto 616 de 2006, lo cual incluyó la aplicación de pruebas fisicoquímicas para asegurar la calidad y el cumplimiento de los estándares requeridos.

De acuerdo a la Tabla 1, se realizaron pruebas de acidez, pH y densidad a la leche de vaca fresca, pasteurizada y leche en polvo reconstituida.

Tabla 1Pruebas fisicoquímicas para la determinación de calidad de los diversos tipos de leche

Parámetros fisicoquímicos Leche fresca	Leche	Leche en polvo
--	-------	----------------

		pasteurizada	reconstituida
Acidez (% ácido láctico)	0,15	0,17	0,17
pН	7,4	7,38	7,35
T (°C)	15	26	41,2
Densidad (g/mL) a 15°C	1,029	1,028	1,033

Nota. La leche pasteurizada tuvo un proceso térmico (30 minutos a 60°C).

De acuerdo a la aplicación de las pruebas fisicoquímicas, se procedió a realizar la elaboración del queso *petit suisse* con la leche pasteurizada y la leche en polvo reconstituida, teniendo en cuenta la guía de laboratorio de Moreno (2022).

A partir de la elaboración del producto, se llevó a cabo la aplicación de las pruebas fisicoquímicas, organolépticas y de textura. Según la Tabla 2, se obtuvieron como resultado los siguientes valores.

Tabla 2Comparación de análisis fisicoquímicas entre diferentes tipos de queso petit suisse

D	Queso petit suisse			
Parámetros - fisicoquímicos	Leche pasteurizada	Leche en polvo reconstituida	Comercial	
Acidez (% ácido láctico)	0,902	0,915	0,67	
pН	4,85	4,8	5,22	
Sólidos solubles (°Brix)	34,7	30,3	16,76	

Después de evaluar los resultados, se concluyó que la leche en polvo es la materia prima más adecuada para este proyecto. Se justifica esta decisión por su capacidad para cumplir con los estándares de calidad e higiene establecidos por las normativas vigentes. Asimismo, se observó que su textura es más compacta y similar a la del queso *petit suisse* comercial, y de igual forma, ayudó a controlar la sinéresis del producto. En cuanto a los costos, también se asume que emplear la leche en polvo resulta más rentable para la realización de este proyecto.

Estandarización de la leche en polvo entera

Durante la etapa experimental, se llevó a cabo la estandarización de la leche reconstituida como uno de los primeros procedimientos. De esta manera, se establecieron tres tipos de diluciones, los cuales fueron los siguientes:

Dilución 1: (10 / 90) — (Leche en polvo / agua)

Dilución 2: (13 / 87) (Leche en polvo / agua)

Según las diluciones empleadas, se consideró el porcentaje de grasa de cada una, tomando en cuenta que la dilución 2 correspondía a la especificada en el empaque (leche en polvo). Con base en esta información, se realizaron las formulaciones correspondientes, obteniendo los siguientes valores:

A partir de las diluciones establecidas, se realizaron pruebas fisicoquímicas para evaluar su comportamiento. Las pruebas aplicadas se detallan en la Tabla 3.

Tabla 3 *Pruebas fisicoquímicas para la disolución 1, 2 y 3*

Parámetros fisicoquímicos	Dilución 1	Dilución 2	Dilución 3
Acidez (% ácido láctico)	0,11	0,12	0,13
pН	7,48	7,53	7,51
T (°C)	25	22	24
Densidad (g/mL) a 15°C	1,039	1,038	1,033

Se pudo demostrar que la dilución 3 cumple con los parámetros fisicoquímicos establecidos por el Decreto 616 de 2006; además, con esta disolución se logró la textura deseada para elaborar el producto final. Por otra parte, cabe resaltar que se presentó un aumento en el rendimiento del producto tanto en la dilución 2 como en la 3.

Estandarización del grado de dulzor del producto

ICONTEC (2009) estipula que "el queso debe ser el componente principal, en una cantidad mínima del 70%". De esta manera, acatando los lineamientos de la NTC-750 se establecieron dos formulaciones, las cuales, se presentan a continuación:

F1: (80 / 20) → (Queso *petit suisse* sin saborizar / dulce de curuba) **F2:** (70 / 30) → (Queso *petit suisse* sin saborizar / dulce de curuba)

Los dulces de fruta a base de curuba se caracterizaron por tener una proporción de pulpa del 40% y un contenido de sólidos solubles de 65 °Brix en ambas formulaciones, teniendo en cuenta que la proporción se realizó únicamente para la determinación del grado de dulzor.

Tras analizar los resultados experimentales obtenidos en el laboratorio de Procesos Agroindustriales y en espacios externos, se optó por seleccionar la formulación 2 (F2). Esta elección se basó en la intensidad de sabor lograda mediante la adición del dulce de curuba, la cual exhibió propiedades sensoriales más compatibles con los estándares de productos comerciales.

Estandarización del dulce de curuba

De acuerdo a la metodología propuesta por Castro (2022) en las prácticas de laboratorio denominadas "Salsas frutales" y "Jaleas y Mermeladas", se realizaron algunas estandarizaciones para la elaboración del dulce de curuba, en donde, se estipularon tres agentes gelificantes o espesantes, los cuales fueron pectina, almidón modificado y goma xantana.

Agente 1: 60% pulpa / 65 °Brix — (Goma xantana)

Agente 2: 60% pulpa / 60 °Brix — (Almidón modificado)

Agente 3: 60% pulpa / 65 °Brix _____ (Pectina)

A partir de lo establecido se aplicaron pruebas fisicoquímicas para determinar el mejor agente gelificante, de esta manera, en la Tabla 4 se presentan los resultados obtenidos.

Tabla 4Pruebas fisicoquímicas de los agentes gelificantes o espesantes para el dulce de curuba

Parámetros fisicoquímicos	Goma	Almidón	Pectina
рН	3,52	3,73	3,67
Acidez (% ácido cítrico)	1,58	1,33	1,73
Sólidos solubles (°Brix)	64,4	61	67,3

Respecto al estudio evaluado, se seleccionó como agente gelificante a la goma xantana, debido a sus propiedades, ya que evita la sinéresis por un tiempo más prolongado, modifica la consistencia del dulce gracias a su acción espesante y conserva el sabor.

Por otra parte, se evaluó el comportamiento del dulce de curuba empleando como agente gelificante o espesante la goma xantana, implementando diferentes porcentajes de pulpa (60% y 40%) y diferentes concentraciones de sólidos solubles (60° Brix y 65°Brix), con el objetivo de analizar si estos factores influían significativamente o no en el producto final.

Tratamiento 1: 40% pulpa / 60 °Brix

Tratamiento 2: 40% pulpa / 65 °Brix

Tratamiento 3: 60% pulpa / 60 °Brix

Tratamiento 4: 60% pulpa / 65 °Brix

A partir de lo establecido se aplicaron pruebas fisicoquímicas para determinar los mejores tratamientos, presentándose en la Tabla 5 los resultados obtenidos.

Tabla 5 *Pruebas fisicoquímicas de los diferentes tratamientos para el dulce de curuba*

Parámetros fisicoquímicos	Tratamiento 1	Tratamiento 2	Tratamiento 3	Tratamiento 4
pН	3,99	3,91	3,99	3,89
Acidez (% ácido cítrico)	1,037	1,461	0,926	1,236
Sólidos solubles (°Brix)	61	64,5	60,3	65,8

De acuerdo a la aplicación de las pruebas fisicoquímicas, se procedió a realizar la elaboración del queso *petit suisse* con los cuatro tratamientos, donde se llevó a cabo la aplicación de las pruebas fisicoquímicas y organolépticas en estos. Por lo cual, se obtuvieron como resultado los siguientes datos y valores.

Tabla 6Pruebas fisicoquímicas de los cuatros tratamientos en el queso petit suisse

	Queso petit suisse				
Parámetros fisicoquímicos	Tratamiento 1	Tratamiento 2	Tratamiento 3	Tratamiento 4	
Acidez (% ácido láctico)	0,674	0,761	0,727	0,774	
pН	4,52	4,56	4,60	4,59	
Sólidos solubles (°Brix)	28,5	27,8	30,2	29,8	

De la misma forma, se llevó a cabo una prueba sensorial, donde, siete catadores semi entrenados del centro de investigación Cesurcafé de la Universidad Surcolombiana fueron seleccionados para valorar los cuatro tratamientos a partir de una escala específica. Los criterios de evaluación incluyeron color, acidez, consistencia y textura, además del aroma y sabor, conforme a los estándares establecidos para productos lácteos.

De acuerdo a la Tabla 7, se puede observar las respuestas promediadas junto con el porcentaje de aceptabilidad de los diferentes tratamientos.

Tabla 7Calificación parámetros de calidad para los cuatro tratamientos en el queso petit suisse

Tratamiento	Promedio Calificación					Aceptabilidad
	Color	Aroma y Sabor	Acidez	Cuerpo y Textura	TOTAL	(%)
Valores Máximos	3	9	2	6	20	100
T1	3	8,57	1,57	4,14	17,29	86,43
T2	3	8,71	1,43	2,86	15,71	78,57
Т3	3	8,71	1,33	4	17,05	85,24
T4	3	9	1,33	4,14	17,47	87,38

A partir de los datos obtenidos, y de las observaciones realizadas en las pruebas fisicoquímicas y organolépticas, se establecieron dos tratamientos para la formulación y evaluación del queso *petit suisse*, los cuales fueron el tratamiento 1 y el tratamiento 4, considerando una disminución del contenido de sólidos solubles totales, debido al tipo de producto que se realiza y al público dirigido. Determinando así, lo siguiente:

Tratamiento 1: 40% pulpa / 55 °Brix → (Jalea)

Tratamiento 4: 60% pulpa / 60 °Brix _____ (Mermelada)

Estandarización del producto

Para la formulación y elaboración del queso *petit suisse*, se siguió la metodología presentada por Moreno (2022) en la guía de laboratorio titulada "Elaboración de diferentes tipos de quesos". Esta guía se empleó como referencia para llevar a cabo la adaptación necesaria y lograr la estandarización adecuada del producto.

A continuación, se presentan las siguientes ecuaciones para hallar la cantidad de cultivo láctico, azúcar y cloruro de calcio:

Ecuación 1.

Cantidad de cultivo láctico

$$CU = L \times 0.002\%$$

Ecuación 2.

Cantidad de azúcar

$$AZ = L \times 1\%$$

Ecuación 3.

Cantidad de cloruro de calcio

$$CL = L \times 0.02\%$$

De acuerdo a la implementación del cuajo liquido empleado, se tuvo en cuenta una razón de 10 mililitros por cada 100 litros de leche. Por otra parte, para la estandarización de grasa de las materias primas empleadas para la elaboración del queso *petit suisse* sin saborizar, se realizó un balance de masa:

Ecuación 4

Balance general del queso petit suisse

$$L + C = Q$$

$$L\left(\frac{grasa_L\%}{100}\right) + C\left(\frac{grasa_C\%}{100}\right) = Q\left(\frac{grasa_Q\%}{100}\right)$$

Ecuación 5

Balance parcial: Crema de leche

$$C = Q \left(\frac{grasa_Q \%}{100} - \frac{grasa_L \%}{100} \right) / \left(\frac{grasa_C \%}{100} - \frac{grasa_L \%}{100} \right)$$

Ecuación 6

Balance parcial: Leche reconstituida

$$L = Q - C$$

Donde, CU: Cultivo láctico; AZ: Azúcar; CL: Cloruro de calcio; Q: Queso *petit suisse* sin saborizar; C: Crema de leche; L: Leche reconstituida

Durante la fase de la prueba experimental, se llevó a cabo la estandarización inicial del queso *petit suisse* sin saborizar, considerando un contenido final de grasa bruta del 6,37%.

En otra instancia, se abordó el estudio de la variable tiempo para valorar el proceso fermentativo de los cultivos empleados en la elaboración del queso *petit suisse* sin saborizar. De este modo, se establecieron tres variables las cuales fueron sometidas a evaluación para analizar las variaciones en textura, pH, acidez y rendimiento porcentual en función del tiempo.

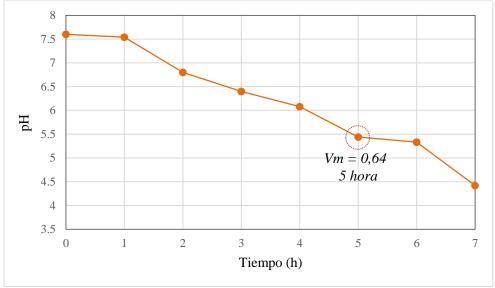
- **V1:** Fermentación (30°C a 6 horas)
- **V2:** Fermentación (30°C a 15 horas)
- **V3:** Fermentación (30°C a 24 horas)

De acuerdo a la Tabla 8, se tuvo en cuenta algunos parámetros fisicoquímicos en la evaluación del tiempo de fermentación.

Tabla 8 *Pruebas fisicoquímicas de las variables de fermentación*

Parámetros fisicoquímicos	V1	V2	V3
рН	4,98	4,78	4,55
Acidez (% ácido láctico)	0,96	1,08	1,15
Sólidos solubles (°Brix)	17,76	18,76	18,16

Se evidenció que la variable V2 destacó por su mayor rendimiento y por mantener un pH adecuado, convirtiéndose así en la opción óptima para el proceso. Por otra parte, se especifica que la textura no incidió mucho con el tiempo de fermentación.


De acuerdo con la variable establecida, se realizó un seguimiento de pH al producto desde la inoculación y fermentación de la leche, asimismo, se determinó la velocidad máxima de acidificación (*Vm*) estipulada en la Ecuación 1 (Ramírez, et al. 2016).

Ecuación 7

Velocidad máxima de acidificación (Vm)

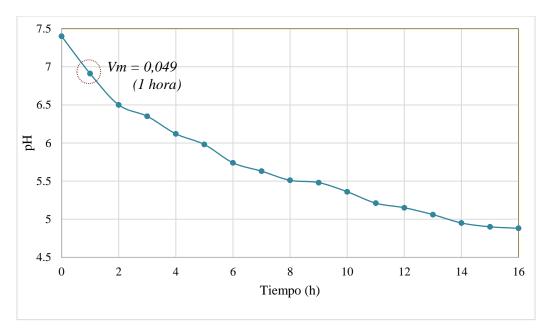

$$Vm = \left(\frac{\Delta pH}{\Delta t}\right)_{max}$$

Figura 2Descenso de pH en el proceso de inoculación a 35°C durante 7 h

Nota. El crecimiento óptimo del cultivo láctico empleado ocurre entre los 30°C y 35°C.

Figura 3Descenso de pH en el proceso de fermentación a 30°C durante 16 h

De acuerdo al proceso de inoculación, se pudo observar que inicialmente la leche tenía un pH de 7,6 debido al alto contenido de sólidos totales al tratarse de leche en polvo reconstituida, al adicionar el cultivo madre de mesófilos *Lactococcus lactis ssp lactis* y *Lactococcus lactis ssp cremoris* (CHOOZIT MA 4001LYO 5DCU, DANISCO FRANCE SAS) al 0,002%, el pH comenzó a disminuir lentamente obteniendo dichos resultados.

Como se muestra en la Figura 3, el pH empezó a descender al adicionar el cultivo láctico para obtener un pH final de 4,88 después de 16 h de fermentación, las lecturas se realizaron cada hora. Por consiguiente, se estableció que el crecimiento de las bacterias lácticas fue positivo, logrando la acidez final requerida, correspondiente a los quesos de acidificación mixta, al que pertenece el *petit suisse*, aun así, es necesario un estudio más profundo, para limitar el tiempo para pH óptimo final, ya que en comparación a lo reportado por (Bautista, 2014), la caída de pH es más rápida, donde obtuvieron un pH final de 4,3.

1.8.2 Proceso de elaboración del producto final

La elaboración del producto final consta de dos etapas. La primera es la elaboración del queso *petit suisse* sin saborizar, que representa el 70% del producto total. La segunda etapa corresponde a la preparación del dulce de curuba, que constituye el 30% restante.

Para mejorar la textura del producto, se utilizó agar agar como espesante, a razón de 4 gramos por cada kilogramo de producto. Este espesante se disuelve en el dulce de curuba, siguiendo una proporción de 4 gramos de espesante por cada 200 gramos de dulce curuba, para la elaboración de un kilogramo de producto (Ochoa, 2024).

Proceso de elaboración del queso petit suisse saborizado

Para el proceso de elaboración del queso *petit suisse* sin saborizar se tuvo en cuenta las formulaciones estipuladas en las pruebas piloto, donde se determinó en la Tabla 9 los ingredientes empleados.

Tabla 9Formulación del queso petit suisse sin saborizar

Queso petit suisse sin saborizar			
Ingrediente	(%)		
Leche en polvo reconstituida	90,054		
Crema de leche	9,016		
Azúcar	0,9		
Cloruro de calcio	0,019		
Cultivo láctico	0,002		
Cuajo líquido	0,01		
Total	100		

Proceso de elaboración del dulce de curuba

La elaboración del dulce de curuba se adaptó a la metodología propuesta por Castro (2022) en la práctica de laboratorio denominada "Jaleas y Mermeladas", la cual, forma parte del curso de Procesos Industriales Fruver dentro del Programa de Ingeniería Agroindustrial de la USCO. Este ajuste se realizó con el objetivo de implementar una metodología apropiada que garantice la conservación óptima de los componentes nutricionales presentes en la materia prima empleada.

Como se estipula en la práctica de laboratorio realizada por Castro (2022) se tuvo en cuenta el balance de masas para establecer la cantidad de ingredientes necesarios para la elaboración del dulce. A continuación, se presentan las siguientes ecuaciones para hallar la cantidad de goma xantana y ácido cítrico:

Ecuación 8

Peso total del producto

$$PTP = \frac{Peso\ pulpa\ de\ fruta \times 100\%}{\%Peso\ pulpa\ de\ fruta}$$

Ecuación 9

Cantidad de goma xantana

$$CGX = PTP \times 1\%$$

Ecuación 10

Cantidad de ácido cítrico

$$CAC = PTP \times 0.1\%$$

Para determinar la cantidad de azúcar y agua a emplear para la elaboración del dulce se tuvo en cuenta el siguiente balance de masa:

Ecuación 11

Balance general

$$PF + PS + PA = PTP$$

$$PF\left(\frac{^{\circ}Brix\ fruta}{100}\right) + PS\left(\frac{100}{100}\right) + PA\left(\frac{0}{100}\right) = PTP\left(\frac{^{\circ}Brix\ finales}{100}\right)$$

Ecuación 12

Balance parcial sacarosa

$$PS = PTP\left(\frac{^{\circ}Brix\ finales}{100}\right) - PF\left(\frac{^{\circ}Brix\ fruta}{100}\right)$$

Ecuación 13

Balance parcial agua

$$PA = PTP - PF - PS$$

Donde, PTP: Peso total de producto; CGX: Cantidad de goma xantana; CA: Cantidad de ácido cítrico; PF: Peso de la pulpa de fruta; PS: Peso de sacarosa; PA: Peso del agua

1.8.3 Porcentaje de rendimiento

Para la determinación del porcentaje de rendimiento de la pulpa de fruta, zumo de la fruta, dulce de curuba y queso *petit suisse* sin saborizar, se empleó la Ecuación 9.

Ecuación 14

Determinación del porcentaje de rendimiento

$$\%$$
Rendimiento = $\frac{Peso\ producto\ final}{Peso\ materia\ prima} \times 100$

De acuerdo con lo establecido, se determinó que la pulpa de fruta tuvo un porcentaje de rendimiento del 58% y el zumo un 59%. Para el caso de la salsa (T1), se obtuvo un porcentaje del 82% y, para la mermelada (T4) se obtuvo un rendimiento del 76%. En el caso del queso *petit suisse* sin saborizar se presentó un porcentaje de rendimiento del 30%, cabe destacar que este porcentaje depende de la calidad de la leche, el método de coagulación, el proceso de drenaje de suero, y la adición de ingredientes como crema o estabilizantes.

1.8.4 Análisis estadístico

Se aplicó un análisis de varianza de un solo factor para el análisis de los datos obtenidos en la prueba de comparación múltiple de Tukey (p<0.05), para detectar si existen diferencias significativas con relación a los tratamientos. De igual forma, se tuvo en cuenta otros métodos estadísticos como ANOVA para examinar las diferencias en las medias de tres o más grupos y el

método LSD de Fisher, ya que utiliza la tasa de error individual y varias comparaciones con el objetivo de calcular el nivel de confianza simultáneo para todos los intervalos de confianza.

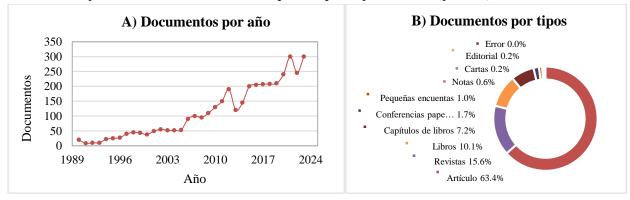
Las pruebas que se sometieron al análisis estadístico fueron las evaluaciones fisicoquímicas, reológicas y análisis químico proximal, descritas en los Capítulos III, IV y V.

Referencia Bibliográfica

- Acero, J. (2014). Descripción del consumo de productos lácteos listos para consumir en niños del colegio unidad residencial Colseguros [Trabajo de pregrado]. Repositorio Javeriana. https://repository.javeriana.edu.co/bitstream/handle/10554/16037/AceroPereJuanita20 14.%20pdf?sequence=1&isAllowed=y
- Asociación Hortofrutícola de Colombia, (2018). Balance del sector Hortofruticultura en 2018. http://www.asohofrucol.com.co/imagenes/BALANCE_DEL_SECTOR_HORTIFRUT ICULTURA_2018.pdf
- Barrera, E., Mejía, L., Salazar, L., Muñoz, E., González, M., Tapiero, C. y López, J. (2020). Elaboración de un queso Petit Suisse saborizado con salsa de aguacate Hass. *Encuentro Sennova del Oriente Antioqueño 32*(50). Rionegro, Colombia.
- Bautista, A. (2014). Elaboración de un queso tipo petit suisse de leche de cabra, adicionado con *Lactobacillus casei* como probiótico. Recuperado de https://cdigital.uv.mx/bitstream/handle/123456789/42598/BautistaAntonioMIsabel2.p df?sequence=2&isAllowed=y
- Castro, J. (2022). Guía práctica de laboratorio: Jaleas y Mermeladas. Universidad Surcolombiana Facultad de Ingeniería.
- Carvajal, L., Turbay, S., Álvarez, L., Rodríguez, A., Álvarez, M., Bonilla, K., Restrepo, S. y Parra, M. (2014). Propiedades Funcionales y Nutricionales de Seis Especies de Passiflora del departamento del Huila, Colombia. *Caldasia*, *36*(1), 1-15.
- Espitia, L. (2016). Evaluación de la calidad composicional de la leche influenciada por el periodo de transición en vacas doble propósito en trópico bajo colombiano [Trabajo de Pregrado]. Repositorio Lasalle. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1280&context=medicina_vet erinaria
- Federación Colombiana de Ganaderos [FEDEGAN]. (2019). *Producción y acopio de leche en Colombia (litros)*. Recuperado de https://www.fedegan.org.co/estadisticas/produccion-0
- Gobernación del Huila. (07 de marzo de 2023). A través de proyectos de ciencia y tecnología, el gobierno "Huila Crece" le apuesta a las pasifloras. Huila crece Apuesta hacia las pasifloras
- Gómez, N. (2023). Sector lácteo en Colombia: Un análisis global y retos a futuro. *ANeIA*. https://aneia.uniandes.edu.co/sector-lacteo-en-colombia-un-analisis-global-y-retos-a-futuro/

- González, I. (2022). Análisis de factores de la productividad de la industria láctea. Aproximación a un comparativo entre Colombia y los líderes mundiales de la industria [Trabajo de pregrado]. Repositorio Universidad Santo Tomás https://repository.usta.edu.co/bitstream/handle/11634/49278/2022%20Tatiana%20Gon zalez.pdf?sequence=1
- Hernández, L., Ciro, H. y Osorio, J. (2007). Estudio de la dureza del queso EDAM por medio de análisis de perfil de textura y penetrómetro por esfera. *Revista Facultad Nacional de Agronomía-Medellín* 20(1), 3797-3811.
- Incentivar consumo: oportunidad y desafío para el sector lácteo, tema central del próximo congreso de Asoleche (2024). *La Nota Económica*. https://lanotaeconomica.com.co/movidas-empresarial/incentivar-consumo-oportunidad-y-desafio-para-el-sector-lacteo-tema-central-del-proximo-congreso-de-asoleche/
- Instituto Colombiano de Normas Técnicas y Certificación. (2009). Productos lácteos: Quesos (NTC 750). https://es.scribd.com/document/131737856/NTC750-productos-lacteosQuesos
- Meneses, R., Estrada, D., Chantré, C. y López, F. (2015). Caracterización de la cadena informal de la leche cruda en el municipio de Popayán. *Biotecnología en el Sector Agropecuario*, 13(2), 130-139.
- Merchán, C. (2011). *Desarrollo de petit suisse para la planta de lácteos Ecolac* [Trabajo de Pregrado]. Repositorio UTPL. https://dspace.utpl.edu.ec/handle/123456789/1700
- Morales, V. y Ospina, J. (2017). *Análisis de la cadena de valor de la industria láctea en Colombia y sus oportunidades en los mercados internacionales* [Trabajo de pregrado]. Repositorio Unilibre. https://repository.unilibre.edu.co/bitstream/handle/10901/16293/AN%C3%81LISIS%2 0DE%20LA%20CADENA%20DE%20VALOR.pdf?sequence=1
- Moreno, L. (2022). Guía de laboratorio: Elaboración de diferentes tipos de queso. Universidad Surcolombiana Facultad de Ingeniería.
- Ochoa, L. (2024). Guía práctica de laboratorio: Elaboración de queso petit suisse. Universidad Surcolombiana Facultad de Ingeniería.
- Ramírez, C. y Vélez, J. (2016). Aislamiento, caracterización y selección de bacterias lácticas autóctonas de leche y queso fresco artesanal de cabra. *Información Tecnológica*, 27(6), 115-128.
- Silva, A. (2021). Effect of fruit-based ingredients on physicochemical, sensorial and nutritional properties of fresh cheese. *Food Chemistry*, *338*, 127964.
- Vela, A. (2020). Análisis del mercado de productos lácteos línea infantil para la cooperativa de productos lácteos de Nariño en la ciudad de Pasto [Trabajo de Pregrado]. Repositorio Utadeo. https://expeditiorepositorio.utadeo.edu.co/handle/20.500.12010/18797

Capítulo II. Antecedentes

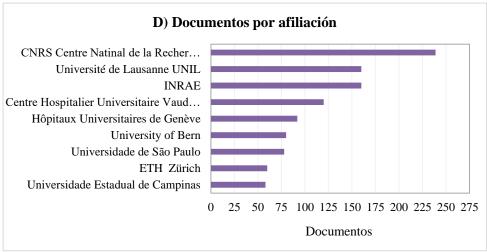

Queso petit suisse

El queso *petit suisse* es un tipo de queso de coagulación mixta, es un producto suave, de blanda consistencia y con un alto contenido de humedad (Guamán, 2012); Dependiendo de cada una de sus variedades se puede encontrar el queso *petit suisse* natural (generalmente azucarado) y el de sabores (con adición de aromas o trozos de frutas) (Quijano, 2013).

A partir de la popularidad que ha ganado este tipo de queso fresco en los últimos años, se han realizado múltiples estudios e investigaciones, donde se evalúan diferentes variables y su influencia en el producto final; de tal forma, se puede observar en la Figura 5 la tendencia de las publicaciones referentes a queso *petit suisse* a lo largo del tiempo; la búsqueda de 1990 a 2023 mostró una tendencia en aumento con el transcurso del tiempo. Entre 2010 y 2023, se ha presentado un aumento significativo de publicaciones (Figura 4 A). Los cinco primeros países fueron Francia, seguido de Suiza, Estados Unidos, Brasil y Reino Unido (Figura 5 C). En su mayoría los documentos son artículos, seguido por pequeños porcentajes de revisiones, donde el Centro Nacional de la Investigación Científica CNRS encabeza la lista con 239 publicaciones sobre el tema de búsqueda o temas similares, seguido por la Universidad de Lausana y la Universidad de Ginebra (Figura 5 D).

Figura 4


Documentos publicados en el tema de búsqueda, queso petit suisse (parte I)



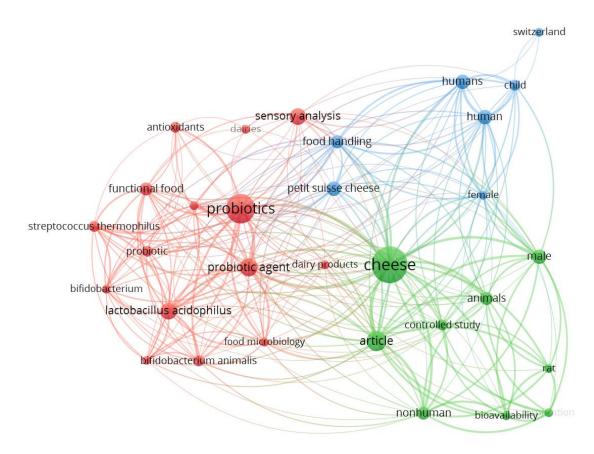
Nota. Gráficos extraídos de la base de datos en línea *Scopus*. A) Documentos publicados por año B) Documentos publicados por tipo.

Figura 5

Documentos publicados en el tema de búsqueda, queso petit suisse (parte II)

Nota. Gráficos extraídos de la base de datos en línea *Scopus*. C) Documentos publicados por países (D) Documentos publicados por afiliación.

Aunque, el interés por el queso *petit suisse* sigue creciendo constantemente, los temas que se abordan son diversos, un claro ejemplo es la Tabla 10, la cual destaca el ranking de los principales autores que investigan sobre el queso *petit suisse*, así como, la red bibliométrica obtenida a partir de los estudios recolectados de la base de datos *Scopus* expuesta en la Figura 6, donde se muestra la relación del tema de búsqueda con términos como quesos, probióticos, análisis sensorial, manipulación de alimentos, alimento funcional y demás.


Tabla 10Principales autores que investigación sobre el tema de búsqueda del queso petit suisse

No	Autor	Publicaciones sobre el tema	Citaciones	Tema de investigación

1	Barrado, A.	4	17	Biodisponibilidad relativa de Zinc en un queso <i>petit suisse</i>
2	Boccio, J.	4	17	Biodisponibilidad de hierro a partir de leche líquida y queso <i>petit suisse</i> determinada por el método profiláctico-preventivo
4	Leonardi, N.	3	12	Mejoramiento de mezcla prebiótica: resistencia gastrointestinal in vitro de Lactobacillus acidophilus en petit suisse
6	Zubillaga, M.	3	12	Biodisponibilidad del queso <i>petit suisse</i> como vehículo alimentario para la fortificación de hierro
8	Bolini, H. M. A.	4	182	Análisis de supervivencia: un método para estimar el nivel óptimo de sacarosa en <i>petit suisse</i> probiótico.
9	Cruz, A. G.	4	182	Influencia de edulcorantes en el queso probiótico <i>petit suisse</i> en concentraciones equivalentes a la de sacarosa
10	Esmerino, E. A.	4	182	Estrés oxidativo en el probiótico Petit Suisse

Nota. Información extraída del programa *VOSviewer*, con la información recolectada de la base de datos *Scopus*.

Figura 6 *Red bibliométrica sobre el tema de búsqueda, queso petit suisse*

Nota. Gráfico extraído del programa VOSviewer, con la información recolectada de la base de datos Scopus.

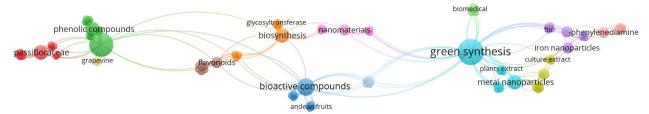
Petit suisse como alimento funcional

Actualmente, se recomienda e implementa la inclusión de una alimentación adecuada desde edades tempranas, con el fin de prevenir enfermedades. En este contexto, los alimentos funcionales han cobrado gran relevancia, ya que no solo nutren, sino que también ofrecen beneficios adicionales para la salud, promoviendo el bienestar físico y mental de las personas (Benavente-García, 2012). Por lo cual, este tipo de queso puede considerarse un alimento funcional, dado que su contenido de calcio y proteínas contribuye a la salud muscular y ósea. Además, algunas versiones incluyen cultivos probióticos, favoreciendo la salud intestinal y el bienestar general; como es el caso de Rueda et al. (2015) al desarrollar un queso petit suisse de arándano azul con prebióticos (inulina y fructooligosacáridos [FOS]) aceptado sensorialmente por los consumidores, donde elaboraron y formularon tres prototipos variando la proporción de prebióticos, seleccionando el prototipo con la mezcla de prebióticos (50% inulina / 50% FOS) por su cremosidad y menor costo respecto a los demás prototipos, el cual, obtuvo un 67% de aceptación contra un 93% del comercial. Así mismo, a través de la realización del estudio de (Quijano, 2013), se elaboró un queso tipo petit suisse, deslactosado, con características similares a los productos en el mercado, de sabor manzana-pera; realizaron 4 formulaciones diferentes, partiendo de un proceso tradicional, y realizando algunos cambios como la adición de la enzima lactasa para obtener un producto deslactosado, y previniendo la modificación de consistencia y sabor de este, eligieron como variables independientes la adición de la mezcla goma guar y xantana en diferentes proporciones.

Seguridad alimentaria y derivados lácteos

La seguridad alimentaria es uno de los aspectos más relevantes en la producción de alimentos lácteos, incluyendo los quesos *petit suisse*, ya que es esencial mantener buenas prácticas de higiene durante la producción para evitar contaminantes como *Listeria* y *Salmonella*, de igual manera, mantener controlado su almacenamiento y distribución después de elaborado el producto es una etapa crucial para mantener la calidad y seguridad durante su vida útil (León, 2018).

Para la elaboración de algunos derivados lácteos como el *petit suisse*, se agregan bacterias ácido-lácticas en forma de cultivo iniciador, con el objetivo de asegurar uno de los pasos más importantes en la elaboración de un queso, la producción de ácido láctico. Metabolizan la lactosa de la leche produciendo ácido láctico a partir de la fermentación, lo que genera un descenso en el pH de la leche, promoviendo la actividad del cuajo, favoreciendo la expulsión del suero de la cuajada y previniendo el crecimiento de bacterias indeseables, como las patógenas (Parra, 2010). De tal forma, influyen significativamente en el sabor, olor, textura, características sensoriales, propiedades terapéuticas y valor nutricional de los productos alimentarios, ya que algunas de sus funciones en la tecnología de productos alimenticios, es la formación de sabor ácido, gelificación de la leche, reducción del contenido de la lactosa, formación de aroma y demás (Bautista, 2014). Este grupo se compone de gran número de géneros que incluyen los *Lactococcus*, *Lactobacillus*, *Enterococcus*, *Streptococcus*, *Leuconostoc* y *Pediococcus* (Parra, 2010).


Passiflora tripartita en derivados lácteos

La curuba es una fruta tropical perteneciente al género *Passiflora*, y su nombre científico es *Passiflora tripartita var. mollissima*. Originaria de América del Sur, la curuba se cultiva en regiones tropicales y subtropicales. Tiene una forma alargada y una cáscara de color verde o amarillo, que se torna amarilla a medida que la fruta madura. Al igual que otras frutas del género *Passiflora*, la curuba también se ha asociado con propiedades nutricionales y antioxidantes (Ruiz et al., 2018).

Según un estudio llevado a cabo en Antioquia, se determinó que la curuba (*Passiflora tripartita*) presenta los siguientes valores porcentuales: humedad del 77,93%, cenizas del 0,55%, nitrógeno total del 0,06%, y proteína total del 0,36%. En cuanto a los carbohidratos totales, se registró un 21,13%, y las calorías alcanzaron los 86,26 Kcal/100 g, siendo estos dos últimos valores calculados a partir de los componentes mencionados. Además, el análisis reveló la presencia de riboflavina, niacina, ácido ascórbico, vitamina A y vitamina C en el fruto. Con relación al contenido mineral, se identificaron calcio, potasio, magnesio, sodio, cobre, hierro y zinc (Chaparro et al., 2015).

A pesar de su aporte beneficioso para la salud, la implementación de esta fruta en la industria alimentaria para la elaboración de productos es muy limitada, relacionándose mayormente en estudios e investigaciones con términos como compuestos fenólicos, compuestos bioactivos, síntesis verde, nanopartículas metálicas, entre otros, tal como se puede observar en la Figura 7.

Figura 7
Red bibliométrica sobre el tema de búsqueda, Passiflora tripartita

Nota. Gráfico extraído del programa *VOSviewer*, con la información recolectada de la base de datos *Sciencedirect*.

Aun así, se han realizado algunos estudios como el desarrollo de una bebida láctea con extractos de curuba (*Passiflora mollissima Bailey*) como antioxidante natural, donde se investigó el efecto de la adición de extractos de curuba en diferentes concentraciones, con relación a un blanco (0%), sobre la capacidad antioxidante y la estabilidad oxidativa de una bebida fermentada a base de lactosuero, durante el almacenamiento, donde se estableció que las diferentes concentraciones no presentaron diferencias significativas y mostrando que los extractos de curuba aumentan la capacidad antioxidante e inhiben el proceso oxidativo de la bebida láctea con relación al blanco (Sánchez et al., 2013)

De igual forma, Sáenz (2015) estableció el desarrollo de un licor de crema con sabor a curuba (*Passiflora mollisima*) para el viñedo y cava Loma de Puntalarga en Nobsa, departamento de Boyacá, donde se desarrollaron 4 formulaciones con el objetivo de evaluar cuál de ellas permitía obtener un producto de consistencia cremosa, color homogéneo, aroma dulce y que cumpliera sensorialmente con las características esperadas por los consumidores, las cuales, como resultado no presentaron diferencias significativas sobre las variables fisicoquímicas estudiadas, pero se logró una bebida alcohólica creada a partir de crema de leche y curuba con valor agregado en cuanto a componentes bioactivos, aromas y demás.

Lo anterior, indica que la integración de frutas tropicales como las pasifloras en diferentes sectores e industrias, incentiva a la diversificación de productos y a la valorización de ingredientes o alimentos poco reconocidos.

Referencias

Bautista, A. (2014). Elaboración de un queso tipo *petit suisse* de leche de cabra, adicionado con *Lactobacillus casei* como probiótico. Recuperado de https://cdigital.uv.mx/bitstream/handle/123456789/42598/BautistaAntonioMIsabel2.p df?sequence=2&isAllowed=y

Benavente-García, (2012). Alimentos funcionales: Antioxidantes en la salud, en la enfermedad y en la alimentación. Repositorio Universidad de Murcia. https://www.um.es/lafem/Actividades/OtrasActividades/CursoAntioxidantes/Material Auxiliar/2012-03-06-AntioxidantesSaludAlimentosFuncionales.pdf

- Chaparro, D., Maldonado, M., Franco, M. y Urango, L. (2015). Características nutricionales y antioxidantes de la fruta curuba larga (passiflora mollisima bailey). Biotecnología en el Sector Agropecuario y Agroindustrial, 13(1), 120-128.
- Guamán, T. (2012). Elaboración de *petit suisse* de chocolate mediante la utilización de tres niveles de batidos con diferentes concentraciones de cuajo en la planta industrial "don Daniel" en la ciudad de Loja. Repositorio Universidad Técnica Estatal de Quevedo https://repositorio.uteq.edu.ec/bitstreams/74cddba8-4cc1-4cc3-8827-6f12a80ea04a/download
- León, L. (2018). Principales enterobacterias en la maduración de quesos de pasta blanda en Extremadura. Escuela de Ingenierías Agrarias, Universidad de Extremadura. https://dehesa.unex.es/bitstream/10662/8076/1/TFGUEX_2018_Leon_Silva.pdf
- Parra, R. (2010). Revisión bacterias del ácido láctico: Papel funcional en los alimentos. *Biotecnología en el sector agropecuario y agroindustrial,* 8(1). http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612010000100012#:~:text=Las%20bacterias%20%C3%A1cido%20l%C3%A1ctica s%20son,claslfcar%20en%20heterofermentativas%20y%20homofermentativas.
- Quijano, P. (2013). Elaboración de queso tipo petit suisse reducido en lactosa, grasa y calorías sabor manzana-pera [Trabajo de pregrado]. Repositorio Universidad Nacional Autónoma de México https://repositorio.unam.mx/contenidos/180073
- Rueda, S., Sánchez, E. y Lara, A. (2015). *Queso petit suisse de arándano azul con prebióticos*. En Ramírez-Ortiz, M.E. (Ed.). *Tendencias de innovación en la ingeniería de alimentos*. Barcelona, España: OmniaScience. 139-167.
- Ruiz, S., Venegas, E., Valdiviezco, J. y Plasencia, J. (2018). Contenido de fenoles totales y capacidad antioxidante in vitro del zumo de "pur pur" *Passiflora tripartita var. mollissima* (*Passifloraceae*). *Arnaldoa*, 25(3), 1003-1014. http://doi.org/10.22497/arnaldoa.253.25312
- Sáenz, M. (2015). Desarrollo de un licor de crema con sabor a curuba (Passiflora mollisima) para el viñedo y cava Loma de Puntalarga en Nobsa, departamento de Boyacá [Trabajo de pregrado]. Repositorio Universidad de La Salle. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1139&context=ing_alimento s
- Sánchez, N., Sepúlveda, J. y Rojano, B. (2013). Desarrollo de una bebida láctea con extractos de curuba (*Passiflora mollissima Bailey*) como antioxidante natural. *Biotecnología en el Sector Agropecuario y Agroindustrial, 11*(1). http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612013000100020

Capítulo III. Análisis fisicoquímico, microbiológico y sensorial

3.1 Resumen

El queso *petit suisse*, es un queso fresco elaborado a partir de la cuajada obtenida de la inoculación y acidificación de la leche, junto con la adición de crema de leche y saborizante o salsas de frutas, en este capítulo se presenta el análisis integral de dos tratamientos de queso *petit suisse* saborizado con dulce de curuba (*Passiflora tripartita*), donde se evaluaron sus propiedades fisicoquímicas, microbiológicas y sensoriales. Ambos tratamientos cumplieron con los estándares normativos. En su caracterización fisicoquímica presentaron un pH de $4,66 \pm 0,02$ y $4,713 \pm 0,025$; un porcentaje de acidez de $1,013 \pm 0,039$ y $1,114 \pm 0,034$; sólidos solubles totales de $29,633 \pm 1,079$ °Brix y $30,233 \pm 0,379$ °Brix; y se realizó la evaluación y el análisis de algunas de sus propiedades reológicas. En el análisis microbiológico se determinó que ambos tratamientos cumplen con los valores aceptables para la determinación e identificación de los microorganismos requeridos según la NTC 750 del 2009 para productos lácteos. La evaluación sensorial mostró una aceptación significativa por parte de los consumidores, siendo esta del 89,21% y 86,13%, en cuanto a color, aroma y sabor, acidez, cuerpo y consistencia.

Palabras clave: *Passiflora tripartita*, quesos frescos, queso *petit suisse*, seguridad alimentaria, tecnología alimentaria, producto lácteo saborizado, atributos texturales.

3.2 Abstract

Petit Suisse cheese is a fresh cheese made from the curd obtained from the inoculation and acidification of milk, together with the addition of milk cream and flavoring or fruit sauces. This chapter presents the integral analysis of two treatments of Petit Suisse cheese flavored with sweet curuba (Passiflora tripartita), where its physicochemical, microbiological and sensory properties were evaluated. Both treatments complied with regulatory standards. In their physicochemical characterization, they presented a pH of 4.660 ± 0.020 and 4.713 ± 0.025 ; an acidity percentage of 1.013 ± 0.039 and 1.114 ± 0.034 ; total soluble solids of 29.633 ± 1.079 °Brix and 30.233 ± 0.379 °Brix; and the evaluation and analysis of some of their rheological properties was carried out. In the microbiological analysis it was determined that both treatments comply with the acceptable values for the determination and identification of microorganisms required according to NTC 750 of 2009 for dairy products. The sensory evaluation showed a significant acceptance by consumers, being 89,21% and 86,13%, in terms of color, aroma and flavor, acidity, body and consistency.

Key-words: Passiflora tripartita, fresh cheeses, petit suisse cheese, food safety, food technology, flavored dairy product, textural attributes.

3.3 Introducción

Actualmente, existen métodos instrumentales físicos o químicos que permiten medir en los alimentos atributos como el color, la textura y el aroma (Calampa et al., 2018). Estos métodos son de gran utilidad en el control rutinario de la industria alimentaria, destacándose por su rapidez, reproducibilidad y la gran capacidad de realizar numerosos análisis (Ibáñez y Barcina, 2001). Las propiedades sensoriales de los alimentos son aquellas características percibidas a través de los sentidos, y son determinantes en la percepción de calidad que tiene el consumidor sobre un

producto (Picallo, 2009). Por ello, además de la medición de parámetros microbiológicos, físicos y químicos, resulta fundamental realizar una evaluación sensorial para garantizar la seguridad y el control integral de la calidad en los productos alimenticios (Zuluaga, 2017).

Según Mondino et al. (2006) el análisis sensorial de alimentos tiene numerosas aplicaciones, entre las que destacan la caracterización hedónica de los productos mediante estudios de consumidores para determinar su grado de aceptación. También permite la comparación con productos competidores en el mercado y el establecimiento de criterios de calidad a través del desarrollo de un perfil sensorial detallado (García, s.f.). Existen tres tipos de pruebas para evaluar el análisis sensorial de los alimentos: las pruebas hedónicas o afectivas, que determinan la aceptación del producto; y las pruebas de discriminación y descriptivas, que son analíticas y cuantifican las propiedades sensoriales utilizando la percepción humana (Bermeo y Sánchez, 2019).

De tal forma, la evaluación fisicoquímica de un producto implica la caracterización de estos desde el punto de vista fisicoquímico, donde se determinan las sustancias presentes en un alimento, y en qué cantidades se encuentran estos compuestos, brindando herramientas que permiten determinar un alimento desde el punto de vista nutricional y toxicológico (Méndez, 2020). Por lo cual, es de gran utilidad para verificar que este cuente con el cumplimiento de los requisitos de calidad establecidos en las normativas vigentes, del mismo modo, la aplicación de pruebas sensoriales ayuda a la determinación de estos parámetros de calidad para comprobar la aceptación del producto final (Romero, 2015).

De igual forma, la textura es un conjunto de los elementos relativos a la estructura de los alimentos y la manera en que se relacionan con los sentidos fisiológicos, relacionándose con la mecánica y reología, por lo cual, no se trata de una propiedad sino un conjunto de propiedades (Quijano, 2023). Las propiedades reológicas constituyen un factor determinante en la calidad y aceptabilidad de los quesos, y debido a la tendencia actual sobre el desarrollo de productos bajos en grasa, ha aumentado el interés de la industria por la caracterización de dichos parámetros, los cuales definen su comportamiento cuando son procesados o consumidos (Ciro, 2006). En general, el queso *petit suisse* a base de leche de vaca, ha mostrado un comportamiento de material sólido elástico y líquido viscoso, los materiales que muestran esta conducta se conocen como viscoelásticos (Martínez, 2015), por lo cual, la determinación de sus características reológicas también es importante para evaluar su consistencia y estabilidad, proporcionando información sobre la estructura del producto (Mendoza et al., 2021).

Por tal motivo, el objetivo de esta investigación es determinar las características fisicoquímicas del queso *petit suisse*, realizar un análisis microbiológico de los tratamientos garantizando así la inocuidad y la calidad del producto, y evaluar su aceptación sensorial a través de la aplicación de pruebas hedónicas.

3.4 Metodología

Para la evaluación del queso *petit suisse*, se realizaron mediciones fisicoquímicas y sensoriales con el fin de verificar el cumplimiento de los estándares de calidad e inocuidad según la normativa vigente.

Pruebas fisicoquímicas

Determinación de pH. Para la determinación del pH se siguió la metodología propuesta en la AOAC official Methods 981.12, empleando el equipo pHmetro portátil, Handylab 10. Las mediciones se realizaron por triplicado.

Acidez titulable. En la acidez titulable se empleó el método oficial propuesto en la AOAC official Methods 942.15. Se realizó por triplicado las mediciones de acidez. El porcentaje de acidez se calculó con la Ecuación 15.

Ecuación 15

Cálculo acidez titulable

$$\%Acidez = \frac{Vol\ NaOH \times N \times PMA}{Peso\ de\ la\ muestra} \times 100$$

Donde: *Vol. NaOH*, es el volumen gastado en la titulación (mL); *N*, es Normalidad de NaOH (0,1 meq/mL); *PMA*, es el peso molecular del ácido predominante; (Ácido láctico: 0,09 g/meq)

Sólidos solubles disueltos. La medición de sólidos solubles se realizó empleando el método propuesto en la AOAC Official Methods 932.12. Método del refractómetro, ATAGO POCKET 0-93%. La medición se realizó por triplicado.

Color: Procesamiento digital de imágenes. El procedimiento de la determinación de color se tomó de la metodología propuesta por Castro et al. (2013) para el procesamiento digital de imágenes.

Viscosidad, torque y fuerza de cizalla. Para la aplicación de las pruebas reológicas se tuvo en cuenta el procedimiento del Manual de Operaciones del reómetro Brookfield DV3T. Para las mediciones se empleó la aguja SC4-34 (34) aplicando una velocidad de 1.5 RPM. Se realizó por triplicado las mediciones para cada tratamiento.

Porcentaje de curvatura. El procedimiento de la determinación del porcentaje de curvatura se tomó de la metodología propuesta por Castro (s.f.) para la gelatinización y retrogradación de almidones.

Para evaluar la deformación, se midió la altura del producto sin desmoldar LA (mm) y la altura de este ya desmoldado LB (mm) con ayuda de un pie de Rey. A partir de las medidas mencionadas se determinó el porcentaje de curvatura con la fórmula expuesta en la Figura 8. Se realizaron dos mediciones en función del tiempo para cada tratamiento.

Figura 8

Porcentaje de curvatura del gel

Porcentaje de curvatura del gel: {(LA -LB)/LA}*100 L3 ĽВ GEL

Actividad de agua. Para la determinación de la actividad de agua se tuvo en cuenta el procedimiento del Manual de Operaciones del medidor portátil de actividad de agua LaBSwiftaw, Novasina. Para cada tratamiento las mediciones se realizaron por triplicado.

MOLDE

Pruebas microbiológicas

Se tuvo en cuenta que la NTC 750 del 2009 establece que, para productos lácteos, específicamente quesos, se deben realizar pruebas microbiológicas correspondientes a: Coliformes totales con la NTC 4458 de 2018, Salmonella con la NTC 4574 de 2007, Listeria monocytogenes con la NTC 4666 de 1999 y con la GTC 155, Estafilococos coagulasa positiva con la NTC 4779 de 2007.

Se preparó 250 g de muestra por tratamiento y se envió a analizar al *Laboratorio Privado* AGUALIMSU S.A.S. (Análisis Fisicoquímicos y Microbiológicos de Aguas, Alimentos y Suelos).

Pruebas sensoriales

Para la evaluación organoléptica, se elaboraron dos formularios de evaluación sensorial, cuya aplicación se llevó a cabo según lo determinado por Mahecha (1985).

Se seleccionaron 20 niños del colegio Liceo Los Farallones de la ciudad de Neiva, con edades entre 9 y 12 años, y 20 adultos para participar en la prueba hedónica del producto. Cada uno evaluó cada tratamiento según una escala específica. Los criterios de evaluación abarcaron el color, la acidez, la consistencia y la textura, así como el aroma y el sabor, de acuerdo a los estándares establecidos para productos lácteos.

Análisis estadístico

Los datos obtenidos en las pruebas fisicoquímicas y sensoriales del producto fueron analizados mediante un análisis de varianza (ANOVA), la prueba de Tukey y LSD Fisher para comparar las medias entre las muestras y la determinación de diferencias estadísticas, empleando un nivel de significancia del 5%. Para el procesamiento de los datos, se utilizó el programa Minitab Statistical Software 22.

3.5 Resultados y discusión

Determinación de variables fisicoquímicas

En Colombia, el mercado del queso *petit suisse* es relativamente limitado, razón por la cual no cuenta con normativa específica que lo regule. Aun así, se encuentra sujeto a las normativas aplicables a derivados lácteos, específicamente quesos, por lo que se aplicó la NTC 750 de 2009 y el Codex Alimentarius. En la Tabla 11, se muestran los resultados obtenidos a partir de la determinación de parámetros fisicoquímicos para ambos tratamientos, junto con los de dos quesos comerciales.

Tabla 11Determinación de parámetros fisicoquímicos para T1 y T4, junto con dos quesos comerciales

Parámetros fisicoquímicos	T1	T4	Comercial 1	Comercial 2
Sólidos solubles (°Brix)	29,633 ± 1,079	$30,233 \pm 0,379$	16,76	22,8
pН	$4,660 \pm 0,020$	$4,713 \pm 0,025$	5,22	5,46
Acidez titulable (%ácido láctico)	$1,013 \pm 0,039$	$1,114 \pm 0,034$	0,67	0,722

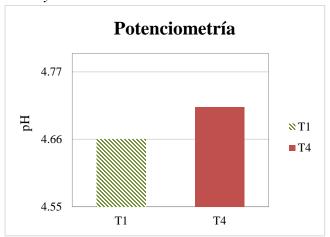
Nota. Resultados expresados como el promedio de 3 réplicas ± desviación estándar.

pH - potenciometría

Se realizó el análisis de los dos tratamientos del queso *petit suisse*, donde se pudo observar que el tratamiento 1, presentó un pH de $4,660 \pm 0,020$ y el tratamiento 4, un pH de $4,713 \pm 0,025$, como se muestra en el Tabla 11. Se resalta que son valores bajos, al ser comparados con los pH´s obtenidos de los quesos comerciales evaluados, pero al no contar con una normativa exclusiva para el queso *petit suisse* en Colombia, se tuvo como referencia de análisis la NTC 5894 de 2011, para quesos frescos, la cual establece que se encuentran en un rango optimo.

Según lo reportado por (Quijano, 2013) el rango óptimo de pH para quesos frescos como el *petit suisse* es de 4,5 a 4,7; lo que coincide de acuerdo a lo investigado por (Martínez, 2015), el cual establece que, para quesos frescos de pasta blanda, el pH óptimo es generalmente un pH inferior a 4,9 y superior a 4,5. Se pueden observar mejor dichos resultados para potenciometría en la Figura 9.

Se realizó un análisis por ANOVA como se evidencia en la Tabla 12 con base en los datos de la Tabla 11, donde se comprueba que para ambos tratamientos existen diferencias estadísticamente significativas entre las medias de pH, al tener el valor de P menor a 0,05 con un nivel del 95% de confianza (0,045), lo cual se comprobó, al comparar el valor F y el valor crítico F para aceptación de hipótesis nula (H0) o hipótesis alterna (H1), donde se tiene que F>Valor crítico de F (8,258>7,708) aceptando H1, de la misma manera, al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 13, se comprueba que existen diferencias significativas, debido a que las medias no comparten una misma letra, así mismo, se puede observar este comportamiento en la Figura 9.


Tabla 12 *Análisis de varianza (ANOVA) para potenciometría*

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	0,0042	1	0,0042	8,258	0,045	7,708
Dentro de los grupos	0,0021	4	0,0005			
Total	0,0063	5				

Tabla 13 *Método de Tukey y LSD Fisher con una confianza de 95% para potenciometría*

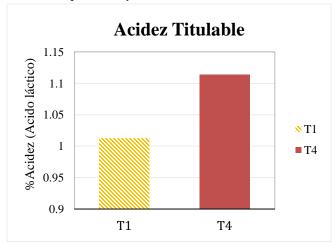
Factor	N	Media	Agruj	pación
T4	3	4,7133	A	
T1	3	4,66		В

Figura 9Comportamiento pH para T1 y T4

Acidez titulable

Con respecto a la acidez titulable, se reemplazaron los valores en la Ecuación 15, para poder determinar el porcentaje de acidez, el cual se puede observar en la Tabla 11. Los tratamientos mostraron porcentajes de $1,013 \pm 0,039$ % y $1,114 \pm 0,034$ %, al comparar estos valores con los de un queso comercial, donde el valor de acidez titulable oscila entre 0,67% y 0,72%, como se muestra en la Tabla 11, se puede interpretar que la materia prima empleada en el saborizante aumenta el valor, ya que al ser saborizado con dulce de curuba (*Passiflora tripartita*), la acidez de esta, según Camacho (2000) se encuentra en 1,5% de ácido cítrico, influyendo significativamente en el producto final.

Así mismo, se llevó a cabo un análisis por ANOVA como se evidencia en la Tabla 14 con base en los datos de la Tabla 11, donde se comprueba que para ambos tratamientos existen diferencias estadísticamente significativas entre las medias de acidez titulable, al tener el valor de P menor a 0,05 con un nivel del 95% de confianza (0,028), lo cual se comprobó, al comparar el valor F y el valor crítico F para aceptación de hipótesis nula (H0) o hipótesis alterna (H1), donde se tiene que F>Valor crítico de F (11,275>7,708) aceptando H1, de la misma manera, al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 15, se muestra que las medias no comparten una misma letra, por lo cual, existen diferencias significativas, así mismo, se puede observar este comportamiento en la Figura 10.


Tabla 14 *Análisis de varianza (ANOVA) para acidez titulable*

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	0,015	1	0,015	11,275	0,028	7,708
Dentro de los grupos	0,005	4	0,001			
Total	0,020	5				

Tabla 15 *Método de Tukey y LSD Fisher con una confianza de 95% para acidez titulable*

Factor	N	Media	Agrupación
T4	3	1,1137	A
T1	3	1,0137	В

Figura 10 *Comportamiento acidez titulable para T1 y T4*

Sólidos solubles disueltos

Los resultados de los sólidos solubles (SS) presentados en la Tabla 11, evidencian que los tratamientos evaluados se encuentran en un rango de 29,633 ± 1,079 °Brix a 30,233 ± 0,379 °Brix. Estos valores son superiores a los reportados en quesos *petit suisse* comerciales, cuyos sólidos solubles oscilan entre 16,76 °Brix y 22,8 °Brix. Este aumento podría atribuirse al uso de materias primas como la fruta empleada (*Passiflora tripartita*), ya que, según Mantilla (2019) los sólidos solubles totales de la curuba varían entre 8 y 12 °Brix, dependiendo de su estado de maduración. Así, la combinación y adición de esta fruta incrementa la concentración de sólidos solubles, lo que explica el mayor valor obtenido en comparación con los quesos comerciales.

Por otro lado, Barrera et al. (2020) desarrollaron un queso *petit suisse* saborizado con salsa de aguacate Hass, el cual presentó un valor de sólidos solubles de $28,50 \pm 0,14$ °Brix, dentro del rango aceptable según la NTC 5894 del 2011, que establece las características fisicoquímicas y microbiológicas de los quesos frescos. En este contexto, los valores obtenidos en los tratamientos T1 y T4 no se alejan significativamente de los reportados por Barrera et al. (2020), lo que sugiere que la diferencia está influenciada por la fruta empleada en la formulación del saborizante.

A partir del análisis de los datos de la Tabla 11, se generó un ANOVA para ambos tratamientos como se observa en la Tabla 16, el cual permite comprobar que en ambos tratamientos no existen diferencias estadísticamente significativas en relación a sólidos solubles, al tener el valor de P mayor a 0,05 con un nivel del 95% de confianza (0,415), lo cual se comprobó, al comparar el valor F y el valor crítico F para aceptación de hipótesis nula (H0) o hipótesis alterna (H1), donde se tiene que F<Valor crítico de F (0,826<7,71) aceptando H0, de la misma manera, al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 17, se muestra que las medias comparten una misma letra, por lo cual, no existen diferencias significativas, de tal forma, se puede observar este comportamiento en la Figura 11.

Tabla 16 *Análisis de varianza (ANOVA) para sólidos solubles disueltos*

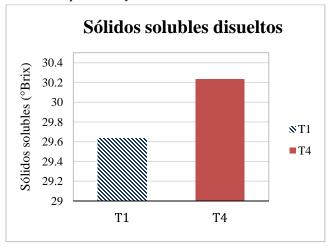

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	0,54	1	0,54	0,826	0,415	7,71
Dentro de los grupos	2,613	4	0,653			
Total	3,153	5				

Tabla 17 *Método de Tukey y LSD Fisher con una confianza de 95% para sólidos solubles disueltos*

Factor	N	Media	Agrupación
T4	3	30,233	A

-			
T1	3	29,633	A

Figura 11Comportamiento sólido disueltos para T1 y T4

Color

En la Tabla 18 se presentaron las coordenadas CIEL*a*b para cada tratamiento, donde L* es la luminosidad (0= negro y 100= blanco), a* y b* son las coordenadas cromáticas rectangulares (+a = rojo y -a = verde / +b = amarillo y -b = azul) y C* es el factor calculado como croma o también conocido como cromaticidad, el cual indica qué tan vivo, intenso o puro puede llegar a ser un color (Padron, 2010).

De esta manera, se llevó a cabo el análisis de las coordenadas CIEL*a*b establecidas en la Tabla 18, para verificar el comportamiento de tonalidades y pureza. Se observó que la coordenada L* fue la misma para ambos tratamientos y se orientó hacia tonos más claros, mostrando una tendencia hacia tonalidades ligeras al amarillo (a* entre T1=4 y T4=5) y rojo (b* entre T1=11 y T4=16), con un croma métrico (C*) de mayor pureza en T4=16,76.

De tal forma, con los resultados obtenidos se determinó que el porcentaje de pulpa empleado en los saborizantes influye en el color del producto final, ya que el tratamiento 4, al contar con un porcentaje mayor, presentó un color crema más intenso que el tratamiento 1.

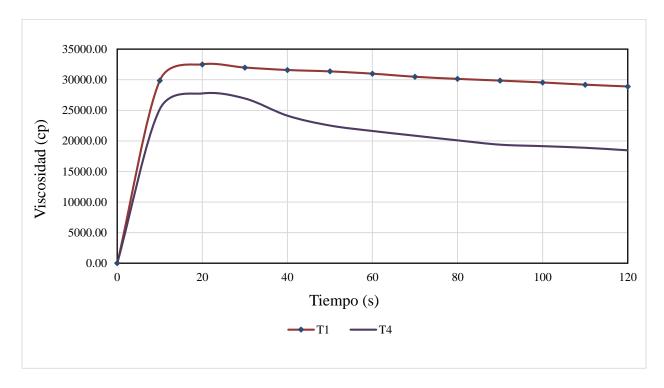
Tabla 18Coordenadas CIEL*a*b* obtenidas para T1 y T4

Coordonadas	Procesamiento digital		
Coordenadas -	T1	T4	
L*	88	88	
a*	4	5	
b*	11	16	

C*	11,71	16,76
Paleta de color RGB		

Viscosidad, torque y fuerza de cizalla

Algunas características físicas como textura, cuerpo y consistencia determinan la respuesta al esfuerzo o deformación, ya sea en estado de materia prima, o durante el proceso de transformación, de manera que el estudio de las propiedades reológicas de los diferentes tipos de quesos permite establecer su comportamiento durante la manipulación, empaque, transporte, almacenamiento, refrigeración y consumo (Guzmán et al., 2015). De este modo, propiedades como la viscosidad aparente de un producto influyen significativamente en la aceptación y deseo de compra de los consumidores, siendo un factor importante que debe controlarse durante el procesamiento del producto (Guimarães et al., 2012).


Viscosidad

La viscosidad se genera como respuesta al esfuerzo de corte que se aplica sobre la muestra, y se determina mediante los valores de viscosidad obtenidos y la velocidad de corte empleada, que para el caso de ambos tratamientos fue de 1,5 RPM, lo que genera valores de esfuerzo a lo largo de toda la lectura (Martínez, 2015), como se muestra en la Figura 13. Se pueden observar las diferencias para ambos tratamientos en las diferentes lecturas, ya que para T1 estos valores pueden variar desde 28.000 a 30.560 Cp, mientras que para T4 va desde 16.160 hasta 19.640 Cp, dicha diferencia en ambos tratamientos puede ser debido al cambio que sufre el queso al adicionar los saborizantes, donde los porcentajes de azúcar y pulpa influyen directamente en el resultado final.

Según el estudio realizado por Martínez (2015), la viscosidad del queso *petit suisse* varía según el proceso de elaboración que se haya llevado a cabo, ya que influye desde el proceso térmico que se le aplique a la leche, hasta la concentración de renina que se le adicione. De igual forma, en los resultados obtenidos influyen factores externos como la velocidad de corte empleada, ya que se ha determinado que el aumento en la velocidad de corte disminuye la viscosidad aparente, así mismo, influye la temperatura a la que se encuentran las muestras, ya que, a mayor temperatura, más fluido será el producto, por lo que se presentaran valores de viscosidad más bajos. Aun así, investigaciones realizadas por (Martínez, 2015) y (Silva et al., 2021), han determinado que los rangos de viscosidad óptima para quesos *petit suisse* pueden variar desde 9.570 Cp hasta 53.170 Cp, ya que como se mencionó anteriormente, no existe una normativa específica para queso *petit suisse* que regule estas propiedades o parámetros, y al emplear porcentajes de pulpa, y concentraciones de azúcar diferentes, junto con diversos procesos de elaboración como cambios en la temperatura, pH y/o presencia de otros ingredientes o aditivos, influyen significativamente en los resultados a obtener.

A partir de lo anterior, se puede clasificar al queso *petit suisse* como un fluido no newtoniano, específicamente del tipo pseudoplástico, ya que su viscosidad disminuye cuando se incrementa la tasa de cizallamiento, es decir, cuando se aplica una fuerza o se agita el queso, se vuelve más fluido; dicho comportamiento puede llegar a influir en su procesamiento industrial y en la experiencia sensorial del consumidor, ya que facilita su manipulación y contribuye a una textura suave y agradable.

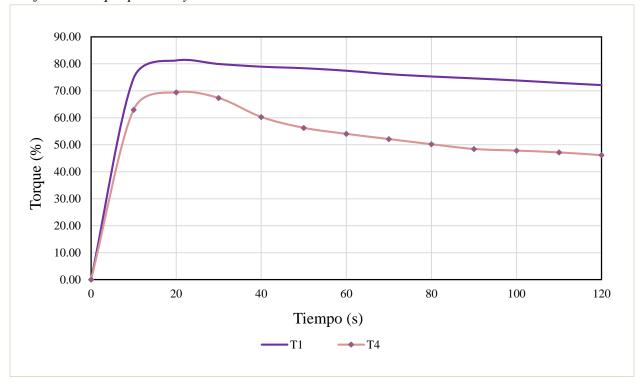
Figura 12 Gráfica de viscosidad para *T1* y *T4*

Del mismo modo, se realizó un análisis estadístico para los resultados obtenidos en la Figura 12, de forma que lo expuesto en la Tabla 19 establece que existen diferencias estadísticamente significativas entre ambos tratamientos, al tener el valor de P menor a 0,05 con un nivel del 95% de confianza (0,0018), lo cual se comprobó, al comparar el valor F y el valor crítico F para aceptación de hipótesis nula (H0) o hipótesis alterna (H1), donde se tiene que F>Valor crítico de F (54,25>7,71) aceptando H1, de la misma manera, al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 20, las medias no comparten una misma letra, por lo cual, existen diferencias significativas.

Tabla 19. Análisis de varianza (ANOVA) para viscosidad

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	163542604	1	163542604	54,25	0,0018	7,71
Dentro de los grupos	12058417	4	3014604,2			
Total	175601021	5				

Tabla 20 *Método de Tukey y LSD Fisher con una confianza de 95% para viscosidad*


Factor	N	Media	Agrupación
T1	3	28895	A
T4	3	18453	В

Torque

Según Valencia (2022), el torque es una propiedad reológica que mide la resistencia de un alimento a la deformación o flujo cuando se aplica una fuerza rotacional, de forma que, se emplea para evaluar la viscoelasticidad de los alimentos, es decir, la capacidad que tienen estos para comportarse como un líquido y un sólido al mismo tiempo. Productos como gelatinas, queso crema, y productos lácteos espesados cuentan con altos valores de torque.

Se pueden observar los resultados obtenidos en la prueba de torque para ambos tratamientos en la Figura 13, presentándose valores entre 70% a 76,1% T1, mientras que T4 presenta un rango entre 40,4% a 49,1%, donde puede influir la composición de cada tratamiento, ya que, debido al alto contenido de agua y grasa, se pueden obtener valores más bajos de torque y la diferencia de contenidos de ingredientes en estos, como el porcentaje de pulpa y azúcar varía el resultado obtenido.

Figura 13 *Gráfica de torque para T1 y T4*

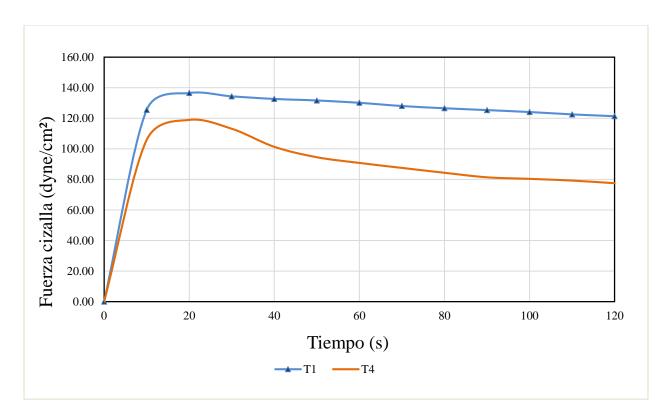
Se realizó un análisis por ANOVA como se evidencia en la Tabla 21 con base en los datos de la Figura 13, donde se comprueba que para ambos tratamientos existen diferencias estadísticamente significativas entre las medias de torque, al tener el valor de P menor a 0,05 con

un nivel del 95% de confianza (0,0017), lo cual se comprobó, al comparar el valor F y el valor crítico F para aceptación de hipótesis nula (H0) o hipótesis alterna (H1), donde se tiene que F>Valor crítico de F (55,58>7,71) aceptando H1, de la misma manera, al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 22, se comprueba que existen diferencias significativas, debido a que las medias no comparten una misma letra.

Tabla 21 *Análisis de varianza (ANOVA) para sólidos torque*

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	1014	1	1014	55,58	0,0017	7,71
Dentro de los grupos	72,973	4	18,243			
Total	1086,973	5				

Tabla 22 *Método de Tukey y LSD Fisher con una confianza de 95% para torque*


Factor	N	Media	Agrupación
T1	3	72,13	A
T4	3	46,13	В

Fuerza de cizalla

En esta prueba destructiva se busca evaluar la textura y la estructura de productos sólidos o semisólidos, entre estos los quesos; esta puede variar dependiendo del tipo de queso, su procesamiento y demás, en quesos frescos y blandos como el *petit suisse* se suele presentar una baja fuerza de cizalla, ya que los quesos con mayor cantidad de grasa y agua tienden a tener una fuerza de cizalla más baja, aun así, depende del proceso de elaboración de estos (Ramírez, 2006).

En la Figura 14 se muestra el comportamiento de fuerza de cizalla para ambos tratamientos de quesos *petit suisse*, donde el tratamiento T1 presentó valores entre 117,6 y 128,4 dyne/cm2, mientras que T4 estaba en un rango entre 67,87 y 82,49 dyne/cm2, por lo que se puede deducir que T1 puede tener una estructura más compacta y resistente a comparación de T4, así mismo, esto se puede ver influenciado por el dulce de curuba, ya que al presentar diferentes proporciones de pulpa y cantidades de azúcar, se puede afectar la textura y estructura del queso de manera diferente para cada tratamiento.

Figura 14Gráfica de fuerza de cizalla para T1 y T4

Así mismo, se llevó a cabo un análisis por ANOVA como se evidencia en la Tabla 23 con base en los datos de la Figura 14, donde se comprueba que para ambos tratamientos existen diferencias estadísticamente significativas, al tener el valor de P menor a 0,05 con un nivel del 95% de confianza (0,0018), lo cual se comprobó, al comparar el valor F y el valor crítico F para aceptación de hipótesis nula (H0) o hipótesis alterna (H1), donde se tiene que F>Valor crítico de F (54,04>7,71) aceptando H1, de la misma manera, al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 24, se comprueba que existen diferencias significativas, debido a que las medias no comparten una misma letra.

Tabla 23 *Análisis de varianza (ANOVA) para sólidos fuerza de cizalla*

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	2885,988	1	2885,988	54,04	0,0018	7,71
Dentro de los grupos	213,586	4	53,396			
Total	3,153	5				

Tabla 24 *Método de Tukey y LSD Fisher con una confianza de 95% para fuerza de cizalla*

Factor	N	Media	Agrupación
T1	3	121,37	A
T4	3	77,50	В

Porcentaje de curvatura

La curvatura de gel hace referencia a la medida de la firmeza o resistencia de un gel o una sustancia similar, el análisis de quesos *petit suisse* ha mostrado que este exhibe un comportamiento de gel débil, debido a que la textura de estos quesos es suave y cremosa (Salgado et al., 20).

De tal forma, se evaluó el porcentaje de curvatura del queso *petit suisse* saborizado y su variabilidad en el transcurso del tiempo (día 28), y se comparó con el de un queso *petit suisse* comercial, como se puede observar en las Tablas 25 y 26. Como se muestra en la Tabla 25, para el día 0, ambos tratamientos presentan un porcentaje de curvatura mucho más bajo que las demás semanas, lo que puede ser debido a que la estructura molecular está en formación, ya que con el paso del tiempo el queso se estabiliza, y el contenido de humedad disminuye, lo que puede llevar a una mayor curvatura y resistencia.

Así mismo, al comparar los valores obtenidos para T1 y T4, se observa que T1 presenta valores similares en el transcurso del tiempo, mientras que en T4 se nota gran variabilidad con el paso de los días, ya que es el tratamiento con mayor porcentaje de pulpa, lo que ocasiona que se acidifique más rápido gracias a la acidez de la fruta, y que así, se deforme más fácil. Al comparar los tratamientos con el queso comercial, se nota la gran diferencia, debido a los ingredientes empleados, ya que en los tratamientos solo se empleó agar-agar y goma xantana (en el saborizante) como agentes gelificantes, mientras que el queso comercial cuenta con la adición de goma xantana, almidón y gelatina, reforzando así la textura y estructura del queso.

Tabla 25 *Porcentaje de curvatura para los tratamientos T1 y T4 en el transcurso de cuatro semanas*

		T1			T4	
Día	Recipiente Gel / Alto Curvatur / Alto (LA) (LB) (%)	Curvatura (%)	Recipiente / Alto (LA)	Gel / Alto (LB)	Curvatura (%)	
0	22,3	22,1	0,896	24	22,1	7,917
7	22,3	14,3	35,874	22,5	13,7	39,111
14	22,6	15,7	30,531	22,8	18,6	18,421
21	21,7	15,3	29,493	21,5	19,2	10,698
28	21,8	15	31,192	20,3	17,3	14,778

Nota. Valores de (LA) y (LB) expresados en milímetros (mm).

Tabla 26

Porcentaje de curvatura para un queso petit suisse comercial

Recipiente / Alto (LA)	Gel / Alto (LB)	Curvatura (%)
33	24,4	26,061

Nota. Valores de (LA) y (LB) expresados en milímetros (mm).

Actividad de agua

En términos prácticos, la actividad de agua es el agua libre o disponible en los alimentos, va desde 0 a 1, y alimentos con baja actividad de agua (0-0,69) no permiten la fácil proliferación de microorganismos, mientras que alimentos con actividad de agua intermedia (0,7-0,89) y alta (>0,90), presentan los medios adecuados para el crecimiento de la mayoría de los microorganismos, especialmente bacterias (Vargas et al., 2021).

De tal forma, en la Tabla 27 están expuestos los resultados obtenidos para los tratamientos T1 y T4 referentes a su actividad de agua, los cuales, de acuerdo a lo esperado, cuentan con una alta actividad de agua, siendo medios aptos para el crecimiento de microorganismos patógenos si no se realiza una buena práctica de manufactura e higiene a la hora de su procesamiento.

Tabla 27 *Resultados de determinación de agua para T1 y T4*

Tratamiento —		Actividad de agua (aw)				
	R1	R2	R3	Promedio		
T1	0,939	0,942	0,940	0,940		
T4	0,938	0,938	0,940	0,939		

A partir de la información suministrada por (Fontana, 2007), se pudo establecer el crecimiento en diferentes intervalos de actividad de agua, donde en un intervalo de 0.91-0.95, crecen microorganismos como Salmonella, Serratia, Lactobacillus, Pediococcus, Vibrio Parahaemolyticus Clostridium botulinum, Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, algunos hongos y levaduras (Rhodotorula, Pichia), en alimentos como quesos frescos y carnes curadas. Por lo cual, debido a lo anterior, es fundamental realizar un análisis microbiológico de los alimentos, para garantizar la inocuidad de los productos, teniendo en cuenta la normatividad vigente, y el tipo de producto del que se trate (Romero, 2015).

Análisis microbiológico

Las características intrínsecas de los derivados lácteos y su alta manipulación favorecen la presencia de microorganismos, los cuales, tienen roles importantes en la elaboración de dichos productos lácteos, como los productores del alimento (bacterias fermentadoras que brindan propiedades organolépticas deseadas), alterantes (deterioran y reducen la vida útil) o patógenos, que implican un riesgo para la salud (Vargas y Toro, 2021).

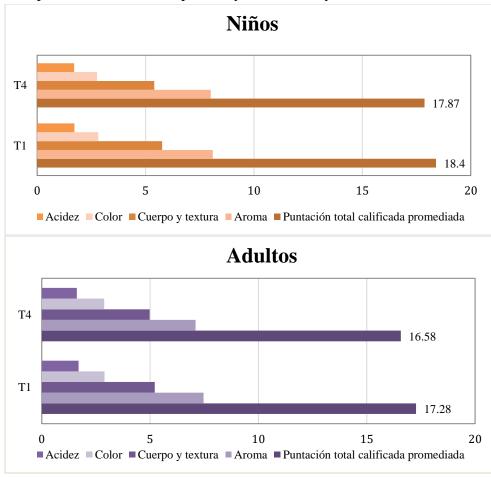
De tal forma, se observan los resultados del análisis microbiológico, suministrados por AGUALIMSU S.A.S en la Tabla 28. Donde se expone que ambos tratamientos cumplen con los valores aceptables para la determinación e identificación de los microorganismos requeridos según la NTC 750 del 2009 para productos lácteos. Se resalta la ausencia de *Listeria monocytogenes* y *Salmonella spp*, indicando las buenas prácticas de manufactura en el proceso de elaboración del producto, siendo aptos para el consumo humano, sin representar un riesgo para la salud de los consumidores. (Anexo A y B. Resultados análisis microbiológico del laboratorio)

Tabla 28Resultados de ensayos microbiológicos según la NTC 750 de 2009 para productos lácteos T1 y T4

Ensayos Microbiológicos								
Parámetros	Método	Valores aceptables	T1	T4	Unidades			
Escherichia coli	(NTC 4458)	<100	<1	<1	UFC/100 mg			
Hongos y Levaduras	(NTC 5698)	<500	<10	<10	UFC/100 mg			
Listeria monocytogenes	(NTC 4666)	Ausencia	Ausencia	Ausencia	A/P 25 g			
Staphylococcus aureus coagulasa positiva	(NTC 4779)	<1000	<10	<10	UFC/g			
Salmonella spp	(NTC 4574)	Ausencia	Ausencia	Ausencia	A/P 25 g			
CUMF	PLE	SI	SI	SI				

Análisis sensorial: Prueba hedónica

Se realizó el traspaso de Figuras (caritas) a la escala de evaluación de cada factor de calidad determinada en la evaluación sensorial realizada por los 20 niños, para así poder promediar y tener en las mismas unidades los resultados de los 20 estudiantes de la Universidad Surcolombiana pertenecientes al programa de Ingeniería Agroindustrial, ya que se tuvo en cuenta los niños como los posibles consumidores mayoritarios, y los estudiantes como el público experto, dichas respuestas promediadas se encuentran en la Tabla 29.


Tabla 29Calificación parámetros de calidad para T1 y T4

Parámetro de evaluación	7	Γ1	T4	
	Niños	Adultos	Niños	Adultos

%Aceptabilidad	89,21		86,13	
Promedio	17,84		17,23	
Total	18,40	17,28	17,87	16,58
Cuerpo y textura	5,76	5,22	5,40	4,98
Acidez	1,72	1,70	1,70	1,62
Aroma y sabor	8,10	7,47	8,01	7,10
Color	2,82	2,90	2,76	2,88

De tal forma, de la tabla mencionada anteriormente, se puedo resaltar que ambos tratamientos presentaron una aceptación superior al 80%, así mismo, se observan valores más bajos para el tratamiento T4 en comparación con el T1, siendo T1 el más aceptado por los consumidores, con una aceptabilidad del 89,21% de los factores de calidad para quesos y derivados lácteos según lo establecido por (Mahecha, 1985). En la Figura 15, se representa visualmente los datos obtenidos del análisis sensorial.

Figura 15Gráficas de los parámetros de calidad para *T1* y *T4* en niños y adultos

Factor color

Para este factor, en las Tablas 30 y 31, al interpretar el valor de P y la comparación entre el valor F y el valor crítico F, se puede definir que entre los tratamientos no hay diferencias significativas, lo que se comprueba al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 31, debido a que las medias comparten una misma letra.

Tabla 30 *Análisis de varianza (ANOVA) para factor color*

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	0,0015	1	0,0015	0,272	0,654	18,513
Dentro de los grupos	0,0108	2	0,0054			
Total	0,0108	3				

Tabla 31 *Método de Tukey y LSD Fisher con una confianza de 95% para factor color*

Factor	N	Media	Agrupación
T1	2	2,86	A
T4	2	2,82	A

Factor aroma y sabor

Al realizar un análisis estadístico a los resultados de los evaluadores, se obtuvo la Tabla 32, donde se muestra que los tratamientos no presentan diferencias estadísticamente significativas, al tener el valor de P mayor a 0,05 con un nivel del 95% de confianza (0,720), lo cual se comprobó, al comparar el valor F y el valor crítico F para aceptación de hipótesis nula (H0), donde se tiene que F<Valor crítico de F (0,170<18,513), de la misma manera, al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 33, se comprueba que no existen diferencias significativas, debido a que las medias comparten una misma letra.

Tabla 32 *Análisis de varianza (ANOVA) para factor aroma y sabor*

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	0,0521	1	0,0521	0,170	0,720	18,513
Dentro de los grupos	0,6146	2	0,3073			

-				-
	Total	0,6664	3	

Tabla 33 *Método de Tukey y LSD Fisher con una confianza de 95% para factor aroma y sabor*

Factor	N	Media	Agrupación
T1	2	7,785	A
T4	2	7,7555	A

Factor Acidez

Según el análisis de la calificación para el factor de acidez de las Tablas 34 y 35, se muestra que no existen diferencias significativas entre tratamientos, ya que en el análisis por ANOVA el valor P es mayor a 0,05 con un nivel del 95% de confianza (0,720), lo cual confirma la hipótesis nula, y se comprueba al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), ya que ambos tratamientos presentan la misma agrupación.

Tabla 34 *Análisis de varianza (ANOVA) para factor acidez*

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	0,0027	1	0,0027	1,454	0,351	18,513
Dentro de los grupos	0,0037	2	0,0018			
Total	0,0063	3				

Tabla 35 *Método de Tukey y LSD Fisher con una confianza de 95% para factor acidez*

Factor	N	Media	Agrupación
T1	2	1,71	A
T4	2	1,66	A

Factor cuerpo y textura

En la Tabla 36, se puede observar el análisis por ANOVA con base en los datos de la Tabla 29, donde se comprueba que para ambos tratamientos no existen diferencias estadísticamente significativas entre las medias, al tener el valor de P mayor a 0,05 con un nivel del 95% de confianza (0,478), lo cual se comprobó, al comparar el valor F y el valor crítico F para aceptación de hipótesis nula (H0) o hipótesis alterna (H1), donde se tiene que F<Valor crítico de F

(0,751<718,512) aceptando H0, de la misma manera, al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 37, se comprueba que no existen diferencias significativas, debido a que las medias comparten una misma agrupación.

Tabla 36 *Análisis de varianza (ANOVA) para factor cuerpo y textura*

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	0,0880	1	0,0880	0,751	0,478	18,512
Dentro de los grupos	0,2344	2	0,1172			
Total	0,3224	3				

Tabla 37 *Método de Tukey y LSD Fisher con una confianza de 95% para cuerpo y textura*

Factor	N	Media	Agrupación
T1	2	5,490	A
T4	2	5,190	A

3.6 Conclusiones

A partir de la formulación y estandarización del queso *petit suisse* saborizado con dulce de curuba (*Passiflora tripartit*a), se lograron determinar las características fisicoquímicas para los dos tratamientos (T1 y T4), los cuales presentaron un pH de 4,660 \pm 0,020 y 4,713 \pm 0,025; un porcentaje de acidez de 1,013 \pm 0,039 y 1,114 \pm 0,034; sólidos solubles totales de 29,633 \pm 1,079 °Brix y 30,233 \pm 0,379 °Brix; así mismo, a partir del análisis de algunas de sus propiedades reológicas, como viscosidad, torque y fuerza de cizalla, se estableció que ambos presentan una textura idónea para quesos frescos y de pasta blanca como el *petit suisse*, donde ésta se ve influenciada por las proporciones de pulpa y azúcar presentes en los tratamientos, modificando su estructura molecular.

De igual forma, a partir del análisis microbiológico, se concluye que ambos cumplieron con lo establecido en la NTC 750 de 2009, para productos lácteos, específicamente quesos y la NTC 5894 de 2011, donde se resalta la ausencia de *Listeria monocytogenes* y *Salmonella spp*, indicando las buenas prácticas de manufactura en el proceso de elaboración del producto, siendo aptos para el consumo humano, sin representar un riesgo para la salud de los consumidores.

Finalmente, referente a la percepción sensorial de los consumidores, se destaca la alta aceptabilidad para ambos tratamientos, la cual fue superior al 80%, cumpliendo con todos los factores de calidad para quesos y derivados lácteos, de la misma forma, se estableció que el mejor

tratamiento fue T1, ya que presentó mayor aceptabilidad por parte de los consumidores y cumplió con los parámetros establecidos por la normativa nacional e internacional empleadas como base.

Referencias

- AOAC. (2005e). Official Methods of Analysis. Association of Official Analytical Chemists. Method Number 942.15 Acidity/Titratable Acidity. (W. Horwitz & G. Latimer, Eds.) (18th ed.). Gaithersburg (Maryland), USA: AOAC International.
- AOAC. (2005d). Official Methods of Analysis. Association of Official Analytical Chemists. Method Number 932.12 Solids in Syrups. (W. Horwitz & G. Latimer, Eds.) (18th ed.). Gaithersburg (Maryland), USA: AOAC International.
- AOAC. (2005f). Official Methods of Analysis. Association of Official Analytical Chemists. Method Number 981.12 pH. (W. Horwitz & G. Latimer, Eds.) (18th ed.). Gaithersburg (Maryland), USA: AOAC International.
- Barrera, E., Mejía, L., Salazar, L., Muñoz, E., González, M., Tapiero, C. y López, J. (2020). Elaboración de un queso Petit Suisse saborizado con salsa de aguacate Hass. *Encuentro Sennova del Oriente Antioqueño 32*(50). Rionegro, Colombia.
- Bermeo, D. y Sánchez, V. (2019). Correlación del perfil de textura (tpa) entre el análisis instrumental y el análisis sensorial del queso fresco [Trabajo de Grado]. Repositorio Unach. Riobamba. http://dspace.unach.edu.ec/handle/51000/5574
- Calampa, L., Fernández, A. y Bernal, W. (2018). Evaluación de la calidad fisicoquímica y microbiológica de queso fresco en las cuencas lecheras de la Región Amazonas, Perú. *Agroindustrial Science* 8(2), 117-121. https://revistas.unitru.edu.pe/index.php/agroindscience/article/view/2241/2127
- Camacho, G. (2000). Procesamiento en: producción, poscosecha y exportación de la uchuva (*Physalis peruviana L.*). Repositorio Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/53455
- Castro, J., Cerquera, N., y Gutiérrez, N. (2013). Determinación del color del exocarpio como indicador de desarrollo fisiológico y madurez en la guayaba pera (*psidium guajava cv.* guayaba pera), utilizando técnicas de procesamiento digital de imágenes. *Revista EIA*, 10(9), 79-89.
- Castro, J. (s.f.). Guía práctica de laboratorio: Gelatinización y retrogradación de almidones. Universidad Surcolombiana Facultad de Ingeniería.
- Ciro, H. (2006). Reología de fluidos y su aplicación en el área de los alimentos. Repositorio UNAL. https://repositorio.unal.edu.co/handle/unal/59571
- Fontana, A. (Ed.). (2007). *Water activity in foods: Fundamentals and applications*. Blackwell publishing. Water activity in foods

- García, M. (s.f.). Análisis sensorial de alimentos. *Revistas y boletines científicos Universidad Autónoma del Estado de Hidalgo*. https://www.uaeh.edu.mx/scige/boletin/icbi/n3/m1.html#refe1
- Guimarães da Silva, D., De Abreu, L., & Pereira A. (2012). Addition of water-soluble soy extract and probiotic culture, viscosity, water retention capacity and syneresis characteristics of goat milk yogurt. Instituto Federal de Ciência, Educação e Tecnologia (Sudeste de Minas Gerais). *Brasil. Ciência Rural, Santa Maria* 42(3), 545-550.
- Guzmán, L., Tejada, C., Ossa, Y. y Rivera, C. (2015). Análisis comparativo de perfiles de textura de quesos frescos de leche de cabra y vaca. *Biotecnología en el Sector Agropecuario y Agroindustrial*13(1). http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612015000100016&lang=es
- Ibáñez, F. y Barcina, Y. (2001). *Análisis sensorial de los alimentos. Métodos y aplicaciones*. Springer. ISBN 84-07-00801-X.
- Mahecha, G. (1985). Evaluación sensorial en el control de calidad de alimentos procesados. Sello Editorial Universidad Nacional de Colombia, pág. 94-103.
- Mantilla, M. (2019). Evaluación fisicoquímica y postcosecha de la curuba (Passiflora mollissima) producida en silos (Norte de Santander). Repositorio Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/bitstream/20.500.12744/4763/1/Mantilla_2019_TG.pdf
- Martínez, A. (2015). Influencia de los tratamientos de pasteurización y el contenido de grasa en la viscosidad del queso tipo petit suisse a base de leche de cabra [Trabajo de pregrado]. Repositorio Universidad Veracruzana https://cdigital.uv.mx/bitstream/handle/123456789/46763/MartinezHernandezAna.pdf?sequence=2&isAllowed=y
- Méndez, L. (2020). Manual de prácticas de análisis de alimentos. Repositorio de la Universidad Veracruzana. https://www.uv.mx/qfb/files/2020/09/Manual-Analisis-de-Alimentos-1.pdf
- Mendoza, R. (2021). Reología del yogur: efectos de las operaciones unitarias en el procesamiento y uso de aditivos. *Revista Digital Novasinergia 4*(1). http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S2631-26542021000100151&lang=es
- Mondino, M. y Ferratto, J. (2006). El análisis sensorial, una herramienta para la evaluación de la calidad desde el consumidor. *Revista agromensajes de la facultad*, 16-48.
- Padrón, C. (2010). Procesamiento digital de imágenes de frutos de semeruco (*Malpighia glabra L.*) durante el crecimiento y maduración. *Revista científica electrónica de agronomía*, 17(2).

- http://faef.revista.inf.br/imagens_arquivos%20/arquivos_destaque/aI7B45A3cAyd853 _2013-5-10-16-34-57.pdf
- Picallo, A. (2009). Análisis sensorial de los alimentos: El imperio de los sentidos. *Encrucijadas* (46). Repositorio Digital Institucional de la Universidad de Buenos Aires. http://repositoriouba.sisbi.uba.ar/gsdl/collect/encruci/index/assoc/HWA_257.dir/257.P DF
- Quijano, P. (2013). Elaboración de queso tipo petit suisse reducido en lactosa, grasa y calorías sabor manzana-pera [Trabajo de pregrado]. Repositorio Universidad Nacional Autónoma de México https://repositorio.unam.mx/contenidos/180073
- Ramírez, J. (2006). Fundamentos de reología de alimentos. Repositorio Universidad La Molina. http://tarwi.lamolina.edu.pe/~dsa/Fundamentos%20de%20Reologia.pdf
- Romero, L. (2015). Evaluación fisicoquímica y microbiología del proceso de elaboración del queso doble crema en una fábrica de lácteos del municipio de Belén, Boyacá [Trabajo de pregrado]. Repositorio Universidad Pedagógica y Tecnológica de Colombia. https://core.ac.uk/download/pdf/217559552.pdf
- Salgado, R., Paternina, A., Cohen, C. y Rodríguez, J. (2019). Análisis de las curvas de gelatinización de almidones nativos de tres especies de ñame: Criollo (*Dioscorea alata*), Espino (*Dioscorea rotundata*) y Diamante 22. *Información tecnológica 30*(4). https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642019000400093
- Silva, S., Oliveira, I., Freitas, A., Silveira, A., Leite, N., & Vilela, J. (2021). Freeze-dried Petit Suisse cheese produced with ora-pro-nóbis (*Pereskia aculeata* Miller) biopolymer and carrageenan mix. *LWT 149*. https://doi.org/10.1016/j.lwt.2021.111764
- Valencia, I. (2022). Determinación reológica de algunas características de queso maduro de oveja y cabra. Repositorio Universidad Autónoma del Estado de México. http://ri.uaemex.mx/bitstream/handle/20.500.11799/138215/3.2.%20trabajo%20final%20Valencia%20Garc%C3%ADa%20IX%20el%20al%202022.pdf?sequence=1
- Vargas, M. y Toro, M. (2021). Inocuidad microbiológica de los productos lácteos. En R. Valenzuela. (Ed.), Lácteos: nutrición y salud (pp. 70-72). Consorcio lechero, Chile
- Zuluaga, N. (2017). El análisis sensorial de alimentos como herramienta para la caracterización y control de calidad de derivados lácteos [Trabajo de grado]. Repositorio Unal. https://repositorio.unal.edu.co/handle/unal/62784

Capítulo IV. Determinación de vida útil mediante análisis fisicoquímico, distribución de Weibull, colorimetría y sinéresis

4.1 Resumen

Este capítulo presenta la determinación de vida útil del queso *petit suisse* saborizado con dulce de curuba (*Passiflora tripartita*), utilizando la distribución de Weibull, análisis sensorial, colorimetría, análisis fisicoquímico y de sinéresis durante 28 días de almacenamiento. Según los estudios, la vida útil determinada fue de 23,4 días para T1 y 23,5 días para T4. Se llevó a cabo un control de calidad de los parámetros fisicoquímicos y de sinéresis durante 28 días. La acidez disminuyó en T1 y aumentó en T4, mientras que los sólidos solubles totales disminuyeron en ambos tratamientos referente al tiempo evaluado, por otra parte, se presentó un mayor índice de sinéresis en T4. En el análisis sensorial, el producto mantuvo una buena aceptación hasta el día 21 (61,67% para T1 y 71,43% para T4), y la colorimetría mostró una disminución gradual del índice de amarillamiento. De esta manera, se concluye que la vida útil del queso *petit suisse* es de 23 días presentando óptimos parámetros de calidad para las pruebas fisicoquímicas, exceptuando la sinéresis y el color.

Palabras clave: Vida útil, análisis sensorial, queso *petit suisse*, colorimetría, sinéresis, análisis fisicoquímico, almacenamiento.

4.2 Abstract

This chapter presents the determination of shelf life of petit suisse cheese flavored with sweet curuba (Passiflora tripartita), using Weibull distribution, sensory analysis, colorimetry, physicochemical and syneresis analysis during 28 days of storage. According to the studies, the shelf life determined was 23.4 days for T1 and 23.5 days for T4. Quality control of physicochemical and syneresis parameters was carried out for 28 days. Acidity decreased in T1 and increased in T4, while total soluble solids decreased in both treatments with respect to the time evaluated; on the other hand, a higher syneresis index was present in T4. In the sensory analysis, the product maintained good acceptance until day 21 (61.67% for T1 and 71.43% for T4), and colorimetry showed a gradual decrease in the yellowing index. Thus, it is concluded that the shelf life of the petit suisse cheese is 23 days, presenting optimal quality parameters for the physicochemical tests, except for syneresis and color.

Key-words: Shelf life, sensory analysis, petit suisse cheese, colorimetry, syneresis, physicochemical analysis, storage.

4.3 Introducción

La vida útil de un alimento se refiere al período limitado posterior a su producción, durante el cual, bajo condiciones controladas de almacenamiento, experimentará una disminución de sus propiedades sensoriales y fisicoquímicas, así como alteraciones en su perfil microbiológico (Carrillo, 2013). Según Alvarado (1998) los alimentos perecederos son aquellos que, por su composición o condiciones, se deterioran fácilmente. Incluyen productos con leche, huevos, carne, pescado o ingredientes que favorecen el crecimiento de microorganismos que pueden causar enfermedades. Generalmente, su vida útil es de siete días, limitada por la revisión bioquímica o

microbiológica. En cambio, los alimentos semi perecederos, tienen una vida útil más larga y su deterioro se debe principalmente a cambios fisicoquímicos o sensoriales.

El método de refrigeración y almacenamiento en frío es uno de los más efectivos para conservar alimentos. Tiene un impacto mínimo en el sabor, la textura, el valor nutritivo y otros cambios generales en los alimentos, siempre y cuando no se extiendan los periodos de conservación más allá del tiempo recomendado (López, 2004). En la industria láctea, los quesos en presentaciones de menos de 8 onzas tienen una vida útil estimada de 15 a 20 días, mientras que las presentaciones más grandes suelen durar alrededor de 31 días siendo la temperatura entre 5 y 10°C respectivamente (Álvarez, 2023). Los factores que pueden afectar la vida útil de un alimento incluyen la materia prima, la formulación del producto, el proceso aplicado, las condiciones sanitarias durante la producción, así como el envasado, almacenamiento, distribución del producto y las prácticas de los consumidores (Carrillo y Mondragón, 2011).

Los métodos de evaluación sensorial son útiles para determinar la vida útil de los productos alimenticios, ya que los cambios en sus características sensoriales influyen directamente en esta evaluación, por lo cual, la frescura y la calidad del producto son aspectos cada vez más valorados por los consumidores (Jaeger, 2023). Como lo menciona Mori (2017) el defecto más común en los productos lácteos gelificados que impacta su calidad organoléptica es la sinéresis, o el goteo causado por la separación del lactosuero de la cuajada. Los principales factores de proceso relacionados con la sinéresis incluyen: acidificación rápida, alta temperatura de incubación, tratamiento térmico excesivo, bajo contenido de sólidos, baja producción de ácidos y el uso de renina.

Una metodología que se está aplicando en estudios de vida en anaquel o vida útil de alimentos es el análisis de supervivencia, es una técnica estadística que analiza el tiempo entre dos eventos como variable de respuesta. Se caracteriza por usar datos de consumidores y por manejar distribuciones asimétricas, ya que la distribución normal no es adecuada en la mayoría de los casos (Elías et al., 2010). Una de las funciones de distribución más comunes es la de Weibull. Por lo general, se emplea el percentil 50 como indicador de la vida útil, el cual representa el tiempo en que el 50% de los consumidores rechaza el producto (Hough et al., 2013).

La vida útil de productos alimenticios microbiológicamente estables, como galletas y mayonesa, se define por sus cambios en propiedades sensoriales. En cambio, productos frescos como yogur o pasta pueden ser microbiológicamente seguros tras un almacenamiento prolongado, pero aun así pueden ser rechazados por alteraciones en sus características sensoriales (López y Nova, 2009). De acuerdo a lo mencionado, el objetivo de esta investigación es determinar la vida útil del queso *petit suisse* mediante la aplicación de métodos de distribución para el análisis de supervivencia y evaluar el cambio de las características fisicoquímicas en función del tiempo mediante análisis sensorial, índices de colorimetría y sinéresis.

4.3 Metodología

La determinación de vida útil del producto se realizó mediante la distribución de Weibull de acuerdo con los análisis sensoriales, fisicoquímicos, colorimétricos y de sinéresis. El tiempo de almacenamiento del producto fue de 28 días en recipientes de plástico de polipropileno.

Análisis sensorial

Siete catadores semi entrenados del centro de investigación Cesurcafé de la Universidad Surcolombiana fueron elegidos para formar parte de la prueba de diferenciación, cuyo objetivo fue determinar la vida útil de los tratamientos seleccionados mediante el rechazo en función del tiempo. Los criterios de evaluación abarcaron el color, la acidez, la consistencia y la textura, así como el aroma y el sabor, de acuerdo con los estándares establecidos para productos lácteos, según lo establecido por Mahecha (1985).

Distribución de Weibull

Identificación preliminar de la distribución de ajuste. Mediante el análisis del mejor índice de Anderson Darling se determinó gráficamente en el programa Minitab, cuatro distribuciones; Weibull, Log normal, Exponencial y Log logística, para determinar el mejor ajuste.

Determinación de los parámetros de la distribución Weibull. Para determinar los parámetros α y β de la función de Weibull, se utilizó la versión linealizada de la función de distribución acumulativa de Weibull.

Ecuación 16

Función de distribución acumulativa de Weibull

$$In t = In \alpha + (1/\beta) In H (t)$$

Elías et al. (2011) menciona que, a partir de los parámetros encontrados en la función anterior, se puede establecer el valor esperado E(t) para la determinación de vida útil, donde γ es la conocida función Gamma.

Ecuación 17

Función valor medio de Weibull

$$E(t) = \alpha \gamma [1 + (1/\beta)]$$

De esta manera, se asignaron valores de "0" para representar la aceptación por parte de los consumidores y "1" para indicar el rechazo. Para estimar la vida útil del producto, los tiempos de rechazo fueron ajustados a una distribución de Weibull, definiendo la variable aleatoria "t" como el tiempo de almacenamiento en el que el consumidor rechaza (Gacula, et al., 1975, como se citó por Elías, et al. 2010).

Pruebas fisicoquímicas

Determinación de pH. Para la determinación del pH se siguió la metodología propuesta en la AOAC official Methods 981.12, empleando el equipo pHmetro portátil, Handylab 10. Las mediciones se realizaron por triplicado.

Acidez titulable. En la acidez titulable se empleó el método oficial propuesto en la AOAC official Methods 942.15. Se realizó por triplicado las mediciones de acidez.

Sólidos solubles disueltos. La medición de sólidos solubles se realizó empleando el método propuesto en la AOAC Official Methods 932.12. Método del refractómetro, ATAGO POCKET 0-93%. La medición se realizó por triplicado.

Determinación de sinéresis. El producto fue almacenado en refrigeración a 4°C en un recipiente de plástico (polipropileno) con tapa con una muestra de 22 gramos. El índice de sinéresis se midió los días 0, 7, 14 y 28 con ayuda de una micropipeta, y se registró la cantidad de suero formada en la superficie del producto.

Ecuación 18

Determinación del Índice de sinéresis

$$IS = \frac{Peso\ muestra\ sobrenadante}{Peso\ muestra} \times 100$$

Colorimetría

Procesamiento digital de imágenes. El procedimiento de la determinación de color se tomó de la metodología propuesta por Castro et al. (2013) para el procesamiento digital de imágenes.

Índice general de la variación de color. Los atributos de color, como el croma métrico o saturación (C*), se obtuvieron aplicando la Ecuación 19. De manera similar, el matiz, tonalidad o tono (H*) se calculó utilizando la Ecuación 20. Para los índices de color WI y YI, se empleó la Ecuación 21 de Boun y Huxsoll, (1991) y la Ecuación 22 de Ramírez (2010). Asimismo, se tuvieron en cuenta las diferencias de color, representadas como (ΔΕ*), que indican una medida general de la variación cromática, calculadas a partir de la Ecuación 23 (Ramírez, et al. 2012).

Ecuación 19

Determinación del Croma

Croma
$$(C^*) = (a^{*2} + b^{*2})^{1/2}$$

Ecuación 20

Determinación del Tono

$$H^* = \left[\frac{b^*}{a^*}\right]$$

Ecuación 21

Determinación del Índice de blancura

$$WI = 100 - \sqrt{(100 - L^*)^2 + a^{*2} + b^{*2}}$$

Ecuación 22

Determinación del Índice de amarillamiento

$$YI = \left[\frac{b^*}{L^*}\right]$$

Ecuación 23

Determinación del Índice general de la variación de color

$$\Delta E_{r,s} = \sqrt{\left(L^* - L^*_{ref}\right)^2 + \left(a^* - a^*_{ref}\right)^2 + \left(b^* - b^*_{ref}\right)^2}$$
$$\Delta E_{r,s} = \sqrt{(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2}$$

4.4 Resultados y discusión

Análisis sensorial: Prueba de diferenciación

De acuerdo con el análisis sensorial realizado mediante una prueba de diferenciación por los siete catadores semi entrenados del centro de investigación Cesurcafé de la Universidad Surcolombiana, se verificó que los parámetros de calidad debían presentar un rechazo mínimo del 50% para determinar la vida útil de los tratamientos.

Como se evidencia en la Tabla 38, se comprobó que, para el día 0, ambos tratamientos alcanzaron un porcentaje de aceptabilidad del 86% y 78%. Sin embargo, para el día 28, no se logró una aceptación superior al 50%, lo que sugiere que, para la determinación de la vida útil el rango óptimo estaría entre 24 y 25 días, deducido mediante interpolación. Además, se constató que los parámetros mejor evaluados fueron el color, el aroma y el sabor en ambos tratamientos. Al comparar los resultados desde el día 0 hasta el día 28, se observó la degradación de los parámetros de calidad del queso *petit suisse*, especialmente en el tratamiento T1, que mostró una pérdida significativa del aroma y sabor, así como un incremento en la acidez del producto.

Por otro lado, se destaca que el tratamiento T1 tuvo el mayor porcentaje de aceptabilidad en relación con los parámetros evaluados durante las primeras dos semanas. Sin embargo, en los días 21 y 28, el tratamiento T4 logró un mayor porcentaje de aceptabilidad por parte de los catadores.

Tabla 38Calificación parámetros de calidad para T1 y T4

		Días evaluados									
Parámetro de evaluación			T1			T4					
	0	7	14	21	28	0	7	14	21	28	
Color	2,86	2,95	2,90	2,29	1,76	2,89	2,67	2,71	2,67	1,76	
Aroma y sabor	7,67	7,57	6,95	5,14	1,90	7,39	7,24	6,14	5,76	2,38	
Acidez	1,67	1,57	1,76	1,38	0,52	1,33	1,48	1,48	1,62	0,62	
Cuerpo y textura	5,05	5,00	4,95	3,52	3,05	4,06	3,33	4,19	4,24	3,38	
Total	17,24	17,10	16,57	12,33	7,24	15,67	14,71	14,52	14,29	8,14	
%Aceptabilidad	86,19	85,48	82,86	61,67	36,19	78,33	73,57	72,62	71,43	40,71	

Factor color

Referente al parámetro de color, se realizó un análisis estadístico utilizando el modelo de diferencia mínima significativa (LSD de Fisher) y el método de comparación de medias (Tukey). Tal como se muestra en la Tabla 39, se observa que en el análisis con el método de Tukey para el tratamiento T1, existen diferencias significativas entre los grupos A, B y C. Esto se debe a que los días 0, 7 y 14 no comparten la misma letra con los días 0 y 21, pertenecientes al grupo B, y los días 21 y 28, correspondientes al grupo C. Por otro lado, en el método de LSD Fisher para el tratamiento T1, se identifican tres diferencias significativas entre los grupos A, B y C, lo que demuestra que los días 0, 7 y 14 presentan diferencias significativas en comparación con los días 21 (grupo B) y 28 (grupo C). En el caso del tratamiento T4, ambos métodos muestran una sola diferencia significativa en el día 28 (grupo B), en comparación con los días 0, 7, 14 y 21, que pertenecen al grupo A.

Tabla 39 *Método de Tukey y LSD Fisher con una confianza de 95% para factor color*

		Tukey						LSD Fisher			
Factor	N			Agrupación							
			T1			T4		T1			T4
Día 7	7	A			A		A			A	
Día 14	7	A			A		A			A	
Día 0	7	A	В		A		A			A	
Día 21	7		В	C	A			В		A	
Día 28	7			C		В			C		В

Factor aroma v sabor

En cuanto al parámetro de aroma y sabor, se realizó un análisis estadístico utilizando el modelo de diferencia mínima significativa (LSD de Fisher) y el método de comparación de medias (Tukey), cuyos resultados se presentan en la Tabla 40.

De acuerdo con los datos obtenidos, en el análisis mediante el método de Tukey para el tratamiento T1 se observan diferencias significativas entre los grupos A, B y C. Esto se debe a que los días 0, 7 y 14 no comparten la misma letra con los días 0 y 21, que pertenecen al grupo B, y con el día 28, que corresponde al grupo C. Para el tratamiento T4, se detecta una única diferencia significativa, específicamente en el día 28 (grupo B), en comparación con los días 0, 7, 14 y 21, que forman parte del grupo A.

Por otra parte, el análisis mediante el método de LSD Fisher para el tratamiento T1 muestra tres diferencias significativas entre los grupos A, B y C. Los días 0, 7 y 14 no comparten la misma letra con los días 21 (grupo B) y 28 (grupo D). En cuanto al tratamiento T4, se identifican cuatro diferencias significativas entre los grupos A, B, C y D. Esto indica que los días 0 y 7 presentan diferencias significativas en comparación con los días 7 y 14 (grupo B), 14 y 21 (grupo C) y el día 28 (grupo D).

Tabla 40 *Método de Tukey y LSD Fisher con una confianza de 95% para factor aroma y sabor*

				Tu	key			LSD	Fisher		
Factor	N			Agrup	pación			Agru	ıpación		
			T1			T4	7	Γ1		T4	
Día 0	7	A			A		A		A		
Día 7	7	A			A		A		A	В	
Día 14	7	A	В		A		A			В	C
Día 21	7		В		A]	В			C
Día 28	7			C		В		C			D

Factor Acidez

En relación con el parámetro de acidez, se realizó un análisis estadístico utilizando el modelo de diferencia mínima significativa (LSD de Fisher) y el método de comparación de medias (Tukey). De acuerdo con la Tabla 41, se observa que, para ambos métodos y tratamientos, solo se presenta una diferencia significativa, ya que los grupos no comparten una misma letra, esta diferencia se encuentra en el grupo B, correspondiente al día 28.

Tabla 41 *Método de Tukey y LSD Fisher con una confianza de 95% para factor acidez*

			Tu	key	LSD Fisher			
Factor N			Agruj	pación	Agrupación			
				T1	T4	T1	T4	
Día 14	7	A		A	A	A		

Día 0	7	A		A	A	A	
Día 7	7	A		A	A	A	
Día 21	7	A		A	A	A	
Día 28	7		В	В	В	В	

Factor cuerpo y textura

De acuerdo con el parámetro de cuerpo y textura, se realizó un análisis estadístico utilizando el modelo de diferencia mínima significativa (LSD de Fisher) y el método de comparación de medias (Tukey), cuyos resultados se muestran en la Tabla 42. Se comprobó que en el método de Tukey para el tratamiento T1, se observan diferencias significativas entre los grupos A y B, ya que los días 0, 7, 14 y 21 no comparten una misma letra con los días 21 y 28, que pertenecen al grupo B. Por otro lado, en el análisis con el método de LSD Fisher, se identifican tres diferencias significativas entre los grupos A, B y C, lo que indica que los días 0, 7 y 14 presentan diferencias significativas en comparación con los días 21 (grupo B) y 28 (grupo C). En el caso del tratamiento T4, ambos métodos no muestran diferencias significativas, dado que solo existe un único grupo (A).

Tabla 42 *Método de Tukey y LSD Fisher con una confianza de 95% para cuerpo y textura*

				Tukey		LSD Fisher			
Factor	N		Agrupación			Agrupación			
			T1	T4	Т	<u>`</u> 1	T4		
Día 0	7	A		A	A		A		
Día 7	7	A		A	A		A		
Día 14	7	A		A	A		A		
Día 21	7	A	В	A	I	3	A		
Día 28	7		В	A		C	A		

Rechazo sensorial en función del tiempo

A través de una evaluación sensorial realizada con siete jueces, se evaluó el queso *petit suisse* saborizado durante un mes, en los días 0, 7, 14, 21 y 28. Para medir los rechazos por parte de los evaluadores, se utilizó la siguiente escala: "0" para aceptación y "1" para rechazo. Los rechazos comenzaron a registrarse a partir del día 14 en ambos tratamientos y continuaron hasta el día 28, tal como se muestra en las Tablas 43 y 44.

Tabla 43 *Rechazo de los consumidores en función del tiempo (T1)*

D /				Jueces			
Días	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0
14	0	1	0	0	0	0	0
21	0	1	0	1	1	1	1
28	1	1	1	1	1	1	1

Tabla 44 *Rechazo de los consumidores en función del tiempo (T4)*

Días				Jueces			
Dias	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0
14	0	1	0	0	0	0	0
21	0	1	0	0	1	1	1
28	1	1	1	1	1	1	1

En la Tabla 45 se observa que el rechazo por parte de los consumidores aumenta a medida que se prolonga el tiempo de almacenamiento del producto, alcanzando un total de 13 rechazos para T1 y 12 rechazos para T4.

Tabla 45Resumen de los rechazos de los consumidores en función del tiempo de T1 y T4

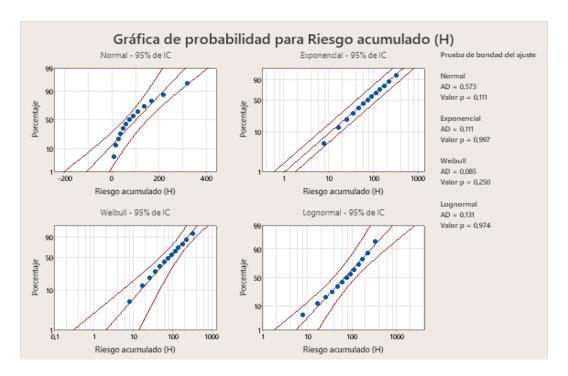
Tiempo (días)	Rec	chazo
Tiempo (dias)	T1	T4

14	1	1
21	5	4
28	7	7
Total	13	12

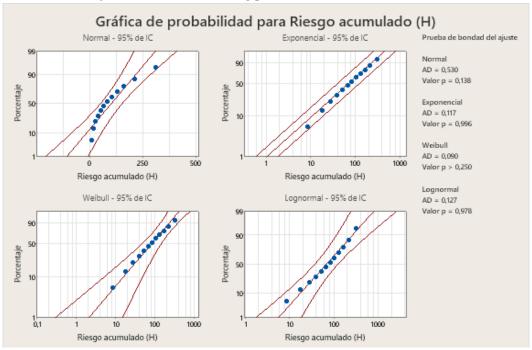
Luego, los datos se organizaron en orden inverso (K) con respecto al tiempo de fallo para determinar los valores de riesgo (h) y las demás variables de la distribución de Weibull. En las Tablas 46 y 47 se muestran los valores calculados de los riesgos acumulados, utilizados para modelar la prueba de bondad de ajuste.

Tabla 46 *Aplicación de la distribución de Weibull para los valores rechazados (T1)*

Rango inverso (K)	Tiempo (t)	Riesgo (h=100/K)	Riesgo acumulado (H)	In (t)	In (H/100)
13	14	7,69	7,69	2,64	-2,56
12	21	8,33	16,03	3,04	-1,83
11	21	9,09	25,12	3,04	-1,38
10	21	10	35,12	3,04	-1,05
9	21	11,11	46,23	3,04	-0,77
8	21	12,5	58,73	3,04	-0,53
7	28	14,29	73,01	3,33	-0,31
6	28	16,67	89,68	3,33	-0,11
5	28	20	109,68	3,33	0,09
4	28	25	134,68	3,33	0,30
3	28	33,33	168,01	3,33	0,52
2	28	50	218,01	3,33	0,78
1	28	100	318,01	3,33	1,16


Tabla 47 *Aplicación de la distribución de Weibull para los valores rechazados (T4)*

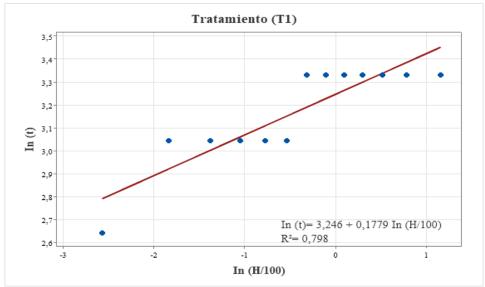
Rango inverso (K)	Tiempo (t)	Riesgo (h=100/K)	Riesgo acumulado (H)	In (t)	In (H/100)
12	14	8,33	8,33	2,64	-2,48


11 21 9,09 17,42 3,04 -1,75 10 21 10 27,42 3,04 -1,29 9 21 11,11 38,54 3,04 -0,95 8 21 12,50 51,04 3,04 -0,67 7 28 14,29 65,32 3,33 -0,43 6 28 16,67 81,99 3,33 -0,20 5 28 20 101,99 3,33 0,02 4 28 25 126,99 3,33 0,24 3 28 33,33 160,32 3,33 0,47 2 28 50 210,32 3,33 0,74 1 28 100 310,32 3,33 1,13						
9 21 11,11 38,54 3,04 -0,95 8 21 12,50 51,04 3,04 -0,67 7 28 14,29 65,32 3,33 -0,43 6 28 16,67 81,99 3,33 -0,20 5 28 20 101,99 3,33 0,02 4 28 25 126,99 3,33 0,24 3 28 33,33 160,32 3,33 0,47 2 28 50 210,32 3,33 0,74	11	21	9,09	17,42	3,04	-1,75
8 21 12,50 51,04 3,04 -0,67 7 28 14,29 65,32 3,33 -0,43 6 28 16,67 81,99 3,33 -0,20 5 28 20 101,99 3,33 0,02 4 28 25 126,99 3,33 0,24 3 28 33,33 160,32 3,33 0,47 2 28 50 210,32 3,33 0,74	10	21	10	27,42	3,04	-1,29
7 28 14,29 65,32 3,33 -0,43 6 28 16,67 81,99 3,33 -0,20 5 28 20 101,99 3,33 0,02 4 28 25 126,99 3,33 0,24 3 28 33,33 160,32 3,33 0,47 2 28 50 210,32 3,33 0,74	9	21	11,11	38,54	3,04	-0,95
6 28 16,67 81,99 3,33 -0,20 5 28 20 101,99 3,33 0,02 4 28 25 126,99 3,33 0,24 3 28 33,33 160,32 3,33 0,47 2 28 50 210,32 3,33 0,74	8	21	12,50	51,04	3,04	-0,67
5 28 20 101,99 3,33 0,02 4 28 25 126,99 3,33 0,24 3 28 33,33 160,32 3,33 0,47 2 28 50 210,32 3,33 0,74	7	28	14,29	65,32	3,33	-0,43
4 28 25 126,99 3,33 0,24 3 28 33,33 160,32 3,33 0,47 2 28 50 210,32 3,33 0,74	6	28	16,67	81,99	3,33	-0,20
3 28 33,33 160,32 3,33 0,47 2 28 50 210,32 3,33 0,74	5	28	20	101,99	3,33	0,02
2 28 50 210,32 3,33 0,74	4	28	25	126,99	3,33	0,24
	3	28	33,33	160,32	3,33	0,47
1 28 100 310,32 3,33 1,13	2	28	50	210,32	3,33	0,74
	1	28	100	310,32	3,33	1,13

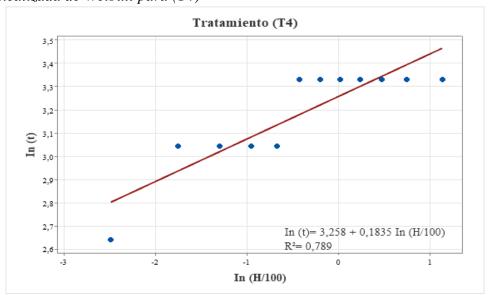
La prueba de Anderson-Darling (AD) se utiliza principalmente para comparar el ajuste de diferentes distribuciones y determinar cuál se adapta mejor a los datos analizados. Fau et al. (2020) menciona que la aplicación de AD es la mejor para evaluar distribuciones simétricas y de tamaño pequeño, menor de 30 participantes. De esta manera, se destaca que esta prueba es particularmente adecuada para los datos a evaluar. De este modo, se llevó a cabo de manera preliminar la prueba de bondad de ajuste de Anderson-Darling (AD) para verificar si los valores calculados de los riesgos se ajustan a distribuciones Normal, Log-normal, Exponencial y Weibull.

Figura 16Prueba de bondad de ajuste Anderson-Darling para determinar las distribuciones evaluadas (T1)

Figura 17Prueba de bondad de ajuste Anderson-Darling para determinar las distribuciones evaluadas (T4)



De acuerdo a lo mencionado por Álvarez (2016) para definir que una distribución es la mejor, el estadístico de Anderson-Darling debe ser menor en comparación con los otros estadísticos mencionados. De esta forma, la distribución de Weibull es la que mejor se ajusta en comparación con las demás distribuciones, ya que presenta el menor valor de AD: 0,085 para T1 y 0,090 para T4, como se muestra en las Figuras 16 y 78.


Determinación de los parámetros de distribución de Weibull

La metodología para determinar los parámetros de forma, escala y el tiempo de vida útil del queso *petit suisse*, fue mediante la aplicación de la función de distribución acumulativa de Weibull expuesta en la Ecuación 16.

Figura 18 Función linealizada de Weibull para (T1)

Figura 19Función linealizada de Weibull para (T4)

De acuerdo con las Figuras 18 y 19, se obtuvieron las funciones linealizadas de Weibull para ambos tratamientos, donde la intersección "a" fue de 3,246 para T1 y 3,258 para T4, y la pendiente "b" fue 0,1779 para T1 y 0,1835 para T4. Es importante mencionar que el coeficiente de determinación (R²) arrojó valores de 0,798 para T1 y 0,789 para T4, sugiriendo que el modelo

tiene una alta probabilidad de describir adecuadamente los datos, indicando un buen ajuste. Sin embargo, cabe destacar que valores altos de R^2 pueden encontrarse tanto en modelos con un buen ajuste como en aquellos en los que el ajuste no es aceptable (Palma, 2020). A partir de los datos cálculos presentados en la Tabla 48, se determinaron los parámetros de escala (α) y forma (β).

Tabla 48 *Parámetros de la distribución de Weibull*

Tratamiento	a In α	$^{e^a}_\alpha$	b 1/β	1/b β	\mathbb{R}^2
T1	3,246	25,687	0,1779	5,621	0,798
T4	3,258	25,997	0,1835	5,450	0,789

Una vez obtenidos los parámetros de Weibull, se utilizó la función de distribución acumulativa descrita en la Ecuación 17, estimando una vida útil de 23,744 días para el tratamiento T1 y de 23,988 días para el tratamiento T4, de acuerdo con la evaluación sensorial. Según la investigación de Ramírez (2015) sobre un queso *petit suisse* de arándanos con prebióticos, el producto tiene una vida útil de 26 días a una temperatura de almacenamiento de 5°C, valores muy cercanos al queso experimental realizado. Por otra parte, Esmerino et al. (2013) mencionan que la vida útil del producto fue de 28 días, durante los cuales la influencia de los edulcorantes no afectó la viabilidad de las bacterias probióticas utilizadas. Asimismo, en la investigación sobre un queso *petit suisse* simbiótico de guayaba, determinaron que su vida útil fue de 21 días a una temperatura de refrigeración de 4°C, este período fue establecido mediante pruebas fisicoquímicas, sensoriales y microbiológicas. (Morales et al., 2023).

Tabla 49Vida útil estimada para los tratamientos a evaluar

Tratamiento	Parámetro de escala (α)	Parámetro de forma (β)	Vida útil estimada (días)
T1	25,687	5,621	23,744
T4	25,997	5,450	23,988

Determinación de parámetros fisicoquímicos y sinéresis

El queso *petit suisse*, al tener un mercado limitado en Colombia, no cuenta con una normativa específica que lo regule. Sin embargo, este tipo de producto está sujeto a las normativas aplicables a los quesos frescos. De este modo, para poder comparar los datos obtenidos, se aplicó la NTC 750 de 2008 y el Codex Alimentarius.

Tabla 50Determinación de parámetros fisicoquímicos y sinéresis en función del tiempo (T1)

Tiempo /		T1						
Parámetro fisicoquímico	0	7	14	21	28			
Sólidos solubles (°Brix)	29,067 ± 0,057	28,333 ± 0,057	28,933 ± 0,252	28,233 ± 0,057	28,100 ± 0,10			
pH	4,583 ± 0,015	4,527 ± 0,037	4,517 ± 0,046	4,453 ± 0,011	$4,860 \pm 0,034$			
Acidez titulable (%ácido láctico)	$0{,}706 \pm 0{,}019$	$_{0,035}^{0,670\pm}$	$_{0,674\ \pm\ 0,015}^{0,674\ \pm}$	$_{0,719~\pm}^{0,719~\pm}$	$_{0,683\ \pm\ 0,016}^{0,683\ \pm}$			
% Índice de sinéresis	0	0	0,136	0,182	0,455			

Nota. Resultados expresados como el promedio de 3 réplicas ± desviación estándar.

Según las Tablas 50 y 51, se evaluaron los diferentes parámetros fisicoquímicos y de sinéresis durante un periodo de almacenamiento de 28 días, con el fin de determinar la vida útil y verificar el cumplimiento de los parámetros de calidad establecidos por las normativas vigentes.

Tabla 51Determinación de parámetros fisicoquímicos y sinéresis en función del tiempo (T4)

Tiempo /			T4		
Parámetro fisicoquímico	0	7	14	21	28
Sólidos solubles (°Brix)	27,033 ± 0,115	27,033 ± 0,115	27,167 ± 0,152	28,400 ± 0,1	27,767 ± 0,057
рН	$4,720 \pm 0,052$	4,413 ± 0,025	4,470 ± 0,034	4,553 ± 0,025	4,680
Acidez titulable (%ácido láctico)	$0,657 \pm 0,002$	0,701 ± 0,019	0,734 ± 0,001	$0,655 \pm 0,004$	$0,713 \pm 0,059$
% Índice de sinéresis	0	0	0,545	1,227	1,364

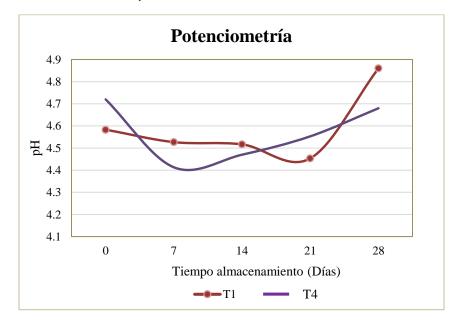
Nota. Resultados expresados como el promedio de 3 réplicas ± desviación estándar.

De este modo, se llevó a cabo un análisis estadístico para identificar diferencias significativas entre ambos tratamientos, utilizando el método de Tukey y LSD Fisher en función del tiempo de almacenamiento.

Tabla 52 *Método de Tukey y LSD Fisher con una confianza de 95% para parámetros fisicoquímicos y de sinéresis*

Día 0		Γ	Día 7	Día 14		
Factor	Agrupación	Factor	Agrupación	Factor	Agrupación	

T1 (Sólidos solubles)	A		T1 (Sólidos solubles)	A		T1 (Sólidos solubles)	A	
T4 (Sólidos solubles)		В	T4 (Sólidos solubles)		В	T4 (Sólidos solubles)		В
T4 (pH)	A		T1 (pH)	A		T1 (pH)	A	
T1 (pH)		В	T4 (pH)		В	T4 (pH)	A	
T1 (Acidez)	A		T1 (Acidez)	A		T4 (Acidez)	A	
T4 (Acidez)		В	T4 (Acidez)	A		T1 (Acidez)		В
T4 (Sinéresis)	A		T1 (Sinéresis)	A		T1 (Sinéresis)	A	
T1 (Sinéresis)	A		T4 (Sinéresis)	A		T4 (Sinéresis)		В

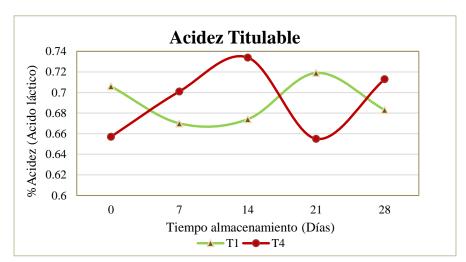

Día 2	Día 21			28	
T4 (Sólidos solubles)	A		T1 (Sólidos solubles)	A	
T1 (Sólidos solubles)	A		T4 (Sólidos solubles)		В
T4 (pH)	A		T1 (pH)	A	
T1 (pH)		В	T4 (pH)		В
T1 (Acidez)	A		T4 (Acidez)	A	
T4 (Acidez)		В	T1 (Acidez)	A	
T4 (Sinéresis)	A		T4 (Sinéresis)	A	
T1 (Sinéresis)		В	T1 (Sinéresis)		В

pH - potenciometría

Con base en las Tablas 50 y 51, se analizó el comportamiento del pH en los tratamientos del queso *petit suisse* a lo largo de 28 días de almacenamiento, con el fin de detectar posibles variaciones en función del tiempo. Para el tratamiento T1, se observó un pH que fluctuó entre $4,583 \pm 0,015$ y $4,860 \pm 0,034$, con un descenso en los días 7, 14 y 21, seguido de un incremento en el día 28. De manera similar, el tratamiento T4 mostró picos de incremento en los días 21 y 28, mientras que presentó descensos en los días 7 y 14, con un rango de pH entre $4,720 \pm 0,052$ y 4,680. A partir de los resultados obtenidos, en la Figura 20 se presenta las diferencias en ambos tratamientos.

Figura 20

Determinación de sinéresis en T1 y T4

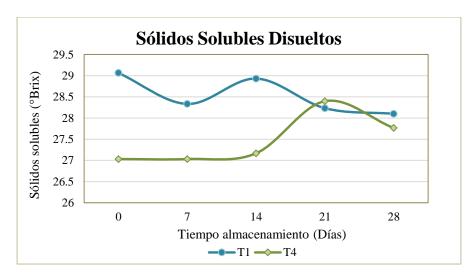

Según Hurtado et al. (2023), la formulación de un queso *petit suisse* saborizado con arándanos evaluada durante 21 días mostró un patrón similar a los tratamientos T1 y T4 de esta investigación, con valores de pH en rangos de 4,31 a 4,40; 4,36 a 4,40; y 4,43 a 4,42, presentándose fluctuaciones en la escala de pH. Por otro lado, Pasini et al. (2019) señalan que el queso *petit suisse* elaborado con jugo de uva de Burdeos tiende a estabilizar su pH a lo largo del tiempo de almacenamiento, incrementándose gradualmente hasta alcanzar un valor de 4,02 \pm 0,01 al día 28.

De este modo, se llevó a cabo un análisis estadístico utilizando el modelo de la diferencia mínima significativa (LSD de Fisher) y el método de comparación de medias (Tukey), cuyos resultados se presentan en la Tabla 52. De esta manera, se determinó que ambos tratamientos mostraron diferencias significativas en los días 0, 7, 21 y 28, ya que no comparten una misma letra. Sin embargo, en el día 14, no se observaron diferencias significativas, dado que ambos tratamientos presentaron un comportamiento similar.

Acidez titulable

De acuerdo con las Tablas 50 y 51, se evaluó el comportamiento de la acidez, expresada como ácido láctico, durante el periodo de almacenamiento. Para el tratamiento T1, el porcentaje de acidez varió entre 0.706 ± 0.019 % y 0.713 ± 0.059 %, observándose una disminución en los días 7, 14 y 28, y un incremento en el día 21. En el caso del tratamiento T4, los valores de acidez fluctuaron entre 0.657 ± 0.002 % y 0.713 ± 0.059 %, registrándose un incremento en los días 7, 14 y 28, seguido de una disminución en el día 21, dicho comportamiento es normal según lo reportado por (Morales et al., 2023), ya que para ellos la acidez en el *petit suisse* cambia significativamente durante el almacenamiento, comenzando por 0.65% y culminando con 0.88% al final de la vida útil del producto, lo que puede ser debido a diversos factores como la actividad microbiana, ya que las bacterias lácticas pueden producir ácidos durante el metabolismo, al tipo de leche y su procesamiento o a la oxidación del queso. De acuerdo a la Figura 21 se demuestra las diferencias descritas con anterioridad.

Figura 21Determinación de sinéresis en T1 y T4

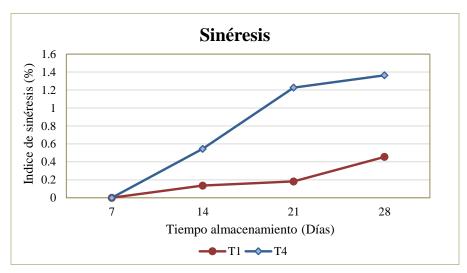


A partir de lo mencionado, se llevó a cabo un análisis estadístico utilizando el modelo de diferencia mínima significativa (LSD de Fisher) y el método de comparación de medias (Tukey). Tal como se muestra en la Tabla 52, se determinó que los tratamientos T1 y T4 presentaron diferencias significativas en los días 0, 14 y 21, debido a que no comparten una misma letra. Sin embargo, ambos tratamientos en los días 7 y 28 no presentaron diferencias significativas.

Sólidos solubles disueltos

Para la evaluación de los sólidos solubles, se tuvieron en cuenta las Tablas 50 y 51, determinando de este modo que el tratamiento T1 tuvo un descenso de $29,067 \pm 0,057$ °Brix a $28,1 \pm 0,10$ °Brix. Para el caso de tratamiento T4, se registró valores de $27,033 \pm 0,115$ °Brix y $27,767 \pm 0,057$ °Brix, presentando un incremento de sólidos solubles los días 14 y 21, y un descenso para el día 28, de acuerdo a la Figura 22 se presentan las diferencias de manera significativa. Según (Esmerino et al., 2015), la variación en los sólidos disueltos en el tiempo de almacenamiento para el *petit suisse*, puede ser debido a diversos factores, como la hidrólisis enzimática, la actividad microbiana, la oxidación y degradación y demás, por lo cual, es importante monitorear la calidad del queso y realizar análisis regulares, garantizando así la calidad del producto.

Figura 22Determinación de sinéresis en T1 y T4



De esta manera, se realizó un análisis estadístico utilizando el modelo de diferencia mínima significativa (LSD de Fisher) y el método de comparación de medias (Tukey), cuyos resultados se muestran en la Tabla 52. Se comprobó que ambos tratamientos presentaron diferencias significativas en los días 0, 7, 14 y 28, lo cual se evidencia por la ausencia de letras compartidas. Por otra parte, en el día 21 no se observaron diferencias significativas entre los tratamientos.

Determinación de sinéresis

Según lo indicado en las Tablas 50 y 51, se determinó que, para el tratamiento T1, el índice de sinéresis aumentó gradualmente, comenzando el día 14 con un porcentaje de 0,136 % y alcanzando un 0,455 % al día 28. Por otro lado, el tratamiento T4 mostró un incremento en el índice de sinéresis en comparación al tratamiento T1, ya que comenzó con un valor de 0,545 % el día 14 y llegó a 1,364 % el día 28, como se presenta en la Figura 23.

Figura 23Determinación de sinéresis en T1 y T4

Nota. En los días 0 y 7 no se presentó sinéresis.

El grado de sinéresis en el queso petit suisse en ambos tratamientos aumentó durante el tiempo de almacenamiento, debido a la pérdida de estabilidad y la disminución de la capacidad de retención de agua de sus componentes, siendo más notorio en T4. Según Morales, et al. (2023) en la caracterización sensorial de un producto funcional de queso petit simbiótico de guayaba, mencionan que el producto presenta una ligera sinéresis en el día 14, llegando a obtener una mayor presencia de sinéresis el día 28, por lo cual, infieren que el efecto de la acidez sobre la red de proteínas de la cuajada produjo una mayor separación del suero. Por otra parte, como lo menciona Parra (2014) este comportamiento puede ser por la disminución del pH durante el almacenamiento, lo que provoca una contracción en la estructura de la micela de caseína y, como resultado, una mayor liberación de lactosuero. Silva, et al. (2021) mencionan que la aplicación de diversos espesantes puede ayudar a la disminución de la sinéresis, sin embargo, se debe tener en cuenta la proporción adecuada para lograr atrapar el agua en la estructura del gel, en el caso de esa investigación, se realizaron varias formulaciones utilizando biopolímeros extraídos del mucílago de la hoja y el fruto de la ora-pro-nóbis, así como mezclas con carragenina, determinando que la aplicación de los biopolímeros debe ser controlada y ajustada a proporciones adecuadas para obtener un efecto óptimo en la sinéresis.

De esta manera, se llevó a cabo un análisis estadístico empleando el modelo de diferencia mínima significativa (LSD de Fisher) y el método de comparación de medias (Tukey), cuyos resultados se presentan en la Tabla 52. De acuerdo a los tratamientos evaluados, se determinó que en los días 14, 21 y 28, existen diferencias significativas, ya que no comparten una misma letra.

Determinación de la variación de color

Según la prueba de colorimetría, se puede observar en la Tabla 53, las coordenadas CIEL*a*b correspondientes a cada tratamiento durante un periodo de almacenamiento de 28 días. La coordenada L* representa la luminosidad (0 = negro y 100 = blanco), mientras que a* y b* son las coordenadas cromáticas rectangulares (donde +a indica rojo, –a indica verde, +b indica amarillo y –b indica azul). Además, C* es el factor que se calcula como croma o cromaticidad, el cual refleja qué tan vivo, intenso o puro es un color. También se puede observar el índice de amarillamiento y la variación del color a lo largo del tiempo de almacenamiento.

Tabla 53Variación del color en función del tiempo

	Método del procesamiento digital										
Día/			T1					T4			
Coordenadas	0	7	14	21	28	0	7	14	21	28	
L*	88	89	90	90	91	88	89	90	90	91	
a*	4	4	3	2	2	4	3	3	2	2	
b*	12	11	10	8	6	15	12	10	8	7	
C*	12,64	11,70	10,44	8,25	6,32	15,52	12,37	10,44	8,25	7,28	

Según los valores obtenidos de la Tabla 53, se observó una pérdida de color en los tratamientos con el paso del tiempo. Esto se debe a que el croma C* disminuye gradualmente su pureza, acercándose a un valor neutro. Asimismo, la coordenada L* reveló un aumento gradual en los tratamientos, lo que indicó una pérdida de frescura del queso *petit suisse*, ya que estas lecturas se orientan hacia tonos más claros. Por otro lado, las coordenadas a* y b* muestran una disminución lenta y progresiva de los tonos ligeros rojo y amarillo a lo largo del tiempo. De esta manera, el queso evolucionó de un color crema hacia uno más claro, con una tendencia hacia el amarillo claro.

Tabla 54 *Índice de amarillamiento en función del tiempo*

Índice de					
amarillamiento (YI)	0	7	14	21	28
T1	0,136	0,124	0,111	0,089	0,066
T4	0,170	0,135	0,111	0,089	0,077

Según la determinación del índice de amarillamiento, se observó que los resultados se acercaron al blanco ideal a medida que trascurría el tiempo de almacenamiento. Sin embargo, estos valores indicaron una tendencia hacia tonalidades ligeras al amarillo.

Por otra parte, como se presenta en la Tabla 55, el índice general de variación de color aumentó en T4, esto, debido a que los altos valores de ΔL^* , Δa^* y Δb^* .

Tabla 55Diferencia de color para T1 y T4

Parámetros	T1	T4
ΔEr,s	7	8,775
ΔL^*	3	3
Δa^*	2	2
Δb^*	6	8

4.5 Conclusiones

El queso *petit suisse*, siendo un producto perecedero, requiere un control estricto en su almacenamiento y preparación para garantizar la seguridad alimentaria, de acuerdo a esto, mediante la distribución de riesgo de Weibull se determinó que la vida útil para el tratamiento T1 fue 23,4 días y 23,5 días para T4, teniendo en cuenta una falla del 50%.

Por otra parte, se llevó a cabo un control de calidad referente a parámetros fisicoquímicos y de sinéresis, determinando un incremento para ambos tratamientos en el transcurso de los 28 días de almacenamiento, en cuanto a la acidez, se registró un descenso en T1 y un aumento en T4 en el día 28. En la medición de sólidos solubles totales, ambos tratamientos mostraron un aumento hasta el día 21, seguido de una disminución en el contenido de azúcares al día 28. En el caso de la determinación de sinéresis, para ambos tratamientos la separación del suero fue notoria a partir del día 14, presentando un mayor porcentaje de sinéresis en T4.

De igual forma, en el análisis sensorial se evidenció que el producto tuvo un grado de aceptación hasta el día 21, con un 61,67% para T1 y 71,43% para T4, valores superiores al 50% de falla para la vida útil. Finalmente, en la evaluación colorimétrica se obtuvo una disminución gradual del índice de amarillamiento desde el día 0 hasta el día 28, siendo más notorio para el tratamiento T1, asimismo, se evidenció que el índice de variación de color aumentó para T4, debido a los altos valores de las diferencias de las coordenadas CIEL*a*b.

Referencias

- Alvarado, J. (2018). Capítulo 5: Cálculo de tiempos de vida útil en dulce de leche elaborado en Ecuador. ISBN 978-958-5522-45-9, 147-172.
- Álvarez, G.A. (2016). *Determinación del tiempo de vida en anaquel de pizzas en cadenas de frío por el método de weibull* [Trabajo de grado]. Repositorio Usil. https://hdl.handle.net/20.500.14005/2453
- Álvarez, J. (2023). Determinación del tiempo de vida útil de siete tipos de quesos artesanales, fabricados en la granja experimental de la facultad de medicina veterinaria y zootecnia de la universidad de San Carlos de Guatemala [Trabajo de grado]. Repositorio Usac. http://www.repositorio.usac.edu.gt/20366/1/Tesis%20Med.%20Vet.%20Oscar%20Jos%C3%A9%20Alvarez%20de%20la%20Cruz-Copiar.pdf
- Boun HR y Huxsoll CC. (1991). El control de Mínimamente Procesados Carrot (Daucus carota) La decoloración de la superficie por abrasión Peeling. *J Food Sci*, 416-422.
- Castro, J., Cerquera, N., y Gutierrez, N. (2013). Determinación del color del exocarpio como indicador de desarrollo fisiológico y madurez en la guayaba pera (*psidium guajava cv.* guayaba pera), utilizando técnicas de procesamiento digital de imágenes. *Revista EIA*, 10(9), 79-89.
- Carrillo, L. (2012). Vida útil de los alimentos. *Revista Iberoamericana de las Ciencias Biológicas* y *Agropecuarias*, 2(3).
- Carrillo, M. y Mondragón, F. (2011). Estudio de vida útil del queso asadero. Revista Salud Pública y Nutrición 12(3).
- Elías, P., Salas, W., Felipe de Mendiburu, D. y Cruz, G. (2010). Aplicación del modelo de weibull normalizado en la deshidratación osmótica de láminas de sardina. *Anales Científicos*, 72(1): 27-33.

- Esmerino, E., Cruz, A., Pereira, E., Rodrigues, J., Faria, J., & Bolini H. (2013). The influence of sweeteners in probiotic Petit Suisse cheese in concentrations equivalent to that of sucrose. *Journal of Dairy Science*, 96(9), 5512-5521.
- Esmerino, E., Paixão, J., Cruz, A., Garitta, L, Hough, G., & Bolini, H. (2015). Survival analysis: A consumer-friendly method to estimate the optimum sucrose level in probiotic petit suisse. *Journal of Dairy Science* 98(11), 7544-7551.
- Fau, C., Nabzo, S. y Nasabum, V. (2020). Bondad de ajuste y análisis de concordancia. Revista *Mexicana Oftalmología*, *94*(2), 100-102.
- Jaeger, A. (2023). Evaluación de la vida útil sensorial del yogur artesanal sustentado en el modelo estadístico de riesgo para el análisis de supervivencia de weibull [Trabajo de grado]. Repositorio UNC. https://repositorio.unc.edu.pe/handle/20.500.14074/6143
- Hough, G., Langohr, K., Gómez, G., & Curia, A. (2003). Survival analysis applied to sensory shelf life of foods. *Journal of Food Science*, 68, 359–362.
- Hurtado, A., Zepeda, A., Uribe, T., Rosales de la Cruz, M., Raygoza, V., García, L., & García T. (2023). Utilization of blueberry-based ingredients for formulating a synbiotic Petit Suisse cheese: Physicochemical, microbiological, sensory, and functional characterization during cold storage. *LWT Food Science and Technology, 183*.
- López, M. (2004). *Mejoramiento de vida en anaquel en queso tradicional ranchero y queso de pasta hilada (Oaxaca)* [Trabajo de grado]. Repositorio Universidad Iberoamericana. http://www.bib.uia.mx/tesis/pdf/014485/014485.pdf
- López, N. y Novoa, F. (2009). Efecto de dos niveles de grasa sobre la vida útil sensorial del queso campesino. *Revista de la Facultad de Medicina Veterinaria y de Zootecnia*, 56(1), 32–40.
- Mahecha, G. (1985). Evaluación sensorial en el control de calidad de alimentos procesados. Sello Editorial Universidad Nacional de Colombia, pág. 94-103.
- Morales, I., Domínguez, J., Hernández, L., Licón, C., Estévez, R., & Peralta, M. (2023). Sensory characterization of functional guava symbiotic petit cheese product. *Heliyon*, *9*(11), e21747.
- Mori, C. (2017). Efecto de la carragenina y sacarosa en la actividad de agua, pH, sinéresis y acidez del yogurt [Trabajo de grado]. Repositorio Lamolina. https://repositorio.lamolina.edu.pe/items/46893cec-8281-4ebb-967f-b13e949b2c0d
- Palma, R. (2022). Análisis crítico del coeficiente de determinación (R2), como indicador de la calidad de modelos lineales y no lineales. *Revistas Tecnológicas ESPOL*, 20(2).
- Parra, R. (2014). Características fisicoquímicas, sensoriales, proximales y microbiológicas de un yogur con chocolate en refrigeración. *Temas Agrarios*, 19(2), 146-158.

- Pasini, C., Inocencia, P., Sousa, J., Gomes, A., Cristina da Silva, M., & Granato, D. (2019). Phenolic-rich Petit Suisse cheese manufactured with organic Bordeaux grape juice, skin, and seed extract: Technological, sensory, and functional properties. *LWT Food Science and Technology*, 115.
- Ramírez, J. (2010). Espectrocolorimetría en caracterización de leche y quesos. *Tecnología Láctea Latinoamericana*, 61(1), 52-58.
- Ramírez, J. y Rodríguez, A. (2012). Caracterización del quesillo colombiano por espectrocolorimetría. *Vitae*, 19(2), 178-185.
- Ramírez, M. (2015). Tendencias de innovación en la ingeniería de alimentos. OmniaScience
- Silva, S., Oliveira, I., Freitas, A., Silveira, A., Leite N., & Vilela, J. (2021). Freeze-dried Petit Suisse cheese produced with ora-pro-nobis '(Pereskia aculeata Miller) biopolymer and carrageenan mix. LWT Food Science and Technology, 149.

Capítulo V. Análisis químico proximal y espectroscopia ATR-FTIR en un queso petit suisse saborizado

5.1 Resumen

El queso *petit suisse* es un tipo de queso fresco, suave y cremoso, caracterizado por su textura ligera, su sabor delicado y su alto contenido de humedad. Este capítulo presenta el análisis químico proximal y espectroscopia por infrarrojos ATR-FTIR, donde se evaluaron parámetros como lípidos, proteína, humedad y cenizas, de igual forma, se llevó a cabo la determinación de compuestos químicos presentes en los tratamientos. Se determinó que los tratamientos cuentan con un contenido de humedad del 63,358% y 64,068%, lípidos de 8,981% y 8,985%, de cenizas de 0,562% y 0,594%, y un porcentaje de proteína del 4,116% y 4,126%. Así mismo, se estableció que los compuestos químicos presentes en ambos tratamientos fueron carbohidratos (sacarosa y lactosa), agua, lípidos (detectados como carbonilos y ácidos grasos) y proteínas (identificadas como amida I y II), por lo que se reveló que los tratamientos, presentan una composición química característica de los quesos frescos y una posible interacción entre los componentes del queso y el dulce de curuba (*Passiflora tripartita*).

Palabras clave: Espectroscopia, análisis químico proximal, compuestos químicos, queso *petit suisse*, FTIR.

5.2 Abstract

Petit Suisse cheese is a type of fresh, soft and creamy cheese, characterized by its light texture, delicate flavor and high moisture content. This chapter presents the proximal chemical analysis and ATR-FTIR infrared spectroscopy, where parameters such as lipids, protein, moisture and ash were evaluated, as well as the determination of chemical compounds present in the treatments. It was determined that the treatments had a moisture content of 63.358% and 64.068%, lipids of 8.981% and 8.985%, ashes of 0.562% and 0.594%, and a protein percentage of 4.116% and 4.126%. It was also established that the chemical compounds present in both treatments were carbohydrates (mainly lactose), water, lipids (detected as carbonyls and fatty acids) and proteins (identified as amide I, II and caseins), which revealed that the treatments present a chemical composition characteristic of fresh cheeses and a possible interaction between the components of the cheese and the sweet curuba (Passiflora tripartita).

Key-words: Spectroscopy, proximal chemical analysis, chemical compounds, petit suisse cheese, FTIR.

5.3 Introducción

Los productos lácteos son alimentos de gran valor nutricional, ya que ofrecen una amplia gama de nutrientes de alta calidad beneficiosos para la salud. Un aspecto relevante es la cantidad de energía que aporta cada macronutriente: las proteínas y los carbohidratos proporcionan 4 Kcal/g, mientras que las grasas aportan 9 Kcal/g (Morales et al., 2023).

Algunos estudios han demostrado que el consumo de leche aumenta la densidad mineral de los huesos, presentando efectos benéficos contra la diabetes y enfermedades cardiovasculares

en mujeres mayores. Dentro de aquellos alimentos se destaca el queso fresco, conocido por su alto contenido de proteínas, grasas, calcio, fósforo y sodio (Pulido, et al. 2018). Sin embargo, su composición varía según el tipo de queso fresco, que puede ser extra-graso, graso, semigraso, semidescremado o descremado, dependiendo del porcentaje de grasa en el extracto seco. (ICONTEC, 2011).

Por otra parte, las empresas de alimentos y bebidas están cada vez más enfocadas en controlar los ingredientes de sus productos, desde las materias primas hasta la información precisa y confiable sobre las transformaciones químicas y fisicoquímicas que ocurren en cada etapa del proceso de producción (Mondragón, 2020). De esta manera, la implementación de técnicas como la FTIR-ATR presenta como una alternativa eficiente la detección rápida de los componentes principales de un producto, ofreciendo resultados confiables y efectivos (Alkhalf y Mirghani, 2017).

El desarrollo de técnicas avanzadas para la autenticación de productos alimenticios avanza junto con la creciente preocupación de los consumidores por la seguridad y la autenticidad de los alimentos (Silveira et al., 2023). De acuerdo a Reid et al. (2006) se ha demostrado en algunos estudios que la espectroscopia NIR y FTIR ha sido efectiva para detectar adulteraciones en diversos alimentos, como purés y jugos de frutas, miel, leche en polvo, jarabe de arce y harina de pescado. De tal forma, la espectroscopia por infrarrojos ATR-FTIR es una técnica analítica no destructiva que permite la evaluación de la composición molecular de los alimentos (Saji et al., 2024), en la industria láctea se ha empleado para analizar la composición química de los quesos (proteínas, grasas, carbohidratos) (Pax et al., 2019), así como para evaluar la estructura molecular de las proteínas y grasas, detectar la presencia de aditivos y contaminantes y monitorear los cambios durante el proceso de maduración (Nunes et al., 2019). Generalmente, las longitudes de onda utilizadas en el infrarrojo abarcan desde 0,8 hasta 100 micrómetros (μm), y se dividen en tres regiones: infrarrojo cercano (0,8 a 2,5 μm), infrarrojo medio (2,5 a 15 μm) e infrarrojo lejano (15 a 100 μm) (Díaz, 2019).

El objetivo de esta investigación es determinar los macronutrientes del queso *petit suisse* mediante análisis químico proximal y espectroscopia ATR-FTIR. Estas técnicas permitirán evaluar la composición nutricional y la estructura molecular del queso, proporcionando datos precisos sobre su calidad alimenticia.

5.3 Metodología

La determinación de lípidos y proteínas mediante análisis químico proximal se llevó a cabo en los laboratorios de la Universidad Nacional de Colombia, siguiendo las directrices de la AOAC official Methods. Por otro lado, se utilizó la espectroscopía ATR-FTIR para comparar los dos tratamientos estudiados y verificar algunas de las propiedades químicas obtenidas en el análisis bromatológico.

Análisis químico proximal

Lípidos. Para la determinación de lípidos se siguió la metodología propuesta en la AOAC official Methods 963.15.

Proteínas. Para la determinación de lípidos se siguió la metodología propuesta en la AOAC official Methods 2001.11.

Humedad. Para la determinación de humedad se siguió la metodología propuesta en la AOAC official Methods 931.04.

Cenizas. Para la determinación de cenizas se siguió la metodología propuesta en la AOAC official Methods 925.23.

Azúcares totales. Para la determinación de azúcares totales se siguió la metodología propuesta por JCAM No.108-R2.

Espectroscopia ATR-FTIR

Para la determinación espectroscópica ATR-FTIR se tuvo en cuenta el procedimiento del Manual de Operaciones del Cary 630 FTIR, Agilent Technologies. Para cada tratamiento, las lecturas se realizaron por triplicado.

5.4 Resultados y discusión

Análisis químico proximal

Los resultados obtenidos en este análisis composicional para la determinación de porcentajes de humedad, cenizas, proteína y lípidos fueron suministrados por el Laboratorio de Análisis Fisicoquímico del Instituto de Ciencia y Tecnología de Alimentos (ICTA) los cuales se encuentran expuestos en la Tabla 56.

Tabla 56Análisis químico proximal para los tratamientos T1 y T4

Prueba / Tratamiento	Lípidos (%)	Proteína (%)	Humedad (%)	Cenizas (%)
T1	8,981	4,116	63,358	0,562
T4	8,985	4,126	64,068	0,594

Nota. Resultados expresados en % como el promedio de 3 réplicas ± desviación estándar de 0,00141.

Como se puede observar, ambos tratamientos presentan un contenido de humedad superior al 60%, la cual está muy cercana al rango óptimo estipulado por (Chamorro, 2002), el cual indica que los quesos frescos como el *petit suisse* presentan un alto contenido en humedad, superior al 67%, debido probablemente a la naturaleza de las materias primas empleadas como la leche en polvo reconstituida o a algún otro ingrediente, o la influencia del tiempo de desuerado del producto, el cual fue de 24 horas, ya que al comparar con otras investigaciones como la de (Martínez, 2015), se obtuvieron valores muy bajos, ya que elaboraron y evaluaron tres prototipos de queso *petit suisse* con leche de cabra, a partir de diferentes concentraciones de grasa, y presentaron un rango de contenido de humedad entre el 73,47% y el 85,22%. De igual forma, el

contenido de proteína en ambos tratamientos está entre el 4,116% y el 4,126%, el cual es bajo a comparación de lo obtenido por (Quijano, 2013) con 5,16% y (Sánchez et al., 2014) con 5,5%, lo cual puede ser debido a la leche empleada para elaborar el queso, ya que puede tener un bajo contenido de proteínas, así mismo, el dulce de curuba puede influir diluyendo el contenido de proteínas del queso, aun así, sigue estando en el rango óptimo para ser un producto nutritivo para el consumo de niños y demás.

Referente al porcentaje de lípidos, ambos tratamientos tuvieron valores similares, estando entre 8,981% y 8,985%, lo cual, según lo reportado por (Muñoz, s.f.), se encuentra en un rango óptimo para queso *petit suisse* tradicional, siendo este del 8-12%, aun así, este puede variar dependiendo de la formulación empleada y el tipo de queso que se desee realizar, es importante resaltar que no fue el resultado esperado, ya que se realizó una formulación para obtener un porcentaje del 6,37%, dicha diferencia, pudo ser debida a que se asumió los valores presentados en las tablas nutricionales de las etiquetas de las materias primas empleadas, las cuales probablemente presentaban más contenido del reportado, o posiblemente por la adición del dulce de curuba, ocasionando un cambio en su composición del producto. Así mismo, los porcentajes de cenizas, no son tan significativos como para asegurar que los tratamientos son fuente importante de dicho compuesto.

Lípidos

Al realizar un análisis estadístico a los resultados para lípidos, se obtuvo la Tabla 57, donde se muestra que los tratamientos no presentan diferencias estadísticamente significativas, al tener el valor de P mayor a 0,05 con un nivel del 95% de confianza (0,106), lo cual se comprobó, al comparar el valor F y el valor crítico F para aceptación de hipótesis nula (H0), donde se tiene que F<Valor crítico de F (8<18,513), de la misma manera, al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 58, se comprueba que no existen diferencias significativas, debido a que las medias comparten una misma letra.

Tabla 57 *Análisis de varianza (ANOVA) para análisis lípidos*

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	1,6E-05	1	1,6E-05	8	0,106	18,513
Dentro de los grupos	4E-06	2	4E-06			
Total	0,0063	3				

Tabla 58 *Método de Tukey y LSD Fisher con una confianza de 95% para lípidos*

Factor	N	Media	Agrupación
T4	2	8,985	A

T1	2	8,981	A	

Proteína

Según el análisis para el contenido de proteína de las Tablas 59 y 60, se muestra que, si existen diferencias estadísticamente significativas entre tratamientos, ya que en el análisis por ANOVA el valor P es menor a 0,05 con un nivel del 95% de confianza (0,019), lo cual confirma la hipótesis alterna, y se comprueba al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), ya que los tratamientos presentan diferente agrupación.

Tabla 59 *Análisis de varianza (ANOVA) para proteína*

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	1E-0	1	1E-04	50	0,019	18,513
Dentro de los grupos	4E-06	2	2E-06			
Total	0,0063	3				

Tabla 60 *Método de Tukey y LSD Fisher con una confianza de 95% para proteína*

Factor	N	Media	Agruj	pación
T4	2	4,126	A	
T1	2	4,116		В

Humedad

En la Tabla 61, se puede observar el análisis por ANOVA con base en los datos de la Tabla 56, donde se comprueba que para ambos tratamientos existen diferencias estadísticamente significativas entre las medias para humedad, al tener el valor de P menor a 0,05 con un nivel del 95% de confianza (3,9E-06), lo cual se comprobó, al comparar el valor F y el valor crítico F para aceptación de hipótesis nula (H0) o hipótesis alterna (H1), donde se tiene que F>Valor crítico de F (252050>18,513) aceptando H1, de la misma manera, al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 62, se comprueba que existen diferencias significativas, debido a que las medias no comparten una misma agrupación.

Tabla 61Análisis de varianza (ANOVA) para humedad

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	0,5041	1	0,5041	252050	3,9E-06	18,513
Dentro de los grupos	4E-06	2	2E-06			
Total	0,0063	3				

Tabla 62 *Método de Tukey y LSD Fisher con una confianza de 95% para humedad*

Factor	N	Media	Agruj	pación
T4	2	64,068	A	_
T1	2	63,358		В

Cenizas

Para este parámetro, en la Tabla 63, al interpretar el valor de P y la comparación entre el valor F y el valor crítico F, se puede definir que entre los tratamientos si hay diferencias significativas, lo que se comprueba al revisar el modelo de la mínima diferencia significativa (LSD Fisher) y el método de comparación de medias (Tukey), como se muestra en la Tabla 64, debido a que las medias no comparten una misma letra.

Tabla 63 *Análisis de varianza (ANOVA) para cenizas*

Origen de las variaciones	SC	GL	MC	Valor F	Valor P	Valor crítico F
Entre grupos	0,001	1	0,001	512	0,002	18,513
Dentro de los grupos	4E-06	2	2E-06			
Total	0,0063	3				

Tabla 64 *Método de Tukey y LSD Fisher con una confianza de 95% para cenizas*

Factor	\mathbf{N}	Media	Agrupación
T4	3	0,594	A
T1	3	0,562	В

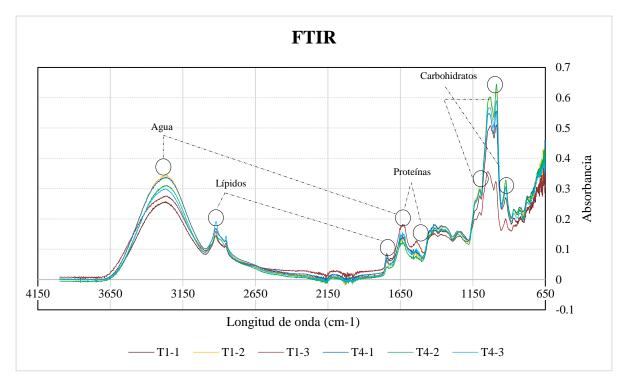

Espectroscopia ATR-FTIR

La espectroscopía permite identificar grupos funcionales y analizar la estructura atómica y molecular mediante la medición de la energía radiante absorbida o emitida por una sustancia a

longitudes de onda específicas del espectro electromagnético (infrarrojo), cuando es sometida a la excitación por una fuente externa de energía (Willard, et al., 1991, como se citó en Melgar, et al., 2009).

De acuerdo a lo mencionado por Karoui y De-Baerdemaeker (2007) los métodos analíticos de espectroscopía infrarroja por transformada de Fourier permiten la caracterización y clasificación de productos lácteos, como leche, quesos y otros derivados. Además, estos métodos son útiles para determinar el origen y la autenticidad de componentes como la grasa láctea.

Figura 24
Determinación de compuestos químicos mediante FTIR en T1 y T4



Como se expone en la Figura 24, los tratamientos analizados del queso *petit suisse* presentaron espectros infrarrojos en la región del infrarrojo medio, los cuales revelan la presencia de grupos funcionales característicos de los componentes que conforman dichos tratamientos. Los espectros de los tratamientos presentaron las principales bandas de absorción en las regiones 3371-3215 cm-1, 2971-2840 cm-1, 1748-1730 cm-1, 1656-1613 cm-1, 1540-1533 cm-1, 1100-1094 cm-1, 1045-986 cm-1 y 918-917 cm-1.

De acuerdo a Mondragón (2020) el espectro FTIR del agua se encuentra en dos picos notables, uno alrededor de los 1645 cm-1, el cual está asociado con una vibración de estiramiento del enlace (H-O-H) y el otro pico ubicado alrededor de los 3350 cm-1, el cual, presenta una banda ancha e intensa, asociado a la vibración de enlaces puente de hidrógeno (O-H). Con relación a los espectros de los carbohidratos, se encuentran en bandas de absorción ubicadas entre 1200-900 cm-1 con picos intensos, las cuales provienen de la vibración de los enlaces (C-C), (C-H) y (C-O). Por otra parte, los lípidos son un conjunto de moléculas compuestas principalmente por átomos de carbono e hidrógeno, aunque también pueden incluir átomos de nitrógeno, fósforo o azufre; alrededor de las bandas de absorción 2950-2800 cm-1 se presentan picos con vibración en los enlaces (C-H) o un pico intenso ubicado aproximadamente a 1740 cm-1, el cual está relacionado

con el enlace (C=O) del grupo carbonilo. Finalmente se encuentran los espectros de las proteínas, las cuales, se encuentran en la banda de absorción 1650 cm-1, relacionado con la vibración de varios enlaces: estiramiento del C=O (con una influencia del 80%), estiramiento del C-N (10%) y bandeo del N-H (10%), asimismo, se presenta otra banda de absorción en la región 1565 cm-1, asociado con la vibración de dos enlaces: bandeo del N-H (60%) y estiramiento del C-N (40%) (Mondragón, 2017).

Figura 25
Análisis de los compuestos químicos mediante FTIR en T1 y T4

Identificación de bandas de agua

Con relación a la Figura 25, en el espectro de FTIR del agua se evidenció un pico ancho e intenso con bandas de absorción presentes en la región 3371-3215 cm-1, el cual, asocia la vibración de los enlaces de puente de hidrógeno (O-H). De igual forma, se demostró que aproximadamente en la banda 1646 cm-1, hubo presencia de enlaces (H-OH) con vibración de estiramiento.

Identificación de bandas de proteína

Referente a las bandas de absorción de la región espectral de las proteínas, se encontraron amidas primarias de las vibraciones del estiramiento (C=O) del grupo amida, con una contribución menor de la vibración de estiramiento (C-N) y (C-H) presente en la banda de absorción 1656-1613 cm-1, de igual forma, se presentó la amida secundaria en la banda de absorción 1540-1533 cm-1 con vibraciones de flexión (N-H) y de estiramiento (C-N) (Melgar, 2009). De igual forma, en la investigación de López (2021) se presentaron bandas de absorción similares al producto lácteo evaluado.

Identificación de bandas de lípidos

Las grasas están formadas fundamentalmente por ácidos grasos, los cuales, se pueden presentar por ácidos grasos saturados e insaturados, de acuerdo con algunos estudios, se ha evaluado que el queso *petit suisse* presentan estos tipos de grasa (Bautista, 2014). De esta manera en la Figura 25, se demostró que en la banda de absorción 2971-2840 cm-1 hay presencia de ácidos grasos saturados e insaturados, asociados con vibraciones de estiramiento en el enlace (C-H); por otra parte, en la banda de absorción presente en la región 1748-1730 cm-1, se observó un ácido carboxilo del grupo carbonilo relacionado con vibraciones de estiramiento en el enlace (C=O).

Identificación de bandas de carbohidratos

Como menciona Gil, et al. (2021) el queso al ser un producto lácteo presenta azúcares como la lactosa, compuesta principalmente por glucosa y galactosa. Por otra parte, el dulce de curuba al contener azúcares como la sacarosa, presenta compuestos como la fructosa y glucosa (Sánchez et al., 2013). De acuerdo a lo mencionado, el queso *petit suisse* presenta carbohidratos relacionados a los azúcares, con relación a las bandas de absorción de la región 1100-1094 cm-1 y 918-917 cm-1, provenientes de la vibración de estiramiento del enlace (C-O), se deduce que estos compuestos podrían ser la fructosa, glucosa y galactosa. Así mismo, en la banda de absorción 1045-986 cm-1 se presenta un pico intenso, relacionado con la vibración de estiramiento del enlace (C-O), posiblemente del compuesto de la fructosa y glucosa, presente en la sacarosa. De esta manera, se determinó que los carbohidratos mayoritarios en el producto fue la glucosa debido a que presentaba mayores picos, por otra parte, los quesos al contener poca cantidad de lactosa mostraron picos menores.

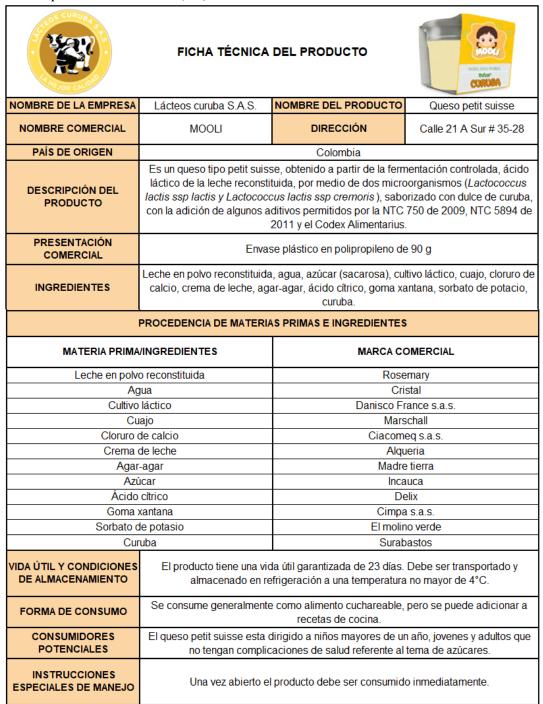
5.5 Conclusiones

El uso de la información obtenida a partir de los espectros de infrarrojo por transformada de Fourier (FTIR) en modo de reflectancia total atenuada (ATR) y la aplicación del análisis químico proximal, permitieron determinar la composición nutricional y la mayor parte de la estructura molecular del queso *petit suisse*. Se encontró que ambos tratamientos presentaban un contenido de humedad superior al 60%, acercándose al rango óptimo. El contenido de proteína fue de 4,116% para el tratamiento T1 y 4,126% para T4. En cuanto al porcentaje de lípidos, ambos tratamientos mostraron valores similares, entre 8,981% y 8,985%. En el caso del porcentaje de cenizas para T1 fue un valor de 0,562% y 0,594% para T4, demostrando una mínima diferencia. De acuerdo con el análisis estadístico se determinó que el contenido de lípidos, humedad y cenizas presentó diferencias significativas entre los tratamientos evaluados.

Por otra parte, el análisis mediante ATR-FTIR reveló que el queso *petit suisse* contenía macronutrientes tales como: Carbohidratos (presentes en la sacarosa y lactosa), agua, lípidos (detectados como carbonilos y ácidos grasos) y proteínas (identificadas como amidas I y II). Sin embargo, es probable que existan otros compuestos químicos en el producto que no se identificaron debido a la falta de información. De este modo, se concluyó que la formulación inicial planteada sufrió una variación en la parte de los lípidos, debido a dos posibles opciones, la primera, fue que las materias primas empleadas no correspondían con una correcta información nutricional en su etiqueta, y la segunda opción fue la obtención de grasa mediante el dulce de curuba.

Referencias

- Alkhalf, M., & Mirghani, M. (2017). Detection of formaldehyde in cheese using FTIR spectroscopy. *International food research journal 24*. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20183161395
- Bautista, M. (2014). Elaboración de un queso tipo *petit suisse* de leche de cabra, adicionado con *Lactobacillus casei* como probiótico. Repositorio UV. https://cdigital.uv.mx/server/api/core/bitstreams/b38ce40d-960c-45fe-88c8-1b45faa8a002/content
- Chamorro, C. (2002). El análisis sensorial de los quesos. Mundi-Prensa, Madrid España.
- Díaz, C. (2019). Validez del método de espectroscopía de infrarrojo por transformada de fourier (ftir) en la determinación de la cantidad de proteína verdadera de la leche de vaca majes [Trabajo de grado]. Repositorio Unsa. http://repositorio.unsa.edu.pe/handle/UNSA/9383
- Gil, A., Urrialde, R., Varela, G. y 142 científicos adheridos a esta publicación científica. (2021). Posicionamiento sobre la definición de azúcares añadidos y su declaración en el etiquetado de los productos alimenticios en España. *Nutr Hosp, 38*(3), 645-660.
- Instituto Colombiano de Normas Técnicas y Certificación. (2011). Productos lácteos: Queso fresco (NTC 5894). https://es.scribd.com/document/377134829/NORMA-TECNICA-COLOMBIANA-5894-pdf
- Karoui, R., & De-Baerdemaeker, J. (2007). A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. *Food Chemistry*, 102(3), 621-640.
- López, J. (2021). Evaluación espectroscópica de la leche de diferentes especies de mamíferos en la granja experimental villa marina [Trabajo de grado]. Repositorio Dspace. http://www.rdcb.cbg.ipn.mx/bitstream/20.500.12273/745/1/JOSE%20MARTIN%20R UVALCABA%20GOMEZ%20%20DCB.pdf
- Martínez, A. (2015). Influencia de los tratamientos de pasteurización y el contenido de grasa en la viscosidad del queso tipo petit suisse a base de leche de cabra [Trabajo de pregrado]. Repositorio Universidad Veracruzana https://cdigital.uv.mx/bitstream/handle/123456789/46763/MartinezHernandezAna.pdf?sequence=2&isAllowed=y
- Melgar, M. (2009). Desarrollo de un método quimiométrico acoplado FTIR-HATR para la determinación de las principales propiedades químicas del queso Panela [Trabajo de grado]. Repositorio CIATEJ. FTIR queso panela
- Mondragón, P. (2017). *Espectroscopia de infrarrojo para todos*. CIATEJ. https://ciatej.mx/files/divulgacion/divulgacion_5a43b7c09fdc1.pdf


- Mondragón, P. (2020). *La espectroscopia FTIR-ATR aplicada al análisis de alimentos y bebidas*. CIATEJ. http://ciatej.repositorioinstitucional.mx/jspui/handle/1023/744
- Morales, J., González, M., Cruz, F. y Esparza, V. (2023). Caracterización proximal, microbiológica y sensorial de diversos tipos de quesos tipo Chihuahua, elaborados en la Zona Norte de Zacatecas. *Investigación y Desarrollo en Ciencia y Desarrollo en Ciencia y Tecnología de Alimentos*, 8(1), 356-362.
- Muñoz, M. (s.f.). Queso *petit suisse*: Características. Repositorio Universidad de Cartagena. https://es.scribd.com/document/464865435/queso-petit-pdf
- Nunes, A., Guimarães, C., Andrade, J., Vicentini, N., Valenzuela, B., & Anjos, V. (2019). FTIR-ATR spectroscopy as a tool for the rapid detection of adulterations in butter cheeses. *LWT* 109(1), 63-38. https://www.sciencedirect.com/science/article/abs/pii/S0023643819303135
- Pax, A., Ong, L., Vongsvivut, J., Tobin, M., Kentish, S., & Gras, S. (2019). The characterisation of mozzarella cheese microstructure using high resolution synchrotron transmission and ATR-FTIR microspectroscopy. *Food chemistry* 291(1), 214-222. https://www.sciencedirect.com/science/article/abs/pii/S030881461930665X
- Pulido, R., Pinzón, D. y Tarazona, M. (2018). Caracterización nutricional, microbiológica y sensorial del queso fresco. *Nutrición clínica y dietética hospitalaria 38*(3), 74-79.
- Quijano, P. (2013). Elaboración de queso tipo petit suisse reducido en lactosa, grasa y calorías sabor manzana-pera [Trabajo de pregrado]. Repositorio Universidad Nacional Autonoma de Mexico https://repositorio.unam.mx/contenidos/180073
- Reid, L., O'Donell, C., & Downey, G. (2006). Recent technological advances for the determination of food authenticity. *Trends in Food Science & Technology*, 17(7), 344–353.
- Saji, R., Ramani, A., Gandhi, K., Seth, R., & Sharma, R. (2024). Application of FTIR spectroscopy in dairy products: A systematic review. *Food and Humanity* 2(1). https://www.sciencedirect.com/science/article/pii/S2949824424000144
- Sánchez, M., Blancas, J., Márquez, M., Jiménez, E. y Sánchez, E. (2014). Desarrollo de queso tipo petit suisse adicionado con xoconostle (*Opuntia joconostle*). *Ciencia, tecnología e innovación para el desarrollo de México* 7(142). https://pcti.mx/wp-content/uploads/2020/11/PCTI-142-Desarrollo-de-queso-petit-suisse-con-xoconostle.pdf
- Sánchez, N., Sepúlveda, J. y Rojano, B. (2013). Desarrollo de una bebida láctea con extractos de curuba (passiflora mollissima bailey) como antioxidante natural. Biotecnología en el Sector Agropecuario y Agroindustrial, 11(1), 164-173.
- Silveria, G., Pereira, P., Romão, W., & Filgueiras, P. (2023). Analysis of food adulteration by near-infrared spectroscopy with portable instrument: *A review. Ifes Ciencia*, *9*(3), 01-19.

Ficha Técnica y Etiqueta del queso petit suisse saborizado

Ficha técnica

Figura 26

Ficha técnica para el tratamiento (T1)

EMPAQUE PRIMARIO						
PESO NETO	90 g	TIPO DE ENVASE	Envase plástico en polipropileno con tapa antiseptica			
	J	DIMENSIONES	76 mm x 56 mm x 35 mm			
		PESO DE TARA	1,5 g			
	EMPAQUE S	ECUNDARIO				
		TIPO DE EMPAQUE	Cartón corrugado de una cara			
PESO NETO	91,5 g	DIMENSIONES	80 mm x 80 mm x 40 mm			
		PESO DE TARA DEL CARTÓN	2 g			
	EMB/	ALAJE				
PESO/TAMAÑO/CONTEO DE PAQUETES	1.122 g / 12 und	TIPO DE EMBALAJE	Cartón corrugado con ondas tipo B para las paredes externas y tipo E para las láminas internas de la caja			
		DIMENSIONES	20 cm x 30 cm x 10 cm			
		PESO DE TARA DEL CARTÓN	130 g			
	PARÁMETROS DE CALI	DAD (NTC 750 DE 2009)				
	Color	Unif	orme			
CARÁCTERISTICAS	Aroma y sabor	Dulce y carácte	ristico de la fruta			
ORGANOLEPTICAS	Acidez	Poco	acido			
	Cuerpo y textura	Cremos	o y suave			
CARÁCTERISTICAS	Sólidos solubles (°Brix)		± 1,079			
FISICOQUÍMICAS	pН	4,660 :	± 0,020			
	Escherichia coli		1			
	Hongos y levaduras		10			
CARÁCTERISTICAS	Listeria monocytogenes	Ause	encia			
MICROBIOLÓGICAS	Staphylococcus aureus coagulasa positiva	<	10			
	Salmonella spp	Ause	encia			

La elección del uso de empaques de plástico en polipropileno para el almacenamiento del producto, fue debido a que se trata de un material muy empleado en el envasado de productos alimenticios, gracias a varias propiedades que lo hacen ideal para este uso, como su resistencia y durabilidad, ya que es resistente a impactos y a la deformación, manteniendo la integridad del producto; así mismo, ofrece buenas propiedades de barrera contra la humedad y algunos gases, lo que ayuda a conservar la textura y el sabor del queso, protegiéndolo de la contaminación y degradación; de igual forma, el polipropileno es considerado seguro para el contacto con alimentos y es reciclable, lo que puede considerarse un aspecto atractivo para mejorar la imagen ambiental.

Etiqueta

Se propone una opción para envasado del queso *petit suisse*, en envase plástico de polipropileno de grado alimentario, e impresión full color de etiquetado. En cuanto a lo sugerido por la Resolución 210 de 2021, referente a la incorporación de sellos en la etiqueta del producto, aplica para exceso en azúcares y exceso en grasas saturadas. En las Figuras 26, 27 y 28, se incluye la propuesta para marca de producto, información nutricional y respectivo etiquetado.

Figura 27 *Logotipo de la empresa*

Figura 28
Etiqueta para el tratamiento (T1)

Información nutricional

De acuerdo con lo establecido en la Resolución 810 de 2021, la cual regula los requisitos de etiquetado nutricional y frontal para los alimentos envasados o empacados destinados al consumo humano, se diseñó la tabla de información nutricional para cada tratamiento. De esta

manera, se determinó el valor diario de los macronutrientes presentes en el producto. En la Figura 29 se expone los valores nutricionales de los tratamientos.

Figura 29 *Tabla nutricional para los tratamientos T1 y T4*

Tamaño por por	Información nutricional famaño por porción 1 Unidad (90 g)						Información nutricional naño por porción 1 Unidad (90 g)			
Cantidad por 1	porción				Cantidad por pe	orción				
Calorías 155 K	(cal	Calorias	de grasa 70		Calorías 146 Ko	al	Calorias	de grasa 7		
		% Valo	or diario"				% Valo	or diario"		
Grasa Total 8	ig	1	2%		Grasa Total 8g)	1	2%		
Carbohidratos	; 21g		7%		Carbohidratos	20 g		7%		
Fibra 0 g		-	0%		Fibra 0 g)%		
Azúcares 16 g					Azúcares 15 g					
Proteína 4g			B%		Proteína 4g			3%		
	de Valores Diarios est				1 ' '	Valores Diarios están				
2000 calorías. Sus	de Valores Diarios est valores diarios puede Is necesidades calório Calorías	n ser mayores o			2000 calorías. Sus v	Valores Diarios están alores diarios pueden: necesidades calóricas Calorías	ser mayores o			
2000 calorías. Sus	valores diarios puede s necesidades calório	n ser mayores o as.	menores		2000 calorías. Sus v	alores diarios pueden : necesidades calóricas	ser mayores o) menores		
2000 calorías. Sus dependiendo de su	valores diarios puede s necesidades calório Calorías	n ser mayores o as. 2000	2500		2000 calorías. Sus v dependiendo de sus	alores diarios pueden : necesidades calóricas Calorías	ser mayores o 2000	menores 2500		
2000 calorías. Sus dependiendo de su Grasa total	valores diarios puede is necesidades calório Calorí as Menos de	n ser mayores d as. 2000 65 g	2500 80 g		2000 calorías. Sus v dependiendo de sus Grasa total	alores diarios pueden: necesidades calóricas Calorías Menos de	ser mayores o : 2000 65 g	2500 80 g		
2000 calorías. Sus dependiendo de su Grasa total Grasa sat.	valores diarios puede is necesidades calório Calorías Menos de Menos de	n ser mayores o as. 2000 65 g 20 g	2500 80 g 25 g		2000 oalorías. Sus v dependiendo de sus Grasa total Grasa sat.	alores diarios pueden: necesidades calóricas Calorías Menos de Menos de	ser mayores o : 2000 65 g 20 g	2500 80 g 25 g 300 g		
2000 calorías. Sus dependiendo de su Grasa total Grasa sat. Colesterol	valores diarios puede is necesidades calório Calorías Menos de Menos de Menos de	n ser mayores o as. 2000 65 g 20 g 300 g	2500 80 g 25 g 300 g		2000 calorías. Sus v dependiendo de sus Grasa total Grasa sat. Colesterol	alores diarios pueden: necesidades calóricas Calorías Menos de Menos de Menos de	ser mayores o : 2000 65 g 20 g 300 g	2500 80 g 25 g		
2000 calorías. Sus dependiendo de su Grasa total Grasa sat. Colesterol Sodio	valores diarios puede is necesidades calório Calorías Menos de Menos de Menos de	n ser mayores o as. 2000 65 g 20 g 300 g 2400 mg	2500 80 g 25 g 300 g 2400 mg		2000 calorías. Sus v dependiendo de sus Grasa total Grasa sat. Colesterol Sodio	alores diarios pueden: necesidades calóricas Calorías Menos de Menos de Menos de	ser mayores o : 2000 65 g 20 g 300 g 2400 mg	2500 80 g 25 g 300 g 2400 m		
2000 calorías. Sus dependiendo de su Grasa total Grasa sat. Colesterol Sodio Carb. Total	valores diarios puede is necesidades calório Calorías Menos de Menos de Menos de Menos de	n ser mayores o eas. 2000 65 g 20 g 300 g 2400 mg 300 g	2500 80 g 25 g 300 g 2400 mg 375 g		2000 calorías. Sus v dependiendo de sus Grasa total Grasa sat. Colesterol Sodio Carb. Total	alores diarios pueden: necesidades calóricas Calorías Menos de Menos de Menos de Menos de	2000 65 g 20 g 300 g 2400 mg 300 g	2500 80 g 25 g 300 g 2400 m 375 g		

Nota. A) Tabla nutricional para T1; B) Tabla nutricional para T4.

Los valores nutricionales en ambos tratamientos mostraron una diferencia mínima en la cantidad de azúcares y carbohidratos. Sin embargo, es importante destacar que la adición de una mayor cantidad de azúcar y una menor cantidad de pulpa (T1), resultó en un aumento significativo en el contenido calórico.

Referencia

Instituto Distrital de la Participación y Acción Comunal. (2021). Resolución 210 de 2021. https://www.bogotajuridica.gov.co/sisjur/normas/Norma1.jsp?i=115722

Conclusiones Generales

La investigación permitió desarrollar y estandarizar la formulación de un queso tipo *petit suisse* saborizado con dulce de curuba (*Passiflora tripartita*), garantizando su estabilidad textural y composicional. La metodología empleada aseguró que el producto cumpliera con las características organolépticas, fisicoquímicas y microbiológicas establecidas en la normatividad vigente.

El estudio evidenció que la incorporación de curuba en diferentes proporciones influyó significativamente en la estabilidad y calidad del producto final. Se determinó que la formulación con menor contenido de pulpa y sólidos solubles presentaba mejores características fisicoquímicas y sensoriales, obteniendo una mayor aceptación por parte de los consumidores.

Se estableció que el queso *petit suisse* tiene una vida útil aproximada de veintitrés días bajo las condiciones de almacenamiento evaluadas. Durante este período, se observó una estabilización en sus propiedades fisicoquímicas, seguida de una degradación en los parámetros organolépticos, lo que afectó la percepción de frescura del producto.

El análisis bromatológico y la espectroscopia ATR-FTIR permitieron caracterizar la composición nutricional y estructural del queso, demostrando que su perfil es comparable con otros productos similares en el mercado. Además, se confirmó que la utilización de curuba no solo aporta valor nutricional, sino que también permite la diversificación de productos lácteos con ingredientes autóctonos de la región.

Finalmente, esta investigación resalta la viabilidad de emplear frutas no convencionales en la industria láctea, abriendo oportunidades para el desarrollo de productos innovadores y diferenciados en el mercado, lo que favorece la diversificación y valorización de la producción agroindustrial regional.

Recomendaciones

Se recomienda continuar la investigación sobre los tratamientos que se deben aplicar a la materia prima, incluyendo el proceso térmico que se le realiza a la leche, ya que influye significativamente en la obtención del producto final, así como el tiempo y la temperatura durante los procesos de inoculación y fermentación. También es importante evaluar las cantidades de aditivos y la incorporación de nuevos ingredientes al queso *petit suisse*, como es el caso de conservantes, con el fin de garantizar que el producto mantenga sus características organolépticas iniciales, como el color, el sabor y la textura, durante un periodo más prolongado.

De igual forma, para investigaciones posteriores, se sugiere tener en cuenta aspectos como la verificación del cumplimiento de la información presente en las tablas nutricionales de las materias primas, por lo cual, es importante realizar análisis proximal a la leche y a la crema de leche si se le adiciona, para asegurar el contenido graso del producto que se está formulando. Además, a partir de lo observado en el análisis sensorial, se recomienda realizar un producto bajo en grasa y en azúcares.

Así mismo, se propone realizar un estudio más detallado sobre las propiedades reológicas en el queso *petit suisse* para así comprender mejor su textura, lo que proporcionará información sobre la consistencia y la estructura del producto. Igualmente, se sugiere realizar un seguimiento riguroso sobre sus características reológicas y microbiológicas a lo largo del tiempo de almacenamiento, junto con parámetros como actividad de agua, para evaluar su influencia en la textura y consistencia del producto.

Debido a que se trata de un producto con alto contenido de proteínas, grasas y azúcares, se recomienda un consumo moderado, ya que podría llevar a una dieta calórica muy elevada. El consumo de queso tipo *petit suisse* es recomendable para niños mayores de un año, jóvenes y adultos gracias a su aporte nutricional.

Anexos

Anexo A. Resultados de las pruebas microbiológicas T1

	AGUALIMSU S.A.S Nit.	REPORTE DE RESULTADO		Resolución No. 2866 del 22 de diciembre 2022 AGUALIMSU S.A.S		Codigo: FORLB-34	
and the same	813.001.240-5 Análisis				16	Version	: 05
A A	Fisicoquímicos y Microbiológicos de				IDEAM	Fecha de emisión	: 01-07-2022
The state of the	Anuas					Total de emision	
		REPORTE DE RESULTA	DOS DE LABORATORIO	No. 2024-J5452			
PARCIAL				FINAL	х		
	DATOS DEL CLIENTE			LABORAT	ORIO DE ANÁ	LISIS	
OMBRE DE EMPRESA	CAROL ANDREA N	MUÑOZ CALLEGOS	NOMBRE LABORATOR	10		AGUALIMSU SAS	
ONTACTO	CAROL ANDREA N	MUÑOZ CALLEGOS	CONTACTO		MARI	A GICELA RAMIREZ M	ANRIQUE
IT/C.C	1.003.0	052.017	TELEFONO			3187164015 - (608) 871	6282
RECCION	CALLE 21 A	501# 35-30	DIRECCION			CALLE 13 # 6 -10	
ELEFONO	30535	77124	E-MAIL			agualimsultda@yahoo	.es
UDAD	NEIVA	- HUILA	CIUDAD			NEIVA - HUILA	
		IDENTIFIC	CACION DE LA MUESTRA	Α.			
ADICADO Nº	54	52	PRODUCTO/MATRIZ			ALIMENTO	
UESTRA TOMADA POR	CLIE	NTE	TIPO DE MUESTREO			PUNTUAL	
OMBRE DEL FUNCIONARIO	CAROL ANDREA N	/UÑOZ CALLEGOS	LOTE			5/09/2024	
ANIPULADO POR	N	.E	VENCIMIENTO DE LA N	MUESTRA		N.E	
EF. MÉTODO DE MUESTREO	N	.E	SITIO DE TOMA			QUESO FRESCO	
MPAQUE	BOLSA PLÁS	TICA ZIPLOC	DESCRIPCIÓN MATRIZ	O PUNTO DE TOMA	QUESO FRESCO T1		ı
EMPERATURA AMBIENTE	N	.E	HORA DE TOMA		3:50 a. m.		
LAN DE MUESTREO	N	A	FECHA DE TOMA		2024-09-05		
ROCEDIMIENTO N°	N	A	FECHA DE RECEPCIÓN	N	2024-09-09		
ANTIDAD DE MUESTRA	50	0 g	FECHA DE EMISION DE	E REPORTE	2024-09-24		
PARÁMETROS	MÉTODO DE ANALISIS	RESULTADO	UNIDADES	RESOLUCIÓN 1407 MINISTERIO DE S PROTECCIÓN S	ALUD Y	INTERPRETACIÓN	FECHA DE ANÁLISIS
		MI	CROBIOLÓGICOS				
scherichia cali	NTC 4458	<1	UFC/100 mg	<100		CUMPLE	2024-09-0
ongos y Levaduras	NTC 5698	<10	UFC/100 mg	<500		CUMPLE	2024-09-0
isteria monocytogenes	NTC 4666	AUSENCIA	A/P 25 g	AUSENCI	Α	CUMPLE	2024-09-0
taphylococcus aureus pagulasa positiva	NTC 4779	<10	UFC/g	<1000		CUMPLE	2024-09-0
almonella spp	NTC 4574	AUSENCIA	A/P 25 g	AUSENCI	Α	CUMPLE	2024-09-09
breviaturas: Ibservaciones:	N.A.= No aplica	N.E.= No establecido	MNC - Muy nume			te menor al limite de deteci	ción del método
os parámetros analizados se enc a información en el item "datos d a(s) fecha(s) de análisis relaciono tesolución No. 2866 del 22 de dic os estudios o análisis ambientales kdvertencia: AGUALIMSU S.A.S	el cliente" corresponden a da ada(s) en la tabla corresponde iembre de 2022, por el cual s s requeridos por las Autoridad	tos suministrados por el clie e a la(s) fecha(s) de realizad e otorga la acreditación a la les Ambientales competente	ente, por consiguiente el lab ción del análisis, revision y a sociedad AGUALIMSU S es, relacionada con la calida	oratorio no se hace resp validación del resultado. A.S., para producir informad del medio ambiente y	onsable de su mación cuantita de los recurso	tiva física, química y mio	crobiológica pa
	ormidad, el laboratorio AGUALIMSU i la cual el límite de aceptación es mi del límite o dentro del rango de acep dido está por encima del límite de ac	smo que el límite de tolerancia, de	jislación y la regla de decisión de modo que se reportara la declara	conformidad para el ensayo. S ación de conformidad como:	e informa al client	e que se aplica la regla de deci	isión de aceptació
MÁLISIS REVISADOS Y AUTOR	NIZADUS PUK:		Syanen	2			
		č	1				

Anexo B. Resultado de las pruebas microbiológicas T4

-	AGUALIMSU S.A.S Nit. 813.001.240-5 Análisis Fisicoquímicos y Microbiológicos de Acuas.	REPORTE DE I	RESULTADO	Resolución No. 2866 del 22 de diciembre 2022 AGUALIMSU S.A.S	IDEAM "Jeds Taylor and State of the Control of the	Codigo: FOI Version: Fecha de emisión	05
REPORTE DE RESULTADOS DE LABORATORIO No. 20240065-J5453							
PARCIAL	<u> </u>			FINAL	x		
	DATOS DEL CLIENTE				ORIO DE ANÁL	icic	
	CAROL ANDREA N	UIÑOZ CALLECOS	NOMBRE LABORATOR		ORIO DE AIVAL	AGUALIMSU SAS	
NOMBRE DE EMPRESA CONTACTO	CAROL ANDREA N		CONTACTO	10	MADI	A GICELA RAMIREZ M	MDIOLIE
NIT/C.C	1.003.0		TELEFONO			187164015 - (608) 8716	
DIRECCION	CALLE 21 A		DIRECCION		-	CALLE 13 # 6 -10	, Loc
TELEFONO	30535		E-MAIL			agualimsultda@vahoo.	es
CIUDAD	NEIVA		CIUDAD			NEIVA - HUILA	_
			ACION DE LA MUESTRA	١			
RADICADO Nº	J54	153	PRODUCTO/MATRIZ			ALIMENTO	
MUESTRA TOMADA POR	CLIE	NTE	TIPO DE MUESTREO			PUNTUAL	
NOMBRE DEL FUNCIONARIO	CAROL ANDREA N	IUÑOZ CALLEGOS	LOTE			5/09/2024	
MANIPULADO POR	N	.E	VENCIMIENTO DE LA M	MUESTRA		N.E	
REF. MÉTODO DE MUESTREO	N	E	SITIO DE TOMA			QUESO FRESCO	
EMPAQUE	BOLSA PLÁS	TICA ZIPLOC	DESCRIPCIÓN MATRIZ	O PUNTO DE TOMA		QUESO FRESCO T2	?
TEMPERATURA AMBIENTE	N	E	HORA DE TOMA			3:50 a. m.	
PLAN DE MUESTREO	N	A	FECHA DE TOMA			2024-09-05	
PROCEDIMIENTO N°	N	A	FECHA DE RECEPCIÓN	N		2024-09-09	
CANTIDAD DE MUESTRA	50	D g	FECHA DE EMISION DE	REPORTE		2024-09-24	
PARÁMETROS	MÉTODO DE ANALISIS	RESULTADO	UNIDADES	RESOLUCIÓN 1407 MINISTERIO DE S PROTECCIÓN S	ALUD Y	INTERPRETACIÓN	FECHA DE ANÁLISIS
		MIC	ROBIOLÓGICOS				
Escherichia coli	NTC 4458	<1	UFC/100 mg	<100		CUMPLE	2024-09-09
Hongos y Levaduras	NTC 5698	<10	UFC/100 mg	<500		CUMPLE	2024-09-09
Listeria monocytogenes	NTC 4666	AUSENCIA	A/P 25 g	AUSENCI	Α	CUMPLE	2024-09-09
Staphylococcus aureus coaquiasa positiva	NTC 4779	<10	UFC/g	<1000		CUMPLE	2024-09-09
Salmonella spp	NTC 4574	AUSENCIA	A/P 25 q	AUSENCI	Α	CUMPLE	2024-09-09
	N.A. = No antica	N.F. = No establecido	MNC = Muy nume	roso para contar	(c) Report	e menor al limite de detecc	ión del método
Observaciones: Los parámetros analizados se enci La información en el item "datos de La(s) fecha(s) de análisis relaciona Resolución No. 2866 del 22 de dei los estudios o análisis ambientales	Abreviaturas: N.A.= No aplica N.E.= No establecido MNC = Muy numeroso para contar (<) Reporte menor al limite de detección del método Observaciones: Los parámetros analizados se encuentran dentro del valor aceptable según la Resolución 1407 de 2022 del Ministerio de Salud y Protección Social. La información en el Item "datos del cliente" corresponden a datos suministrados por el cliente, por consiguiente el laboratorio no se hace responsable de su veracidad. La(s) fecha(s) de análisis relacionada(s) en la tabla corresponde a la(s) fecha(s) de realización del análisis, revision y validación del resultado. Resolución No. 2865 del 22 de diciembre de 2022, por el cual se otorga la acreditación a la sociedad AGUALIMSU S.A.S., para producir información cuantitativa física, química y microbiológica para los estudios o análisis ambientales requeridos por las Autoridades Ambientales competentes, relacionada con la calidad del medio ambienta y de los recursos naturales renovables.						
Advertencia: AGUALIMSU S.A.S		o la fuente de dónde ha sido	extraida la muestra, cuan	ido ha sido tomada por e	el cliente.		
INFORMACIÓN DECLARACIÓN DE CONFORMIDAD: Cuando se solicito una declaración de conformidad, el laboratorio AGUALIMSU S.A.S, específicara la norma e legislación y la regla de decisión de conformidad para el ensayo. Se informa al cliente que se aplica la regla de decisión de aceptación simple, según la guia ILA-G8098019, en la cuar el limite de aceptación es mismo que el limite de tolerancia, de modo que se reportara la declaración de conformidad como: CUMPLE: cuando el valor está por debajo del limite o destroo del rango de aceptación. NO CUMPLE: cuando el valor está por debajo del limite o destroo del rango de aceptación.							
ANÁLISIS REVISADOS Y AUTOR	RIZADOS POR:						
	Stavens						
		SILVIA	MARGARETH CARRER DIRECTOR TÉCNICO				
NOTA: Este documento y su contenido s	NOTA: Este documento y su contenido son propiedad intelectual de AGUALIMSU S.A.S. No divulgar, usar o reproducir sin autorización escrita de AGUALIMSU S.A.S. ESTE RESULTADO ES VALIDO ÚNICA Y EXCLUSIVAMENTE PARA LA(S) MUESTRA(S) ANALIZADA(S)						

Anexo C. Prueba hedónica (niños)

UNIVERSIDAD SURCOLOMBIANA PROGRAMA DE INGENIERIA AGROINDUSTRIAL

FORMULARIO DE EVALUACIÓN DE LOS FACTORES DE CALIDAD DE UN QUESO PETIT SUISSE SABORIZADO

Nombre del evaluador:		Edad:
Completa la figura dibujando productos:	la boquita que más represente	su opinión con respecto a los
Factor de calidad	Proc	iucto
Factor de Candad	T1	T4
Color	••	••
Aroma y sabor		
Acidez	•••	•••
Cuerpo y consistencia	•••	
Nota. Debes tomar agua cada ve	ez que pruebes el producto	
Puntajes de factores de calida		
	<u>u</u>	
Color:		
Amarillo crema Aroma y sabor:	ilido Con manchas Os	Muy feo
Dulce y No m	uy dulce Sin sabor y sin	
	az a fruta aroma a fruta	.margo Agrio
Acidez:		
	poco cido Acido Muy	y àcido Super àcido
Cremoso y suzve		Con Separación umos liquida

Anexo D. Prueba hedónica (adultos)

UNIVERSIDAD SURCOLOMBIANA PROGRAMA DE INGENIERIA AGROINDUSTRIAL

FORMULARIO DE EVALUACIÓN DE LOS PARÁMETROS DE CALIDAD DE UN QUESO PETIT SUISSE SABORIZADO

Nombre del evaluador:

Fecha:

Instrucciones. Por favor califique cada muestra según los parámetros de evaluación establecidos en el cuadro. El puntaje máximo corresponde a la máxima calidad.

Parámetro de	Puntaje			Mue	stras		
evaluación	máximo	276	427	737	689	178	259
Color	3						
Aroma y sabor	9						
Acidez	2						
Cuerpo y textura	6						
Total	20						

Puntaje de los parámetros de calidad

Color:

3	Amarillo crema, amarillento, o característico del sabor del queso petit suisse.
1-2	No característico, no uniforme, artificial.
0	De moho.

Aroma y sabor:

7-9	Característico, dulce, frutal.
4-6	Carencia de aroma, sabor insípido, no fresco.
0-3	Fermentado (agrio), amargo, astringente.

Acidez:

2	Ligeramente ácido.
1	Acido
0	Muy ácido.

Cuerpo y textura:

5-6	Homogéneo, suave, cremoso.
2-4	Muy líquido, muy espeso, con grumos, áspero, gelatinoso.
0-1	Separación de grasa o líquido (sinéresis).

Anexo E. Prueba de diferenciación (vida útil)

UNIVERSIDAD SURCOLOMBIANA PROGRAMA DE INGENIERIA AGROINDUSTRIAL

FORMULARIO DE EVALUACIÓN DE LOS PARÁMETROS DE CALIDAD DE UN QUESO PETIT SUISSE SABORIZADO

Nombre del evaluador: Fecha:

Instrucciones. Por favor califique cada muestra según los parámetros de evaluación establecidos en el cuadro. El puntaje máximo corresponde a la máxima calidad.

Parámetro de evaluación	Puntaje máximo	Muestras											
		305	472	567	215	728	871	792	656	435	145	347	523
Color	3												
Aroma y sabor	9												
Acidez	2												
Cuerpo y textura	6												
Total	20												

Puntaje de los parámetros de calidad

Color:

3	Amarillo crema, amarillento, o característico del sabor del queso petit suisse.						
1-2	No característico, no uniforme, artificial.						
0	De moho.						

Aroma y sabor:

7-9	Característico, dulce, frutal.
4-6	Carencia de aroma, sabor insípido, no fresco.
0-3	Fermentado (agrio), amargo, astringente.

Acidez:

2	Ligeramente ácido.
1	Acido
0	Muy ácido.

Cuerpo y textura:

5-6	Homogéneo, suave, cremoso.
2-4	Muy líquido, muy espeso, con grumos, áspero, gelatinoso.
0-1	Separación de grasa o líquido (sinéresis).

Anexo F. Resultados del análisis químico proximal de los tratamientos

INFORME DE ENSAYO No. FQ-023-105-2024

Fecha de recepción 12 de septiembre de 2024		embre de 2024	Fecha de emisión reporte:	26 de septiembre de 2024			
			INFORMACIÓN DEL USUARIO				
Universidad Surco	olombiana -						
Ingenieria Agro	industrial	_	Carol Andrea Muñoz Callejas	u20191179573@usco.edu.co			
Institución/Fa	acultad		Persona encargada	Correo electrónico			
Lizeth Vanessa Silva Castellanos		_	vanesilvacas@gmail.com				
Solicitado/entregado por		_	Correo electrónico	Teléfono			
			NFORMACIÓN DE LA MUESTRA				
Cantidad de muestras		2					
Descripción de la muestra		Queso petit suiss	e saborizado - Lote 05-09-2024 (15:50)				
Qı		Queso petit suisse saborizado - Lote 05-09-2024 (16:50)					
Código de Ingreso (interno) EXT-FQ-105-20		EXT-FQ-105-2024					
Ensayos solicitados Humedad, ceniza carbohidratos y			s, grasa total, proteínas, azúcares, fibra dietaría, co le calorías	álculo de contenido de			
Descargo de responsabilidad: El m		El muestreo y tra	streo y transporte de las muestras hasta el laboratorio es responsabilidad del usuario. El usuario				

no entrega contramuestra por tratarse de muestras de investigación. RESULTADOS DE ANÁLISIS

			Muestra / identificación dada por el usuario					
			105-2024					
Ensayo	Método de análisis	Fecha de realización del ensayo	Queso petit suisse saborizado T1 - Lote 05-09-2024 (15:50)	Queso petit suisse saborizado T4 - Lote 05-09-2024 (16:50)				
Humedad (g/100 g)	AOAC 931.04	16/09/2024	63,358	64,068				
Cenizas (g/100 g)	AOAC 925.23	16/09/2024	0,562	0,594				
Proteína (%N*6,25)	AOAC 2001.11	16/09/2024	4,116	4,126				
Grasa total (g/100 g)	AOAC 963.15	18/09/2024	8,981	8,985				
Azúcares totales (g/100 g)	JCAM No.108-R2 (Japan Customs Analysis Methods)	24/09/2024	17,137	16,602				
Carbohidratos (g/100 g)*	Cálculo matemático	26/09/2024	22,983	22,227				
Calorías (kcal/100 g)**	Cálculo matemático	26/09/2024	172,534	162,436				
* Corresponden a carbohidratos totales por diferencia = 100 - Humedad (g/100 g) - Cenizas (g/100 g) - Grasa total (g/100 g) - Proteina (g/100 g)								

^{**} La energia es estimada con el sistema de factores de conversión Atwater para proteína (4 kcal/g), grasa total (9 kcal/g) y carbohidratos (totales, por diferencia) (4 kcal/g); es decir, considerando que todos los carbohidratos (estimados por diferencia) aportarian 4 kcal/g. Dado que no se dispone de información sobre la identidad molecular de los carbohidratos que son fibra dietarian oe sposible usar otros factores de conversión. Para alimentos con alto contenido de fibra dietaria este valor de energia corresponde probablemente a una sobre - estimaco. Dtos sistemas proponen factores de 2 kcal/g para fibra dietaria (FAO, 1998), pero no han sido usualmente implementados. Para mayor información, se puede consultar: Macioan, W., et al. (2003). Food energy—Methods of analysis and conversión factors. In Food and Agriculture (Organization of the United Nations technical workshop report (Vol. 77, pp. 8-9). Beltsville, MD, USA: Agricultural Research Service, US Department of Agriculture.

AMANDA CONSUELO DIAZ MORENO

CAROLL EDITH CORTES CASTILLO

Coordinadora de Laboratorio

Laboratorio Análisis Fisicoquímico

(original firmado)

Consentationes.

Este reporte solo puede ser reporducido en forma total con la debida autorización por estra del laboratorio de Análisis Fisicoquímico de Afimentos.

Este reporte solo puede ser reporducido en forma total con la debida autorización por estrán del laboratorio de Análisis Fisicoquímico de Afimentos.

El laboratorio que lo emitre no se responsabilita de los perpicios que pueden derivarse del uso inadocuado de los resultados entregados.

FIN DEL INFORME