UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA DE PETRÓLEO GRUPO DE INVESTIGACIÓN EN PRUEBAS DE POZOS

PRUEBAS MULTIRATA PARA YACIMIENTOS NATURALMENTE FRACTURADOS

LADY VIVIANA *MARTINEZ* RAMOS ALEJANDRA MARIA MOTTA PASCUAS

Neiva, Huila Enero de 2014

UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA DE PETRÓLEO GRUPO DE INVESTIGACIÓN EN PRUEBAS DE POZOS

PRUEBAS MULTIRATA PARA YACIMIENTOS NATURALMENTE FRACTURADOS

LADY VIVIANA MARTINEZ RAMOS ALEJANDRA MARIA MOTTA PASCUAS

Trabajo parcial presentado como requisito para optar al título de Ingeniero de Petróleos

Director FREDDY HUMBERTO ESCOBAR MACUALO Doctor en Ingeniería de Petróleos

Neiva, Huila Enero de 2014

Nota de aceptación

Director del proyecto

Jurado

Jurado

Neiva, _____

AGRADECIMIENTOS

En primer lugar queremos agradecer a Dios, por todas las bendiciones recibidas y por las que sabemos que vienen en camino.

A nuestros padres y familiares por apoyarnos en los buenos y malos momentos, también por habernos guiado por el buen camino y por enseñarnos a ser las personas que ahora somos.

A Freddy Humberto Escobar Macualo, PhD, profesor titular de la Universidad Surcolombiana, director de nuestro proyecto de tesis, por su apoyo incondicional, tiempo, dedicación y toda su paciencia en el desarrollo de nuestro proyecto de grado.

A nuestros amigos por haber estado y por haber compartido tantos buenos momentos con nosotras.

CONTENIDO GENERAL

LISTA DE FIGURAS7	
LISTA DE TABLAS10	
Capítulo 11	5
ANTECEDENTES TEORICOS	5
1.1 PRUEBAS DE PRESIÓN MULTIRATA15	
1.2 YACIMIENTOS NATURALMENTE FRACTURADOS	
1.2.1EVALUACIONDEYACIMIENTOSNATURALMENTEFRACTURADOS	
1.2.1.1 TIPOS BÁSICOS DE EVALUACION	
1.2.1.1.1 Evaluaciones tempranas de exploración25	
1.2.1.1.3 Evaluación para planeación y modelamiento del recobro27	
Capítulo 228	3
PROCEDIMIENTO PARA LA GENERACION DE CURVAS DE PRESION2	3
2.1 PRIMERA GENERACIÓN DE CURVAS DE PRESIÓN	
2.2 SEGUNDA GENERACIÓN DE CURVAS DE PRESIÓN	
Capítulo 342	2
RESULTADOS Y ANÁLISIS42	2
3.1 RESULTADOS Y ANÁLISIS DE LA PRIMERA GENERACIÓN DE CURVAS DE PRESION42	
3.2 RESULTADOS Y ANÁLISIS DE LA SEGUNDA GENERACIÓN DE CURVAS DE PRESIÓN44	
3.2.1 CURVAS DE PRESION	
3.2.1.1 PETROLEO	
3.2.1.2 GAS	
3.2.1.3 CURVAS DE PRESION DESCARTADAS	
3.3 ANALISIS DE PRUEBAS DE PRESIÓN	
3.3.1 Para gas y petróleo47	

3.3.2 Para petróleo	47
3.3.3 Para gas	48
3.4 TABLAS DE RELACIÓN DE VARIABLES	48
3.4.1 TABLAS DE RELACIÓN DE VARIABLES PARA PETROLEO	49
3.4.2 TABLAS DE RELACIÓN DE VARIABLES PARA GAS	52
3.4 GRAFICAS DE RELACIÓN DE VARIABLES	57
3.5.2 GRAFICAS DE RELACIÓN DE VARIABLES PARA GAS	63
Capítulo 4	69
EJEMPLOS	69
4.1 EJEMPLO PARA PETRÓLEO	69
CONCLUSIONES	100
RECOMENDACIONES	101
NOMENCLATURA	102
BIBLIOGRAFIA	103
ANEXO 1	104

LISTA DE FIGURAS

Fig 1. Prueba multitasa (Motola, 2002)	16
Fig 2. Gráfica de una prueba múltiple. (Escobar, 2010)	17
Fig 3 . $m' y b'$ de una prueba multitasa. (Escobar, 2010)	19
Fig 4. Modelo de un yacimiento naturalmente fracturado (Chaudry, 2004)	20
Fig 5. Puntos y líneas características de un yacimiento fracturado naturalmente co	n flujo
interporoso en estado pseudoestable C=0.01, λ =1e-6 (Escobar, 2010) p. 379	22
Fig 6. Relación de variables en la primera generación de curvas de presión	29
Fig 7. División de variables de las gráficas.	30
Fig 8. Relación de variables en la segunda generación de curvas de presión	31
Fig 9. Proceso Investigativo del proyecto.	33
Fig 10. Proceso Investigativo del proyecto	34
Fig 11. Proceso Investigativo del proyecto	34
Fig 12. Proceso Investigativo del proyecto	35
Fig 13. Proceso Investigativo del proyecto	35
Fig 14. Proceso Investigativo del proyecto	36
Fig 15. Proceso Investigativo del proyecto	36
Fig 16. Proceso Investigativo del proyecto	37
Fig 17. Proceso Investigativo del proyecto	37
Fig 18. Proceso Investigativo del proyecto	38
Fig 19. Proceso Investigativo del proyecto	38
Fig 20. Proceso Investigativo del proyecto	39
Fig 21. Proceso Investigativo del proyecto	39
Fig 22. Proceso Investigativo del proyecto	40
Fig 23. Proceso Investigativo del proyecto	40
Fig 24. Proceso Investigativo del proyecto	41
Fig 25 . Resultados de λ en la primera generación de pruebas de presión	43
Fig 26 . Resultados de ω en la primera generación de pruebas de presión	43
Fig 27 . Resultados de λ en la segunda generación de pruebas de presión	44
Fig 28 . Resultados de ω en la segunda generación de pruebas de presión	44
Fig 29. Gráfico log-log de pseudopresión y derivada de presión para una prueba sir	nulada
para un yacimiento naturalmente fracturado con ω =0.1, λ =1e-5, k=200 md para un	caudal
que sube y luego baja entre 0 y 500 BPD.	45
Fig 30. Gráfico log-log de pseudopresión y derivada de pseudopresión para una	prueba
simulada para un yacimiento naturalmente fracturado con ω =0.1, λ =1e-5, k=10 m	id para
un caudal aumentando entre 5 MMPCS-15 MMPCS	46
Fig 31. Relación de variables para petróleo con caudal aumentando	58

Fig 34. Relación de variables para petróleo con caudal que aumenta y luego disminuye 61 Fig 35. Relación de variables para petróleo con caudal que disminuye y luego aumenta 62 Fig 38. Relación de variables para gas con caudal aumentando y luego disminuyendo. . 66 Fig 39. Relación de variables para gas con caudal disminuyendo y luego aumentando. . 67 Fig 41. Gráfico log-log de derivada de presión de una prueba de restauración simulada Fig 42. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un Fig 43. Gráfico de presión contra tiempo para una prueba multitasa simulada para un Fig 44. Gráfico log-log de derivada de presión de una prueba de restauración simulada a un yacimiento naturalmente fracturado con un caudal constante y una prueba multitasa simulada para un vacimiento naturalmente fracturado para un caudal aumentando. 73 Fig 45. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un Fig 46. Gráfico de presión contra tiempo para una prueba multitasa simulada para un Fig 47. Gráfico log-log de derivada de presión de una prueba de restauración simulada a un yacimiento naturalmente fracturado con un caudal constante y una prueba multitasa Fig 48. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal que aumenta y luego disminuye. 75 Fig 49. Gráfico de presión contra tiempo para una prueba multitasa simulada para un vacimiento naturalmente fracturado para un caudal que aumenta y luego disminuye. 75 Fig 50. Gráfico log-log de derivada de presión de una prueba de restauración simulada a un yacimiento naturalmente fracturado con un caudal constante y una prueba multitasa simulada para un vacimiento naturalmente fracturado para un caudal que aumenta y luego Fig 51. Gráfico log-log de derivada de pseudopresión para una prueba de restauración Fig 52. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un Fig 53. Gráfico de presión contra tiempo para una prueba multitasa simulada para un

Fig 54. Gráfico log-log de derivada de pseudopresión para una prueba de restauración simulada a un vacimiento naturalmente fracturado para un caudal constante y una prueba multitasa simulada para un vacimiento naturalmente fracturado para un caudal Fig 55. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un Fig 56. Gráfico de presión contra tiempo para una prueba multitasa simulada para un Fig 57. Gráfico log-log de derivada de pseudopresión para una prueba de restauración simulada a un vacimiento naturalmente fracturado para un caudal constante y una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal Fig 58. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando y luego disminuyendo. 86 Fig 59. Gráfico de presión contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando y luego disminuyendo. 87 Fig 60. Gráfico log-log de derivada de pseudopresión para una prueba de restauración simulada a un yacimiento naturalmente fracturado para un caudal constante y una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal Fig 61. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal disminuyendo y luego aumentando. 88 Fig 62. Gráfico de presión contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal disminuyendo y luego aumentando. 88 Fig 63. Gráfico log-log de derivada de pseudopresión para una prueba de restauración simulada para un yacimiento naturalmente fracturado para un caudal constante y una prueba multitasa simulada a un yacimiento naturalmente fracturado para un caudal Fig 64. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un Fig 65. Gráfico de presión contra tiempo para una prueba multitasa simulada para un Fig 66. Gráfico log-log de derivada de pseudopresión para una prueba de restauración simulada a un vacimiento naturalmente fracturado para un caudal constante y una prueba multitasa simulada para un vacimiento naturalmente fracturado para un caudal variado. 90

LISTA DE TABLAS

Tabla 1: Clasificación de yacimientos naturalmente fracturados. (Escobar, 2010)	.25
Tabla 2. Datos de entrada simulador Ecrin V4.02.04	.28
Tabla 3 Rangos de caudal usados en la segunda generación de curvas de presión	.29
Tabla 4 Datos de entrada simulador Ecrin V4.02.04 para petróleo	.31
Tabla 5. Datos de entrada simulador Ecrin V4.02.04 para gas	.32
Tabla 6. Relación de variables para petróleo con caudal disminuyendo	.49
Tabla 7. Relación de variables para petróleo con caudal aumentando	.49
Tabla 8. Relación de variables para petróleo con caudal variable	.50
Tabla 9. Relación de variables para petróleo con caudal que aumenta y luego dismini	uye.
	.50
Tabla 10. Relación de variables para petróleo con caudal que disminuye y luego aume	nta.
	.51
Tabla 11. Relación de variables para gas con caudal aumentando	.52
Tabla 12. Relación de variables para gas con caudal disminuyendo	.53
Tabla 13. Relación de variables para gas con caudal que aumenta y luego disminuye	.54
Tabla 14. Relación de variables para gas con caudal que disminuye luego aumenta	.55
Tabla 15. Relación de variables para gas con caudal variado.	.56
Tabla 16. Valores de permeabilidad para petróleo.	.57
Tabla 17. Valores de caudal para petróleo.	.58
Tabla 18. Valores de caudal para gas.	.63
Tabla 19. Valores de permeabilidad para gas	.63
Tabla 20. Datos de entrada al simulador Ecrin v4.02.04	.69
Tabla 21. Datos observados en las gráficas y tablas para determinar las propiedades	s en
petroleo	.76
Tabla 22. Datos de propiedades de los yacimientos naturalmente fracturados obten	idos
para petróleo	.78
Tabla 23: Datos de entrada al simulador Ecrin v4.02.04	.82
Tabla 24: Datos observados en las gráficas y tablas para determinar las propiedades	s de
los yacimientos naturalmente fracturados para gas	.91
Tabla 25: Valores de las propiedades de yacimientos naturalmente fracturados halla	idos
para gas	.94

RESUMEN

Palabras claves: Pruebas multitasa, yacimientos de doble porosidad, superposición.

El propósito de una prueba de presión es adquirir información tanto cualitativa como cuantitativa del pozo y del yacimiento que está siendo estudiado; al momento de realizar una prueba a una sola tasa hay que cerrar el pozo parando la producción, lo que no es económicamente rentable debido a la pérdida de ingresos, así que una prueba multitasa bien diseñada, realizada y analizada arroja los mismos resultados que una prueba de declinación o restauración.

Una cantidad importante de pruebas de presión multirata para yacimientos naturalmente fracturados se realizaron, con el fin de obtener experimentalmente ciertos rangos para parámetros, como el coeficiente de almacenamiento adimensional (ω), parámetro de flujo interporoso (λ), permeabilidad (k) y caudal (q); para la realización adecuada de la prueba, es decir que se pueda observar la depleción dentro de la fractura y posterior respuesta del yacimiento, y de esta manera sea interpretable.

Las simulaciones de estas pruebas se hicieron con el programa Ecrin V4.02.04 (Kappa Saphir) de la compañía Kappa Engineering, el cual permite realizar este tipo de curvas de presión variando aleatoriamente todos los parámetros anteriormente mencionados, que se relacionan entre sí.

Al final de este trabajo, se obtienen los rangos de cada una de las variables, mostrados en gráficas y tablas, para la generación de curvas típicas en pruebas multitasa para yacimientos naturalmente fracturados, además de ejemplos donde se muestra que una prueba multitasa arroja los mismos resultados que una prueba a una sola tasa; teniendo la seguridad que al usar estos valores se hará un correcto diseño de la prueba logrando un mayor radio de investigación y disminuyendo la pérdida de ingresos.

ABSTRACT

Keywords: Multirate well testing, dual porosity reservoir, superposition.

The purpose of a well test is to acquire qualitative and quantitative information of the well and reservoir being studied. When a single rate test is performed is necessary to shut-in the well, stopping production, which is not economically viable due to loss of income, so a well-designed multirate well test, conducted and analyzed gives the same results as a buildup or drawdown test.

A significant number of multirate well pressure tests for naturally fractured reservoirs are conducted, in order to obtain experimentally certain ranges for parameters as dimensionless storage coefficient (ω) interporosity flow parameter (λ), permeability (k) and flow rate (q); for the appropriate execution of the test, where the fracture depletion and subsequent response of the reservoir can be observe, and thus can be interpretable.

The simulation of this tests are conducted with the computer program Ecrin V4.02.04 (Kappa Saphir) of the Kappa Engineering Company, which allows this type of pressure curves randomly varying all parameters mentioned above, which are interrelated.

At the end of this work, ranges for each of the above variables shown in graphs and tables are obtained to generate typical curves in multirate tests for naturally fractured reservoirs, and examples which show that multirate test give the same results as a single rate test, having the security that using these values will be done a correct test design and achieving a greater radius of investigation and decreasing loss of income.

INTRODUCCIÓN

Una prueba de presión se realiza con el fin de obtener información tanto cualitativa como cuantitativa de un yacimiento, durante ésta se realiza monitoreo a las respuestas al cambio de las condiciones de producción del reservorio; los principales objetivos para llevarlas a cabo son la descripción, evaluación y gerencia futura del yacimiento. Las pruebas multirata, se realizan con el mismo fin a caudal variable, midiendo la presión por periodos estabilizados de flujo. Resulta que ellas son más económicas y tienen los mismos resultados que una prueba a una sola tasa.

En ésta investigación se realizaron simulaciones de este tipo de pruebas a yacimientos naturalmente fracturados para determinar intervalos en los que éstas arrojen resultados adecuados y resulten económicamente rentables, éste tipo de yacimientos tienen particularidades que los diferencian de los convencionales, que son heterogéneos y tienen bloques de matriz separados por sistemas de fractura. Los parámetros establecidos para caracterizarlos son el coeficiente de almacenamiento adimensional, ω , y el parámetro de flujo interporoso, λ . El primero ω proporciona un estimado de la magnitud y la distribución de la matriz y el almacenamiento de la fractura, y λ es una medida de la rata de transferencia de masa de la matriz a la red de fracturas.

Este trabajo se planteó de la siguiente manera: en el primer capítulo se proporciona información teórica necesaria para comprender el objetivo de éste trabajo, en el segundo se explica el manejo del programa usado para simular las pruebas de presión, en el tercero los resultados y su análisis y en el cuarto un ejemplo donde se confirma que la prueba multitasa arroja los mismos resultados que una de declinación o restauración.

Capítulo 1

ANTECEDENTES TEORICOS

1.1 PRUEBAS DE PRESIÓN MULTIRATA

El propósito de una prueba de presión es adquirir información tanto cualitativa como cuantitativa del pozo y del yacimiento que está siendo estudiado. Es una técnica de medición indirecta, a diferencia de los métodos directos como el muestreo de núcleos por ejemplo. Mediante las pruebas de pozos se puede obtener información dinámica del yacimiento, mientras que con los métodos directos solo se obtiene información estática, la cual es insuficiente para predecir el comportamiento del yacimiento.

Durante una prueba de presión se monitorea la respuesta al cambio de las condiciones de producción de un yacimiento. Debido a que la respuesta es en mayor o menor grado característica de las propiedades del yacimiento, se hace posible en muchos casos inferir de esta respuesta las propiedades del yacimiento en la vecindad del pozo. La interpretación de las pruebas de un pozo es un problema "inverso" en el que los parámetros del modelo se infieren mediante el análisis de la respuesta del modelo a una entrada de datos determinada.

Usualmente los objetivos de una prueba de pozo están englobados en tres grandes categorías:

- Descripción del yacimiento
- Evaluación del yacimiento
- Gerencia futura del yacimiento (Reyes, 2002)

Las pruebas de presión multirata (**Ver figura 1**) son pruebas realizadas a tasa de flujo variable, midiendo la presión por periodos estabilizados de flujo, estas pruebas son útiles en la determinación del índice de productividad del pozo y para hacer un análisis nodal del mismo; para el análisis de estas pruebas se usa el principio de superposición. (Silva & Miguel, 1997)

Fig 1. Prueba multitasa (Motola, 2002)

A partir del análisis de las pruebas de presión, el modelo del yacimiento puede ser reconocido y se pueden obtener las propiedades del yacimiento; para la determinación de tales características se realizan pruebas de restauración y declinación. Sin embargo, para ejecutar las pruebas de presión con éxito hay ciertos requisitos que deben ser cumplidos. Por ejemplo, la prueba de restauración de presión requiere que: (1) El pozo se cerrará durante un periodo suficiente de tiempo (dt). (2) El tiempo de producción antes del cierre (tasa constante), debe ser cuatro veces más largo que el tiempo de cierre total con el fin de obtener una respuesta efectiva del yacimiento. Así que tenemos que cerrar el pozo en la prueba de restauración de presión lo que no es rentable tanto para los pozos de alta producción debido a la pérdida de ingresos. La pruebas de declinación requieren que: (1) El pozo se cierre el tiempo suficiente, antes de ejecutar la prueba para alcanzar la presión estática del yacimiento (2) Que el caudal se mantenga constante durante toda la prueba, lo que es bastante difícil de lograr en la práctica.

Por consiguiente, una prueba multirata bien diseñada, realizada y analizada arroja los mismos resultados que una prueba a una sola tasa, reduce la pérdida de ingresos y elimina los efectos de las fluctuaciones del caudal en la respuesta del transiente de presión resultante. Así que con el fin de superar los inconvenientes de la pruebas convencionales de tasas individuales, una prueba de flujo multirata de debe correr en su lugar. (A. Mongi & Tiab, 2000)

Por otro lado las pruebas multitasa tienen la ventaja de proveer datos de pruebas transitorias aun cuando la producción continúa. Contribuye a minimizar los cambios en los coeficientes de almacenamiento del pozo y los efectos de segregación de fases, de este modo, muestran gran ventaja cuando, sé está cambiando del periodo de almacenamiento al periodo medio, además reducen la caída de presión. Una desventaja es que es una

prueba difícil de controlar, debido a las fluctuaciones de tasas; difíciles de medir, especialmente sobre una base continua aunque puede proporcionar buenos resultados donde pruebas de declinación y restauración no podrían. (Rivera, 2004)

Aplicando el principio de superposición basados en la figura 2.

Fig 2. Gráfica de una prueba múltiple. (Escobar, 2010)

(1.1)

Rearreglando:

$$Pwf(t) = P_{i} - \frac{141.2\mu B}{kh} q_{1} \left\{ P_{D}(t_{D}) - P_{D}(t-t_{1})_{D} \right\} + q_{2} \left\{ P_{D}(t-t_{1})_{D} - P_{D}(t-t_{2})_{D} \right\} + \dots + q_{N-1} \left\{ P_{D}(t-t_{N-2})_{D} - P_{D}(t-t_{N-1})_{D} \right\} + q_{N} \left\{ P_{D}(t-t_{N-1})_{D} \right\} + s$$
(1.2)

Utilizando la aproximación logarítmica:

$$Pwf(t) = P_{i} - \frac{70.6\mu B}{kh} \begin{cases} q_{1} \ln\left(\frac{t}{t-t_{1}}\right) + q_{2} \ln\left(\frac{t-t_{1}}{t-t_{2}}\right) + q_{3} \ln\left(\frac{t-t_{2}}{t-t_{3}}\right) + q_{N-1} \ln\left(\frac{t-t_{N-2}}{t-t_{N-1}}\right) \\ + q_{N} \left[\ln(t-t_{N-1})\right] + \ln\frac{k}{\phi\mu c_{t}r_{w}^{2}} - 7.4316 + 2s \end{cases}$$
(1.3)

Dividiendo por el ln 10 y rearreglando

$$Pwf(t) = P_i - \frac{162.6\mu}{kh} \begin{cases} \sum_{j=1}^{N-1} q_j \log\left(\frac{t-t_{j-1}}{t-t_j}\right) + q_N [\log(t-t_{N-1})] + \log\frac{k}{\phi\mu c_t r_w^2} - 3.2275 \\ + 0.8686s \end{cases}$$
(1.4)

Por conveniencia:

$$\frac{P_i - P_{wf}(t)}{q_N} = \frac{162.6\mu B}{kh} \left\{ \sum_{j=1}^N \left(\frac{q_j - q_{j-1}}{q_N} \right) \log(t - t_{j-1}) + \log \frac{k}{\phi \mu c_t r_w^2} - 3.2275 + 0.8686s \right\}$$
(1.5)

Defina

$$m = \frac{162.6\mu B}{kh} \tag{1.6}$$

$$s' = \log \frac{k}{\phi \mu c_t r_w^2} - 3.23 + 0.87s \tag{1.7}$$

$$b' = m's' \tag{1.8}$$

Generalizando:

$$\frac{(P_i - P_w f(t))}{q_n} = m'^{X_n} + b'$$
(1.9)

Donde el tiempo se superposición, X_n , es:

$$X_{n} = \sum_{i=1}^{n} \frac{q_{i} - q_{i-1}}{q_{n}} \log(t - t_{i-1})$$
(1.10)

La ecuación de una línea recta (papel cartesiano) con pendiente m' e intercepto b', ver **figura 3**. Una vez m' y b' son conocidos, la permeabilidad y el factor de daño se pueden estimar usando las ecuaciones 1.11 y 1.12:

Fig 3. *m* ' y *b*' de una prueba multitasa. (Escobar, 2010)

La presión inicial, P_i , y toda la historia de la tasa de flujo podría conocerse usando este método. Generalmente se conocen. (Escobar, 2010)

1.2 YACIMIENTOS NATURALMENTE FRACTURADOS

Los yacimientos naturalmente fracturados son diferentes de los convencionales (no fracturados). Estos son heterogéneos y constan de matriz de bloques separados uno del otro por el sistema de fractura, como se muestra en la figura 2. (Chaudry, 2004)

Fig 4. Modelo de un yacimiento naturalmente fracturado (Chaudry, 2004)

Una fractura natural es una discontinuidad plana microscópica que resulta de los esfuerzos que exceden el esfuerzo de ruptura de una roca. Estas fracturas naturales pueden tener un efecto positivo o negativo sobre el flujo de fluidos. Las fracturas abiertas que no han sido cementadas o parcialmente mineralizadas pueden tener un efecto positivo en el flujo de petróleo, pero un efecto negativo en el flujo de agua o gas debido a los efectos de conificación.

Todos los yacimientos contienen una cierta cantidad de fracturas naturales. Sin embargo, desde un punto de vista geológico y de ingeniería de yacimientos, sólo se toman como yacimientos "naturalmente fracturados" aquellos donde las fracturas tienen un gran efecto, bien sea positivo o negativo, sobre la productividad. Los yacimientos naturalmente fracturados difieren de los yacimientos homogéneos desde el punto de vista geológico, petrofísico, económico y de producción. Se puede pensar en un yacimiento fracturado como un sistema inicialmente homogéneo cuyas propiedades físicas han sido deformadas o alteradas durante su depositación o durante el proceso de diagénesis física.

Se entiende por porosidad a la fracción del volumen total de roca que puede contener fluidos. Las rocas de los yacimientos naturalmente fracturados están constituidas por dos sistemas de porosidad, los cuales se pueden definir de la siguiente manera: la porosidad primaria es intergranular y está controlada por la depositación y litificación. Está altamente interconectada y usualmente se puede correlacionar con la permeabilidad, ya que depende en gran medida de la geometría, distribución del tamaño y la distribución espacial de los granos. Los espacios vacíos en las arenas, areniscas y lutitas presentan típicamente este tipo de porosidad. La porosidad secundaria está controlada por el fracturamiento, además de la combinación y/o solución de agua intersticial, aunque esto puede ser modificado por la infiltración como resultado de la precipitación. (Reyes, 2002)

Los bloques de la matriz están hechos de la roca original que estaba presente antes de que la fractura ocurriera. La matriz se caracteriza por su permeabilidad k_m y porosidad ϕ_m . El sistema de fractura se caracteriza por su permeabilidad k_f y porosidad ϕ_f . Lo que significa que un yacimiento naturalmente fracturado es un yacimiento de doble porosidad y doble permeabilidad. (Chaudry, 2004, pág. 254)

Algunos yacimientos funcionan como si estos fueran naturalmente fracturados, pero estos realmente no lo son. Este es el caso de canales disueltos, capas interestratificadas con permeabilidad diferente. Sin embargo, los modelos fracturados naturalmente pueden ser aplicados a estos tipos de yacimientos.

En esta clase de yacimientos naturalmente fracturados, los dos tipos de porosidad son encontrados como una muy baja presentada en los poros finos y otra alta porosidad representada por fisuras, cavidades y fracturas.

Como los yacimientos naturalmente fracturados son heterogéneos, la idea de un canal homogéneo ocurre fuera de la realidad. No obstante, la roca es fracturada homogéneamente, la percolación del agua causa depositación mineral, la cual reduce la permeabilidad o tapona completamente los canales del fluido. Por lo tanto, las fracturas de carácter homogéneo cambian con el tiempo y se obtiene una roca heterogénea.

La porosidad de la fractura es rara vez mayor al 1.5 o 2%. Usualmente esta es menor que 1%. La capacidad de almacenamiento de la fractura es muy pequeña, $S_f = \phi_f c_f h_f$ debido a que ϕ_f es pequeña y h_f es extremadamente baja. En contraste k_f es muy alta. La capacidad de almacenamiento de la matriz, $S_m = \phi_m c_m h_m$ es mayor que la de la fractura. Si estas tienen el mismo valor el sistema se comportara como homogéneo y sin fractura. Si la permeabilidad de la matriz es cero y las fracturas son fortuitamente distribuidas, el sistema tendrá un comportamiento homogéneo. Sin embargo, si la permeabilidad de la matriz es cero, pero las fracturas tienen una dirección preferencial, entonces se tiene flujo lineal. Además, si la permeabilidad dela matriz es pequeña (usualmente menor que 0.01 md) y el yacimiento es ampliamente fracturado, el sistema se comporta como homogéneo y sin fracturas. Desde el punto de vista de prueba de pozo, se deben cumplir tres condiciones para determinar si en realidad se trata de un yacimiento fracturado naturalmente:

1. La porosidad de la matriz es mayor que la porosidad de la fractura.

- 2. La permeabilidad de la matriz no es cero, pero su permeabilidad es mucho más pequeña que la permeabilidad de la fractura.
- 3. El pozo intercepta la fractura. (Escobar, 2010)

Tanto el análisis de núcleos y los registros son técnicas valiosas en la detección de porosidad ϕ_{f} , permeabilidad k_f , de la fractura y la naturaleza de la matriz o porosidad intergranular. Sin embargo, hay muchos pozos perforados donde no fue tomado un núcleo y los registros no muestran ninguna evidencia de fracturas. Por lo tanto, el análisis de la prueba de presión es la única técnica que se utiliza para obtener información sobre la naturaleza de la fractura de la formación, y puede proporcionar información sobre los parámetros del yacimiento tales como ϕ_{f} , k_f , ϕ_m , k_m , tamaño y forma de la matriz, y la naturaleza y la orientación del patrón de fractura, además de los determinar la presión promedia, la presión inicial y el factor de daño o skin s. (Chaudry, 2004, pág. 255)

Fig 5. Puntos y líneas características de un yacimiento fracturado naturalmente con flujo interporoso en estado pseudoestable *C*=0.01, λ =1e-6 (Escobar, 2010) p. 379

En orden cronológico existen una línea recta en tiempos cercanos representando únicamente el depletamiento de la fractura, y una línea recta en tiempos finales, la cual corresponde al tiempo cuando todo el yacimiento produce como un yacimiento homogéneo equivalente.

La parte más baja de la parte recta es dependiente del coeficiente de almacenamiento adimensional, ω , pero independiente del flujo interporoso. Para un coeficiente de almacenamiento adimensional dado la mínima coordenada e presión adimensional es

independiente del parámetro de flujo interporoso, mientras que la mínima coordenada de tiempo adimensional está en función de λ .

Dos parámetros claves fueron derivados por Warren y Root para caracterizar yacimientos fracturados naturalmente: el coeficiente de almacenamiento adimensional, ω , y el parámetro de flujo interporoso, λ . ω proporciona un estimado de la magnitud y la distribución de la matriz y el almacenamiento de la fractura, y λ es una medida de la rata de transferencia de masa de la matriz a la red de fracturas y por lo tanto describe la capacidad de flujo de la matriz disponible en las fracturas.

• Para yacimientos de petróleo:

El coeficiente de almacenamiento adimensional puede ser calculado mediante:

$$\omega = \frac{\phi_2 c_2}{\phi_1 c_1 + \phi_2 c_2} \tag{1.12}$$

Y el parámetro de flujo interporoso puede ser calculado con:

$$\lambda = \alpha r_w^2 \frac{k_1}{k_2} \tag{1.13}$$

Note, que los subíndices numerados se refieren a la propiedad dada cuando fueron distribuidas, por ejemplo, en relación al volumen bruto o al volumen elemental representativo. Por lo tanto, ϕ_1 y ϕ_2 son las porosidades de matriz bruta y de fractura, respectivamente, o en otras palabras la relación de los volúmenes porosos de la matriz y la fractura en el volumen total bruto (Escobar, 2010). Además k_1 y k_2 corresponden a las permeabilidades, c_1 y c_2 son las compresibilidades.

• En yacimientos de gas:

El coeficiente de almacenamiento adimensional puede ser calculado usando:

El punto mínimo y el flujo radial infinito actual:

$$\omega = 0.15866 \left\{ \frac{\left[1 - 2D(t_{eq} * q')\right](t_{eq} * \Delta m'_{q}(p)_{\min})}{(t_{eq} * \Delta m_{q}'(p))_{r}} \right\} + 0.5463 \left\{ \frac{\left[1 - 2D(t_{eq} * q')\right](t_{eq} * \Delta m'_{q}(p)_{\min})}{(t_{eq} * \Delta m'_{q}(p)_{\min})} \right\}^{2}$$

$$(1.14)$$

El tiempo mínimo y el final de la primera línea recta, con menos de $\pm 5\%$ de error:

$$\omega = \exp\left[-\frac{1}{0.923} \left(\frac{t_{eq\,min}}{50t_{eqe1}} - 0.4383\right)\right]$$
(1.15)

El tiempo mínimo y el principio de la segunda línea recta, valido por ≤ 0.1 con menos del $\pm 2\%$ de error:

$$\omega = 0.19211 \left(\frac{5t_{eq\,min}}{t_{eqb2}}\right) + 0.80678 \left(\frac{5t_{eqmin}}{t_{eqb}}\right)^2 \tag{1.16}$$

El parámetro de flujo interporoso puede ser hallado usando:

$$\lambda = \frac{4.231h\phi(\mu c)_i r_w^2}{T} \left(\frac{t_{eq} * \Delta m'_q(p)}{t_{eq}} \right)_{min}$$
(1.17)

(Escobar, 2010)

1.2.1 EVALUACION DE YACIMIENTOS NATURALMENTE FRACTURADOS

Las fracturas pueden tener un profundo impacto en el manejo de los yacimientos y en la economía del campo, por lo tanto, entre más temprano sea determinada la presencia de la fractura, mejor. La presencia de fracturas, afectan diferentes aspectos como perforación, completamiento, recolección de datos, colocación de pozos y esquemas de recobro mejorado. Ellas pueden ser un factor crítico en la evaluación de reservas recuperables. Consecuentemente, un enfoque prudente para la evaluación de yacimientos es una cita muy citada: *Todos los yacimientos deben ser considerados fracturados hasta que se pruebe lo contrario.*

Los yacimientos naturalmente fracturados son sistemas esquivos de caracterizar y predecir. Sin embargo, debido a que muchos yacimientos son naturalmente fracturados, es importante estableces algunos criterios básicos para reconocer cuando las fracturas son un elemento básico en el comportamiento del reservorio y para entender la naturaleza y las características de un yacimiento naturalmente fracturado.

Cuando se realiza la clasificación de los yacimientos naturalmente fracturados desde el punto de vista del flujo se debe tener en cuenta la permeabilidad y porosidad de la fractura y realizar una comparación con la permeabilidad y porosidad de la matriz.

CLAFISICACION DE YACIMIENTOS NATURALMENTE FRACTURADOS		
Tipos de fracturas en yacimientos		
Tipo de YNF	Definición	
Tipo 1	Fracturas que proveen la capacidad de	
	almacenamiento y permeabilidad del	
	yacimiento	
Tipo 2	Grupo de fracturas que posee una mejor	
	permeabilidad que la matriz.	
Tipo 3	Fracturas en las cuales la permeabilidad es	
	despreciable, pero la capacidad de	
	almacenaje de hidrocarburos es alta.	
Tipo 4	Las fracturas están llenas de minerales y	
	por lo general no es muy factible que se	
	desarrolle flujo.	

Tabla 1: Clasificación de yacimientos naturalmente fracturados. (Escobar, 2010)

1.2.1.1 TIPOS BÁSICOS DE EVALUACION

La exploración y la producción no pueden ser separadas de la evaluación en yacimientos fracturados. Es de suprema importancia saber que se está buscando y que se ha encontrado en términos de propiedades del yacimiento. Hay tres tipos básicos de evaluación dirigidos al análisis de estos yacimientos (Nelson, 1982). Se encuentran enlistados en orden de incremento de complejidad, cantidad de data y tiempo de completación:

- 1. Tempranas evaluaciones de exploración para determinar o predecir el grosor de calidad del reservorio.
- 2. Evaluación del potencial económico (reservas, caudales, etc)
- 3. Evaluación de planeación del recobro y modelo detallado del yacimiento.

Estos son los distintos tipos de evaluación, requieren varias cantidades de data cualitativa y cuantitativa.

1.2.1.1.1 Evaluaciones tempranas de exploración.

Estas evaluaciones solo trabajan con un conocimiento general de la estructura y la secuencia estratigráfica (atributos mecánicos y petrofísicos), registros log que no son diseñados específicamente para evaluación de fracturas naturales, un núcleo mínimo y data de pruebas de pozo. Las evaluaciones realizadas en este tiempo son mejores cualitativamente y son probablemente más como especulaciones que como evaluaciones verdaderas.

Para la evaluación de exploración temprana la data más comúnmente usada es:

- Datos generales geológicos/geofísicos en formas estructurales.
- Una buena descripción litológica de la sección estratigráfica.
- Datos mecánicos en rocas particulares de interés o en litologías similares.
- Propiedades de la matriz de los registros o interpretadas de áreas cercanas.
- Pruebas DST o potencial inicial de caudales (IP).
- Análisis de núcleos.
- Registros de imagen del pozo.
- Datos de presión in situ.

1.2.1.1.2 Evaluación del potencial económico

La evaluación del potencial económico se hace, después de que ha sido probado que las fracturas son una parte integral del yacimiento y que los datos cuantitativos están disponibles La propuesta es estimar reservas y caudales de flujo para determinar precisamente el potencial que vale la pena del yacimiento.

Las estimaciones del espacio y ancho de la fractura se vuelven importantes así como el conocimiento de la interacción de la porosidad fractura-matriz. Además es importante conocer las estimaciones a profundidades simuladas en el laboratorio del flujo relativo dentro de las fracturas y la matriz.

Además de los datos de exploración temprana, otra información debe ser incluida:

- Pruebas de presión extendidas en tiempo.
- Análisis 3D de la permeabilidad del núcleo completo, registros de imágenes de pozo.
- Datos de laboratorio de las propiedades de matriz y fracturas bajo profundidades simuladas y condiciones de depleción.
- Estimaciones de las interacciones fractura/matriz.

1.2.1.1.3 Evaluación para planeación y modelamiento del recobro

Durante el desarrollo total de un campo grande, muchos esquemas de depleción deben ser evaluados para optimizar el recobro y/o factores económicos. Una herramienta importante es el modelamiento del yacimiento: usando modelos matemáticos asistidos por computadores para investigar el comportamiento composicional y las ratas de caudal relativos por debajo de cambios de presión y temperatura de las condiciones del yacimiento. Para modelos de yacimientos fracturados, los análisis cualitativos más detallados son requeridos. Estos involucran no solo análisis estático de las propiedades de fractura, sino también conocimiento detallado 3D de la distribución de las fracturas en el yacimiento. Esto requiere una descripción paso a paso y documentación de muchos núcleos e imágenes de registros.

Los datos más comúnmente usados en este tipo de evaluación son:

- Mapas detalladamente estructurados que cubran muchos horizontes sobre y debajo de la formación productora.
- Descripciones detalladas del núcleo incluyendo litología, mineralogía, texturas y una documentación paso a paso de la ocurrencia de la fractura, orientación y morfología.
- Registros de imágenes de todos los pozos interpretados, especialmente los que no tienen núcleos.
- Datos mecánicos derivados de muestras de núcleo de interés.
- Pruebas de larga duración de flujo y múltiples pruebas de pozo.
- Estimación del estado de presión inicial in situ del yacimiento.
- Datos de las propiedades de matriz y fracturas bajo profundidades simuladas y condiciones de depleción.
- Datos de laboratorio de la interacción fractura/matriz. (NELSON, 2001)

Capítulo 2

DESARROLLO DE LA GENERACION DE CURVAS DE PRESION

Se desarrolla una metodología para realizar pruebas multitasa para yacimientos naturalmente fracturados de manera correcta y eficaz, considerando el almacenamiento adimensional de la fractura (ω), coeficiente de flujo interporoso (λ), permeabilidad (k) y los diferentes caudales que se manejan en la producción de gas y petróleo.

2.1 PRIMERA GENERACIÓN DE CURVAS DE PRESIÓN

Primero se realizaron 1100 pruebas multirata con el simulador Ecrin v4.02.04 con diferentes patrones de producción aleatorios en los cuales había una cambio máximo de 30%, para pozos de petróleo, donde se variaron los valores de λ desde 1×10^{-1} hasta 1×10^{-7} y los de ω desde 0.01 hasta 1, con una duración de la prueba máximo de 1000 horas; y de esta manera se obtenían los valores que más se adecuan a la hora de realizar correctamente una prueba de presión para este tipo de yacimiento; para luego utilizarlos en la generación de estas estableciendo rangos de caudal para cada uno de los fluidos; procedimiento que será explicado más adelante. Los datos que se utilizaron se muestran en la siguiente tabla para un pozo vertical con frontera infinita en un yacimiento de petróleo de doble porosidad:

Presión inicial (Pi)	5000	Psi
Radio de pozo (<i>rw</i>)	0.5	Ft
Permeabilidad (<i>k</i>)	33.33	Md
Factor de daño o Skin (s)	0	
Almacenamiento de pozo (<i>C</i>)	0	bbl/psi
Espesor de la formación (h)	100	Ft
Porosidad (ϕ)	0.1	Fracción
Factor volumétrico (<i>B</i>)	1.15	bbl/STB
Viscosidad (μ)	10	Ср
Compresibilidad total de la formación (<i>ct</i>)	$3x10^{-6}$	psi ⁻¹
Λ	$1 \times 10^{-1} - 1 \times 10^{-7}$	
Ω	0.01-1	

En el diagrama se muestra como se relacionaron estas variables.

Fig 6. Relación de variables en la primera generación de curvas de presión.

Después de definir por primera vez los rangos de estos parámetros, se procede a realizar una segunda generación de curvas de presión tomando en cuenta lo anterior.

2.2 SEGUNDA GENERACIÓN DE CURVAS DE PRESIÓN

Ahora se realizan pruebas de presión, 6100 con petróleo y 5700 con gas, creando rangos de caudal para cada uno de los fluidos, los cuales se pueden observar en la **tabla 3**, utilizando los distintos valores de λ y ω , y variando además el valor de la permeabilidad en cada uno de los casos. Es decir, en cada uno de los rangos de caudal donde este fluctuaba máximo en un 30% de uno al otro, se realizaran pruebas de presión multirata con un tiempo máximo de 1000 horas variando los parámetros para yacimientos de doble porosidad y la permeabilidad.

Tabla 3 Rangos de caudal usados en la segunda generación de curvas de presión.

CAUDAL DE PETRÓLEO (bbl/día)	CAUDAL DE GAS (MMPCS/D)
0-500	0.5-5
500-1000	5-15
1000-2000	15-25
2000-3000	25-35
3000-5000	35-45
5000-10000	45-55
10000-20000	55-65
20000-30000	65-75
30000-40000	75-85
40000-50000	85-100

La mayoría de gráficas, se realizaron con un ω de 0.1, debido a que esta era la forma de depleción adecuada, no era demasiado grande, ni demasiado pequeña, tenía una forma imparcial y clara. Los esquemas se realizaban por grupos, es decir, se escogían categorías de caudal, por ejemplo, de cero a quinientos barriles, o de veinte mil a treinta mil barriles por día; teniendo eso ya claro, se procedía a escoger las permeabilidades con las que se iba a experimentar, se escogieron para petróleo desde 5 md hasta 1000 md, y para gas de 3 a 500 md. Siguiendo esto, se variaba el coeficiente de flujo interporoso, y finalmente el almacenamiento adimensional de la fractura.

En la **figura 6 y 8** se representa la forma en que se relacionaron las diferentes variables y en la **tabla 4** y la **tabla 5** se muestran los datos de entrada al simulador.

Fig 8. Relación de variables en la segunda generación de curvas de presión

Tabla 4 Datos de entrada simulador Ecrin V4.02.04 para petróleo.

Presión inicial (Pi)	5000	Psi
Radio de pozo (<i>rw</i>)	0.5	Ft
Factor de daño o Skin (s)	0	
Almacenamiento de pozo (<i>C</i>)	0	bbl/psi
Espesor de la formación (<i>h</i>)	100	Ft
Porosidad (ϕ)	0.15	Fracción
Factor volumétrico (<i>B</i>)	1.15	bbl/BST
Viscosidad (μ)	10	Ср
Compresibilidad total de la formación (<i>ct</i>)	$3x10^{-6}$	psi ⁻¹
Modelo del pozo	Vertical	
Modelo del yacimiento	Doble porosidad PSS	
λ	$1 \times 10^{-3} - 1 \times 10^{-7}$	
ω	0.01-0.4	
k	50-1000	md

Presión inicial (Pi)	5000	psi
Temperatura del yacimiento	212	°F
Radio de pozo (<i>rw</i>)	0.5	ft
Factor de daño o Skin (s)	0	
Almacenamiento de pozo (C)	0	bbl/psi
Espesor de la formación (<i>h</i>)	100	Ft
Porosidad (ϕ)	0.15	Fracción
Factor volumétrico (<i>B</i>)	1.15	bbl/BST
Viscosidad (μ)	10	ср
Compresibilidad total de la formación (<i>ct</i>)	$3x10^{-6}$	psi ⁻¹
Gravedad específica	0.7	
λ	$1 \times 10^{-3} - 1 \times 10^{-7}$	
ω	0.01-0.4	
k	2-500	md

Tabla 5. Datos de entrada simulador Ecrin V4.02.04 para gas.

Algunas propiedades del gas como el factor de compresibilidad (Z) fueron calculadas por el programa.

2.2 SIMULADOR ECRIN V4.03.04

A continuación se presenta el procedimiento que se siguió para desarrollar la investigación:

- 1. Se utiliza el simulador Ecrin v4.02.04, se selecciona el icono <u>New</u> como se muestra en la **figura 9**.
- 2. Se ingresan los datos correspondientes; radio de pozo (*rw*), espesor de la zona (*h*), porosidad (ϕ), tipo de fluido. Luego se selecciona <u>Next.</u> Figura 10.
- 3. Al seleccionar el fluido, gas o petróleo, se ingresan las propiedades PVT para cada uno.
 - 3.1 Para petróleo, factor volumétrico (B_o), y "compresibilidad total (ct). Luego se selecciona <u>create</u>. Figura 11.
 - 3.2 Para gas, presión y temperatura del yacimiento. Luego se selecciona <u>Next</u>. Figura 12.
 - 3.2.1 Se ingresa a propiedades de gas, donde se encuentran: gravedad especifica (γ_g) , viscosidad (μ_g) , factor de compresibilidad (Z), factor volumétrico del gas (B_g) , compresibilidad del gas (c_g) . En este caso el programa calculó estas, pero pueden ser halladas e ingresadas. Luego se selecciona <u>Next</u>. **Figura 13.**
 - 3.2.2 Por último se ingresan las pseudopropiedades y se selecciona <u>create</u>. **Figura 14.**
- 4. Seleccionar Load Q para ingresar el caudal y el tiempo de la prueba de presión. Figura 15.

- 5. En esa ventana se selecciona <u>Keyboard-spreadsheet-2-columns</u>, para luego ingresar en la columna **A** el tiempo en horas el cual no es acumulativo y que no pasara de 1000 horas y en la columna **B** el caudal del respectivo fluido el cual puede tener una variación máxima de 30% de uno a otro. **Figura 16.**
- 6. Se escoge la unidad de medida para el caudal y el tiempo, formato de datos por duración de periodo de flujo. Luego se selecciona Load. Figura 17.
- 7. Se observa un gráfico de producción. Luego se selecciona el icono <u>Test design</u> para diseñar una prueba de presión. **Figura 18.**
- 8. Se selecciona modelo estándar, sin almacenamiento de pozo, pozo vertical, yacimiento de doble porosidad, con frontera infinita. **Figura 19.**
- 9. Se escoge el valor de ω , λ y *k* en md para cada caso. Luego se selecciona generate. **Figura 20 y 21.**
- 10. Se selecciona el icono <u>interpretation</u>, luego <u>Extract dp</u> y por último <u>ok</u> seleccionando producción para la prueba. **Figura 22.**
- 11. Se escoge el grado de suavizamiento de la derivada y la cantidad de puntos que se quieren tener, luego <u>ok</u> para generar la gráfica de la prueba de presión; en petróleo la derivada de presión y delta de presión contra tiempo, y en gas pseudopresión y derivada de presión contra tiempo. **Figura 22 y 23**.
- 12. Se observa la gráfica y se determina si tiene el comportamiento característico de una prueba de presión multirata para yacimientos naturalmente fracturados, el cual es una depleción de la fractura y a continuación una respuesta del yacimiento homogéneo equivalente. **Figura 24.**
- 13. Al cumplirse este comportamiento se van determinando los valores de ω , λ y k que son adecuados para los diferentes caudales, y así realizar de forma correcta y eficaz pruebas multirata para yacimientos naturalmente fracturados. Obteniendo rangos aplicables de estas variables en la industria del petróleo.

Fig 9. Proceso Investigativo del proyecto.

👷 Ecrin v4.02.04 - [Saphir]	the Real Part Land Land Land		
File Action View WEB Help			
🗅 🚅 🖬 🖨 🕼 🔚 🔳 📍 🔅) 🚯 👙 📕 🧶 📾 🔍 📾 🔍 🖉 📥 🔍 🕷 🗮 📥 🗶 🕷 👹		
Settings			
	New document - page 1/2 - Main options		
Application	Main options Information Units Comments		
Interface	Test type:	Ruid type: Reference phase:	
Plot Aspect	C Interference Well Radius: 0.5 ft	Oli	
PVT E	Pay Zone: 100 ft 💌 Porosity: 0.15	Gas	
Interpretation	Reference time (+0)	Start with analysis:	
Loading Data		C NonLinear C Multi-Layer	
Default Units	Ayuda << Beck	ext >> Cancelar	
QAQC Data Rates	R R R		
More tools Output For Help, press F1			Ram=31MB - VM=10MB

Fig 10. Proceso Investigativo del proyecto.

Fig 11. Proceso I	investigativo del proyecto.
-------------------	-----------------------------

😵 Ecrin v4.02.04 - [Saphir]		The second se	and the line is should be	and the second			
File Action View WEB Help							
D 🗳 🖬 🗇 🗟 🖪 🔳 📍	28 🔰 🖏 💽 兽 🗍 🔳	//@@ Q&Q& £¶	120 🕘 🞼				
Settings	121	New document - page 2/2 - PVT parameters		1	× /		1
Application	R	Formation Volume F∂	actor B 1.15 B/ST	B v			
Plot Aspert	R	Total compressi	bility ct 3E-6 psi-1	•	17		
PVT E	K	□ Calculate from a PVT Correlati	on				
Interpretation	R	E FB	Γ μ Γ et		1		
Loading Data	R						
pri v hr v Default Units	K	Help	<< Back Create >>		ancel		
QAQC Data Rates Interpretation	R	K K	K	K	K		
More tools Output For Help, press F1						Ram=31MB -	VM=10MB

Fig 12. Proceso Investigativo del proyecto.

Fuente: Proceso Investigativo del proyecto. Ecrin V4.02.04

💝 Ecrin v4.02.04 - [[Saphir]	
File Action View	v WEB Help	
🗅 📽 🖬 🧉	🗟 🔚 🔳 📍 🖓 🚳 🌖 🛛	■ / @ @ Q & Q & 云 和 尋 尋
Settings	K K	New document - page 2/3 - PVT parameters
Interface	N N	Main options Z Mug Bg cg Rhog specific gavity regeting gavity regeting gavity regeting gavity Outset defined 0.7 regeting gavity Compute from composition mon regeting gavity
PVT E	RR	Condensate: equivalent gas gravity Critical properties ☞ From composition N2 0 C mole % N2 0 C mole % N2 0 C mole %
Interpretation	R	Mug Lee et al. g Dranchuk Bg Internal
Default Units	RR	Hep (KBack Next)) Cancel
QAQC Data Rates Interpretation More tools	R	
Output	For Help, press F1	Ram=32MB - VM=11MB

Fig 13. Proceso Investigativo del proyecto.

🐎 Ecrin v4.02.04 -	[Saphir]	Table I do not	the Revenue of Statement of Sta	
File Action View	v WEB Help			
🗋 🗅 🚅 🖬 🖉	🖎 E 🔳 ? 3 🗍 🖏 🐞	■ 🖉 @ @ Q & Q & ≦ A ⊕ 10		
Settings		1-1 1-1		1-1 1-1
• 5	RA	New document - page 3/3 - Pseudo Properties		K K I
Application				1-
	R			RR
	1-1 1-	Reservoir parameters	Connate water saturation (fraction)	1-1 1-1 1
	K K	Reservoir Temperature	0	15 15 4
Plot Aspect		Beservoir Pressure	,	
📥 🕴	R	5000 psia 💌	- Province carea	R. K.
PVT		Water-Gas ratio:	Minimum 14.6959 psia	
\mathbf{x}	12 15	D bbl/MMcf -	Maximum 10014.7	12 12 1
Interpretation	19 19	Formation compressibility:	Increment	13 13 1
	10	josse jponi -	201	10 10
Loading Data				
psi 💌	10 10			1 1 1
Default Units	K	Help <<< Back	Create >> Cancel	15 15 4
-		(L		
QAQC Data Rates	K			
Interpretation				
Output	For Help, press F1			Ram=32MB - VM=11MB

Fig 14. Proceso Investigativo del proyecto.

Fuente: Proceso Investigativo del proyecto. Ecrin V4.02.04

	8 🗛 🛋 🖿 🥒		- el 100 m 14.4				
		New plot	- III U				
	Data Edit Rates 20 Mar	Analysis I Analysis I Market New				(
						Standard G	as Test
						R	15
y li							
S	12 12	1	3	1	2 12	12	1

Fig 15. Proceso Investigativo del proyecto.

Ecrin v4.02.04 - [Saphir NL : Untitled2]		
File Edit Act	tion View WEB Window Hel	; 	×
Settings	Group:		-
QAQC Data	🔙 QAQC 🗹 Edit Data 陆 Ed	Load - Step 1 - Define Data Source	
Interpretation		Select type of data source Standard Oil Test	
Load Q	K	C File Ascille C Dipboard C Database C Database C Database C Database C Database C Database C Report of Report of C Report of	11
Load P	K	C From an opened Ecrin document C Real time	
Extract dP	K	A B 1	1
Model	12	4 5 6 7 8	
a Improve	R	9 10 11 12 13	
Sensitivity	K		
	R		11
More tools	1/2		
output	For Help, press F1	X Y Kam=3bMB - VM=14MB	

Fig 16. Proceso Investigativo del proyecto.

Fuente: Proceso Investigativo del proyecto. Ecrin V4.02.04

Ecrin v4.02.04 - [Saphir NL : Untitled2]	tang Ages Carl Markham	
File Edit Action View WEB Windo	w Help	_ <i>B</i> ×
🗅 🚅 🖬 🍜 🖪 🔚 🚺 📍 ?	◎ ● ● 2 3 3 3 3 4 9 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Settings Group:	Load - Step 2 - Data Format	
QAQC Data		
Rates CAUC CUL Data	More lines Enough : 35 lines read - no more lines in file - number of points in file is 35	
Interpretation	37 5000	Standard Oil Test
	39 5250 35 5380	
	29 5400	
Load Q	27 5620	A
	25 6000	A
	27 6490	
Load P	Field Type Unit Name Info Well Filter Window	A 🛛
	A 37.00000 Decimal time hr I N/A N/A N/A N/A N/A N/A	
Extract dP	B SU00.000000 Oil rate STB/D V Production lested well N/A N/A	
		R R
Model		
	Lines Format Absolute vs elasped time	
	Free C Points Beference Date & Time 02/10/2013 12/00/00 a m	R 1
Improve	C Field	1 2 1
	C Column C Steps : time @ start	
	C Free Format Pressure 💌 C Steps : time @ end	R R
Sensitivity	Separator Decimal symbol	4 3 4 3
12 - Charles	Help Cancel << Back Load >>	
4		4 3 4
More tools		

Fig 17. Proceso Investigativo del proyecto.

Fig 18. Proceso Investigativo del proyecto.

Fuente: Proceso Investigativo del proyecto. Ecrin V4.02.

/ Ecrin v4.02.04 - [Saphir NL : Untitled2]	Cashakal Manada Sana Sana	the section of the se		
File Edit Action View WEB Window Help			~	- 5
D 🛎 🖬 🖨 🖪 🔚 🚹 ? 😕 🛛 🚳 🍈 📕 🖌	Test Design		<u> </u>	
Settings Group: Gauge:	Analytical Numerical			
		_		-
Rates	Option Standard Model	aenerate a(n)	deperate p(a)	
History plot		· 3		Standard Oil Test
	Welbore model	Parameter Valu	ue Unit Pick	
	No wellbore storage	Well & Wellbore parameters	s (Tested well)	
	🗖 use well intake 🔲 pseudo time	Skin 0		
Test Design	Well model	Reservoir & Boundary parar	meters	
and the second se	Vertical	PI 500	33 md ft Final	-
Flavible Dire	rate dependent skin. E add other wells	Omega 0.1	1	-
Plexible Plot		Lambda 1E-	.6	
P. Average	Heservoir model			
				RR
	horizontal anisotropy 🗹 impose pi			
IPR / AOF	Boundary model			
12 12	Infinite			- 10
	show p-average			A A
Well intake		1		
10		2D Map	Schematic	
	Gauna Set C Ti	e Avuda	Cancelar Generate	
Skin vs Q		79000		
KIWI				
Output Ear Hala proce 51				X X Ram-37MB - VM-14MB

Fig 19. Proceso Investigativo del proyecto.

Fuente: Proceso Investigativo del proyecto. Ecrin V4.02.04

Ecrin v4.02.04 - [Saphir NL : Untitled2]	Cashing of Street Stree	STREET, STREET	
🖄 File Edit Action View WEB Window Help			_ <i>8</i> ×
] D 😅 🖬 🎒 🕼 🔚 🚺 ? ?!] 🖏 🍑 🔵 🔳	Test Design		
Settings Group: Gauge:	Analytical Numerical		
Rates QAQC Add Edit Data Edit Rates 20			
Interpretation History plot	Option Standard Model	🔽 generate q(p) 🔽 gener	rate p(q) Standard Oil Test
More tools	Wellbore model	Parameter Value Unit	t Pick
	No wellbore storage	Well & Wellbore parameters (Tested well)	
	🗖 use well intake 🔲 pseudo time	Skin 0	
Test Design		Reservoir & Boundary parameters	
	Well model	Pi 5000 psia	
	Vertical	k.h 2333.33 md.ft	
Flexible Plot	□ rate dependent skin □ add other wells	Omega 0.1	
	T time dependent skin	Lamoda 1E-6	
	Reservoir model		
P Average	Two porosity PSS		
	horizontal anisotropy 🔽 impose pi		R. R.
	- Boundary model		
IPR / AOF			1-1
			C R I
	1_ snow planerage	1	
Weilintake		2D Map	Schematic
			R R
	Gauge Set C Time	Ayuda Cancelar	Generate
Skin vs Q			
			E E
			4 2 4 2 4
KIWI			
< IIII > //	12 12 12	12	12 12 12
Output For Help, press F1			X Y Ram=37MB - VM=14MB

Fig 20. Proceso Investigativo del proyecto.

Fuente: Proceso Investigativo del proyecto. Ecrin V4.02.04

ecrin v4.02.04 - [S	Saphir NL : Q dismi	inuye 48]								
🔮 File Edit Acti	ion View WEB	Window Help								_ 8 ×
0 🛩 🖬 🎒	à 🗈 🖬 🤋	Test Design		<u>← Æl 📼 @ 1#</u>			23	<u>n</u>		
Settings	🔲 🔤 Group: 🛛	Autraliu						1		
Rates	🔛 QAQC 🛛	Analytical Numerical						lysis 14 🔀 Analysis 15	📴 new	
Interpretation More tools	Log-Log pl	Option Standard Model	•	Generate q(p)		🔽 generate	p(q)	10	10	Standard Gas Test
i 🖬		Wellbore model	•	Parameter Well & Wellbore param	Value neters (Tester	Unit (well)	Pick			Well = Vertical Reservoir = Two porosity PSS Boundary = Infinite
Test Design		🗆 use well intake	ermeability					10		Pi = 5000 psia
1		Well model	k [20	md 1	sters	psia				k.h = 2000 md.ft Omega = 0.3 Lambda = 1E-4 Skin = 0
Flexible Plot		rate dependent skin	h 100			md.ft		10	10	oldin - o
		time dependent skin						1/2	10	4
P Average		Reservoir model	kh 2000	md.ft 💌						
		Two porosity PSS	Help	Cancel OK				K		RR
		horizontal anisotropy								
IPR / AOF	Semi-Log p	Boundary model								
2		Infinite	<u> </u>							
Well intake		material balance								
				2D Map		Sc	chematic	_		
Skin vs Q		Gauge Se	t C Time	Ayuda	Cancelar	0	Generate		·····	·····
						-	**************************************			
KIWI		+ + + + + + + + + + + + + + + + + + + +						·		
Output	For Help, press Fi		·				17			Ram-34MB - VM-12MB

Fig 21. Proceso Investigativo del proyecto.

Fuente: Proceso Investigativo del proyecto. Ecrin V4.02.04

💝 Ecrin v4.02.04 - [Sa	hir NL : Untitled2]		
🖄 File Edit Actio	v View WEB Window Help		_ <i>B</i> ×
0 🛩 🖬 🎒 🖸	. [1]] ? ?፤] () () () () () () () () () () () () ()		
Settings	🗏 Group: 🖉 Gauge: Test Design 🔄 🕄 New plot 😓 🎬 🗊 🖸		
QAQC Data Rates	🗧 QAQC 🛛 Edit Data 🔃 Edit Rates 🗾 2D Map 🌌 Analysis 1 🕎 new		
Interpretation	History plot		Standard Oil Test
Load Q	- Extract delta-P Select gauge(s) Test Design - List		Well = Vertical Reservoir = Two porcety PSS Boundary = Infinite Pi = 5000 pala k.h = 3330 md.ft Ornega = 0.1
Load P Extract dP Model	Select group(1) production #1 List Select group(1) production #1 List Figure initial pressure for 5000 pria Figure rates to measured values Figure rates to measure to measure to measure to measured values Figure rates to measure to me		Lambda = 1E-6 Skin = 0
۹ Improve	Image: Skip parameters extraction dialog(s) Help Cancel		12 1
Sensitivity	K K K K K		K K
			K I
More tools	12 12 12 12 12 12 12	1	10 10
Output F	r Help, press F1	XY	Ram=41MB - VM=14MB

Fig 22. Proceso Investigativo del proyecto.

Fuente: Proceso Investigativo del proyecto. Ecrin V4.02.04

Ecrin v4.02.04 - [Saphir NL : Untitled2]	Cashing Contracts	the local distances in the second second			
😫 File Edit Action View WEB Window Help					_ <i>B</i> ×
D 😅 🖬 🖀 🖪 🔚 🚺 ? ?# 🔌 🍑 🌖	🔳 🗶 🏻 🕲 🍳 🖓 🔍 🖓 🗮 🕬	14			
Settings Group: 🖵 Gauge:	Test Design 🔄 🚯 New plot 🚽 🏥 🚺]			
QAQC Data	🛃 2D Map 🜌 Analysis 1 📴 new				
Interpretation					Standard Oil Test
+				10	
			~	M	Well = Vertical
Load Q	Extract dD Extraction parameter	X			Boundary = Infinite
	Extract of P Extraction parameters	·	1		Pi = 5000 psia k b = 3330 md ft
	Parameters for naune <1	est Design> and group (production #1)	1		Omega = 0.1 Lambda = 1E-6
Load P	Smoothing				Skin = 0
				R	/
Extract dP	Filtration (pts/cycle):	100			
	Patdt=0:	5000 psia -	-1		
	Luitel Decum	5000			
Model	Initial Plessure.	5000			
× 12 12		Help Cancel OK	10		
Improve	A		No de la		
Sensitivity				1	
More tools					
Output For Help, press F1				XY	Ram=41MB - VM=14MB

Fig 23. Proceso Investigativo del proyecto.

Fuente: Proceso Investigativo del proyecto. Ecrin V4.02.04

Fig 24. Proceso Investigativo del proyecto.

Fuente: Proceso Investigativo del proyecto. Ecrin V4.02.04

Capítulo 3

RESULTADOS Y ANÁLISIS

Posterior a la realización de la generación de todas las gráficas llevadas a cabo con el simulador Ecrin v4.02.04 con el cual se produjeron doce mil setecientas (12700) pruebas de presión con el caudal variable, es decir, pruebas multirata, para dos tipos de yacimiento, uno con una saturación 100% petróleo y otro con saturación 100% gas, siete mil (7000) para crudo y cinco mil setecientas (5700) para gas, se hace un análisis de los resultados obtenidos en ellas, para finalmente llegar a obtener los rangos apropiados de almacenamiento adimensional de la fractura, ω , coeficiente de flujo interporoso, λ , permeabilidad y caudal de flujo.

3.1 RESULTADOS Y ANÁLISIS DE LA PRIMERA GENERACIÓN DE CURVAS DE PRESION

Esta primera parte de la generación de gráficas, se concibió con el objetivo de ir minimizando el rango del coeficiente de flujo interporoso y del almacenamiento adimensional de la fractura. Para esto se simularon mil cien (1100) gráficas con diferentes comportamientos de caudal de flujo, aumentando, disminuyendo, variando sin un patrón, aumentando y después disminuyendo y viceversa. En el análisis se logró disminuir en un 31% el rango de ω y en un 33.33% el de λ .

Sabiendo ya que el coeficiente de flujo interporoso, influye en el lugar de la prueba en la que va a quedar el depletamiento de la fractura y posterior respuesta del yacimiento homogéneo equivalente, en otras palabras, si va ubicarse al principio, en el medio o al final se descartaron valores como 1×10^{-1} y 1×10^{-2} ya que con ellos, la depresión no se alcanzaba a ver, y se aceptó la posible validez de gráficos obtenidos con valores desde 1×10^{-3} , hasta 1×10^{-7} porque con estos la prueba podría tener la calidad necesaria para llegar a resultados favorables al momento de la segunda generación de pruebas.

Fig 25. Resultados de λ en la primera generación de pruebas de presión.

Y considerando el incremento de la sensibilidad de la curva de la derivada en yacimientos naturalmente fracturados, resulta en una mayor exactitud de la curva¹, y conociendo además que el almacenamiento adimensional de la fractura, afecta la forma del depletamiento observado, se optó por datos que proporcionaran una gráfica donde se pudiera observar una concavidad clara, desde 0.01 hasta 0.4, se descartan así los que van desde 0.5 hasta 1.

Fig 26. Resultados de ω en la primera generación de pruebas de presión

Al disminuir este rango de características de un yacimiento naturalmente fracturado, se procede a la segunda parte, la siguiente generación de pruebas.

¹ ESCOBAR, Freddy H. Análisis moderno de pruebas de presión. Neiva, Universidad Surcolombiana, 2010, p. 376

3.2 RESULTADOS Y ANÁLISIS DE LA SEGUNDA GENERACIÓN DE CURVAS DE PRESIÓN

Después de generar 12700 curvas de presión para diferentes rangos de caudal indicados en el capítulo anterior, se adquirieron valores apropiados utilizables en la industria petrolera a la hora de realizar pruebas de presión multitasa para yacimientos naturalmente fracturados. Se disminuyó el rango de λ , por el contrario el de ω no se alteró.

Fig 27. Resultados de λ en la segunda generación de pruebas de presión.

Se prosigue considerar otras características que afectan el comportamiento de las curvas, como el caudal de flujo y la permeabilidad.

Se logró además aplicar los intervalos hallados adecuadamente a algunas condiciones de permeabilidad y comportamientos de caudal, por ejemplo, si este aumenta o disminuye, o

sube y luego baja y viceversa o si varía, es decir, que sube y baja aleatoriamente. El resumen de esto está dado en tablas que se encuentran más adelante.

A continuación se mostrarán gráficas de cada uno de los fluidos, y los resultados obtenidos de la investigación e interpretación de estas.

3.2.1 CURVAS DE PRESION

3.2.1.1 PETROLEO

Fig 29. Gráfico log-log de presión y derivada de presión para una prueba simulada para un yacimiento naturalmente fracturado con ω =0.1, λ =1e-5, k=200 md para un caudal que sube y luego baja entre 0 y 500 BPD.

Tiempo, hr

3.2.1.2 GAS

Fig 30. Gráfico log-log de pseudopresión y derivada de pseudopresión para una prueba simulada para un yacimiento naturalmente fracturado con ω =0.1, λ =1e-5, k=10 md para un caudal aumentando entre 5 MMPCS-15 MMPCS.

3.2.1.3 CURVAS DE PRESION DESCARTADAS

Aunque las pruebas se hicieron para todos los valores previamente mencionados en el capítulo dos, no siempre se alcanzaron los resultados esperados, esto se debe a que por causa de ciertos factores no se formaba la depleción de la fractura y posterior respuesta del yacimiento homogéneo de manera clara, serán explicados a continuación

• Depleción de la curva a la izquierda

Cuando la depleción está al lado izquierdo de la gráfica, y aparenta ser cortada o no verse completa.

• Depleción de la curva a la derecha

Cuando la depresión está al lado derecho y no alcanza a verse terminada, es decir, como en el caso anterior, parece que estuviera cortada.

• Depleción con dispersión

Cuando aparecen puntos sin un orden específico en el lugar donde está la concavidad alterando la calidad necesaria en las pruebas de presión, pueden mostrarse en el principio, mitad o final de ésta.

• La dispersión no deja que se forme curva

Aunque fueron pocas las veces que se presentó este problema, esto quiere decir que no se formó nada, ni una línea, ni curva, solo se veía un desorden de puntos.

El causante de este fenómeno es porque el cambio de caudal aparece cuando debe mostrarse la depleción de la fractura y posterior respuesta del yacimiento homogéneo.

3.3 ANALISIS DE PRUEBAS DE PRESIÓN

En el análisis para obtener resultados, se observaron ciertos comportamientos repitentes, que serán expuestos a continuación:

3.3.1 Para gas y petróleo

- En las curvas con valores de λ de 1×10^{-3} , la depresión buscada estaba tan a la izquierda que no se podía observar completa, por eso fueron descartadas en la segunda generación de gráficas.
- Las curvas con permeabilidades menores a 300 md, y con valores de λ iguales a 1×10^{-5} en su mayoría eran gráficas con concavidades como las que se necesitan.
- Las curvas con permeabilidades mayores a 300 md, con valores de λ iguales a 1×10^{-5} , se corrían hacia el principio y no siempre eran útiles porque entre más aumentaba la permeabilidad, la depleción tendía a desaparecer a la izquierda.

3.3.2 Para petróleo

- En su mayoría, las gráficas con λ iguales a 1×10^{-4} , servían hasta valores entre 80 md y 120 md, ya que en permeabilidades mayores, la concavidad se localizaba al principio y no se veía en su totalidad.
- Cuando se usaban λ iguales a 1×10^{-6} , era común ver que para valores de permeabilidad mayores a 300 md el esquema se comportaba de la manera requerida, es decir, se formaba una depresión clara, en la mitad de este y sin tanta

dispersión, por el contrario para valores menores a 300 md, en muchas ocasiones se veía dispersión.

• Finalmente si se utilizaban valores de λ correspondientes a 1×10^{-7} , era conveniente cuando la permeabilidad era mayor a 300 md y entre mayor fuera el caudal de flujo de petróleo, mejor era la calidad de la curva. De lo contrario con valores menores a este, la dispersión interrumpía muchas veces la formación adecuada de la depleción.

3.3.3 Para gas

- En las curvas de presión, usando valores de λ , 1×10^{-6} y 1×10^{-7} , la depresión se forma en valores altos de permeabilidad, llegando a 500 md, lo que en valores como 1×10^{-5} y 1×10^{-4} no lo hacen.
- A utilizar $\lambda = 1 \times 10^{-4}$ la forma adecuada de la curva se formaba siempre entre 2 md y 20 md en todas las variaciones de caudal, siendo de esta manera constante.
- Para $\lambda = 1 \times 10^{-7}$ la concavidad en la curva de presión se empezaba a formar a partir de altas permeabilidades como 50 md, 70 md, 100 md y 200 md dependiendo de la variación de caudal.
- Utilizando ω entre 0.05 y 0.4 se generaban curvas adecuadas para un yacimiento naturalmente fracturado, mientras que al graficar con valores menores a 0.05 hay una variación que depende de la permeabilidad, el caudal y el coeficiente de flujo interporoso.

3.4 TABLAS DE RELACIÓN DE VARIABLES

En estas tablas se pueden observar los valores que se adecúan a ciertas condiciones para que la depresión de la curva se de manera apropiada.

λ	ω	<i>k</i> (md)	<i>q</i> (BPD)
	0.04-0.4	900-1000	1000-2000
		180-200	10000-20000
1×10^{-7}		180-200	20000 20000
	0.08-0.4	600-1000	20000-30000
		180-1000	30000-50000
		50-1000	500-2000
1x10 ⁻⁶	0.08-0.4	70-1000	2000-3000
		50-1000	3000-5000
		100-1000	5000-20000
		50-1000	20000-50000
	0.01-0.4	200	0-500
1×10^{-5}		30-1000	500-5000
1x10 ⁻⁵	0.08	50-1000	5000-20000
		5-1000	20000-50000
		30-100	0-500
1×10^{-4}	0.04.0.4	5-90	500-1000
1710	0.04-0.4	5-80	1000-20000
		5-100	20000-50000

3.4.1 TABLAS DE RELACIÓN DE VARIABLES PARA PETROLEO Tabla 6. Relación de variables para petróleo con caudal disminuyendo.

Tabla 7. Relación de variables para petróleo con caudal aumentando.

λ	ω	<i>k</i> (md)	<i>q</i> (BPD)
1 10-7	0.08.0.4	120-200	20000-50000
1X10	0.06-0.4	200-1000	20000-50000
		5-1000	0-500
1×10^{-6}	0.07.0.4	140-1000	500-1000
1x10	0.07-0.4	120-1000	2000-5000
		30-1000	20000-50000
1x10 ⁻⁵	0.01-0.4	120-200	0-500
	0.06-0.4	30-1000	500-20000
		5-1000	20000-50000
110 ⁻⁴	0.04.0.4	10-200	0-500
1710	0.04-0.4	5-200	500-50000

λ	ω	<i>k</i> (md)	q (BPD)
1x10 ⁻⁶		10-1000	0-500
		400-1000	500-2000
	0.07.0.4	180-1000	5000-20000
	0.07-0.4	300-1000	20000-30000
		180-1000	30000-40000
		300-1000	40000-50000
	0.08-0.4	5-200	0-500
	0.06-0.4	30-1000	500-2000
1×10^{-5}	0.08-0.4	30-300	2000 20000
	0.04-0.4	300-600	2000-20000
	0.08-0.4	30-1000	20000-50000
		5-90	0-5000
1×10^{-4}	0.05-0.4	5-80	5000-20000
		5-1000	20000-50000

Tabla 8. Relación de variables para petróleo con caudal variable.

Tabla 9. Relación de variables para petróleo con caudal que aumenta y luego disminuye.

λ	ω	<i>k</i> (md)	<i>q</i> (BPD)
1×10^{-7}	0.08-0.4	700-1000	40000-50000
		5-1000	0-500
		600-1000	500-1000
		400-1000	1000-3000
	1x10 ⁻⁶ 0.08-0.4	300-1000	5000-10000
1×10^{-6}		180-1000	10000-20000
		400-1000	20000-30000
		180-200	20000 40000
		400-1000	30000-40000
		180-1000	40000-50000
1×10^{-5}	0.01-0.4	120-200	0-500
1X10	0.08-0.4	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	500-50000
		10-120	0-500
1×10^{-4}	0.07.0.4	5-100	500-1000
1X10	0.07-0.4	5-90	1000-30000
		5-80	30000-50000

λ	ω	<i>k</i> (md)	q (BPD)
1x10 ⁻⁷	0.02.0.4	700-1000	10000-40000
1X10	0.08-0.4	200-1000	40000-50000
1x10 ⁻⁶	0.04-0.4	700-900	500-1000
		160-1000	1000-2000
		120-1000	2000-5000
		300-1000	5000-20000
	0.08-0.4	140-1000	20000-40000
		100-1000	40000-50000
	0.02-0.4	200	0-500
1×10^{-5}	0.06-0.4	10-1000	500-3000
	0.08-0.4	10-800	3000-50000
	0.07-0.4	10-90	0-500
1×10^{-4}	0.03-0.4	5-120	500-1000
1x10	0.05-0.4	5-140	1000-2000
	0.07-0.4	5-90	2000-50000

 Tabla 10. Relación de variables para petróleo con caudal que disminuye y luego aumenta.

3.4.2 TABLAS DE RELACIÓN DE VARIABLES PARA GAS

λ	ω	<i>k</i> (md)	q (MMPCS/D)
7		70-500	25-100
1×10^{-7}	0.01-0.4	100-500	0.5-25
			25-35
		2-100	55-65
		2-100	75-100
	0.01-0.4		0.5-25
1×10^{-6}		2-500	35-55
		2-300	65-75
			25-35
	0.02-0.4	100-500	55-65
		100-500	75-100
	0.01-0.4	2-50	0.5-75
		5-50	75-85
		5-100	85-100
	0.02.0.4	50-100	15-55
		50-200	65-85
_	0.05-0.4	100-200	85-100
1×10^{-5}			0.5-15
		50-300	55-65
	0.05-0.4	100-300	35-65
		200-300	65-85
	0.1-0.4	100-300	15-35
		2-10	0.5-75
	0.01-0.4	5-10	75-100
1×10^{-4}	0.03-0.4	10-15	0.5-100
	0.05-0.4	15-20	0.5-100

Tabla 11. Relación de variables para gas con caudal aumentando.

λ	ω	<i>k</i> (md)	q (MMPCS/D)
7		50-500	5-100
1x10 ⁻⁷	0.01-0.4	100-500	0.5-5
			45-65
		2-100	75-100
	0.01-0.4		0.5-45
	0.01 0.1	2-500	65-75
1×10^{-6}			45-65
	0.02-0.4	100-300	75-85
		100-200	85-100
		2-50	5-25
			35-65
	0.01-0.4		0.5-5
		2-100	25-35
			65-75
		5-100	75-100
			15-25
1×10^{-5}		50-100	35-55
	1x10 ⁻⁵	50-200	65-85
		100-200	65-100
			5-15
		50-300	55-65
	0.05-0.4	100-300	0.5-5
			15-55
		200-300	45-55
			65-85
		2-10	0.5-75
1×10^{-4}	0.01-0.4	5-10	75-100
1X10	0.03-0.4	10-15	0.5-100
	0.05-0.4	15-20	0.5-100

Tabla 12. Relación de variables para gas con caudal disminuyendo.

λ	ω	<i>k</i> (md)	q (MMPCS/D)	
			0.5-5	
		100-500	45-55	
			65-75	
1 10-7	0.01.0.4		5-15	
IXIO	0.01-0.4	200-500	55-65	
			75-85	
			35-45	
		300-500	85-100	
		400-500	15-35	
		2-500	0.5-25	
	0.01-0.4	5-100	45-100	
1×10^{-6}	0.01-0.4	5-500	25-45	
	0.02-0.4	100-500	45-100	
	0.01-0.4	2.50	5-25	
		2-50	35-75	
		2 100	0.5-5	
1x10 ⁻⁵		2-100	25-35	
		5-100	75-100	
	0.03-0.4	50-100	15-75	
		50-300	5-15	
	0.05-0.4	100-200	55-100	
	0.03-0.4	100.000	0-5-5	
		100-300	15-55	
	0.01.0.4	2-10	0.5-75	
1×10^{-4}	0.01-0.4	5-10	75-100	
	0.03-0.4	10-15	0.5-100	
	0.05-0.4	15-20	0.5-100	

 Tabla 13. Relación de variables para gas con caudal que aumenta y luego disminuye.

λ	ω	<i>k</i> (md)	q (MMPCS/D)	
		200 500	0.5-15	
1x10 ⁻⁷	0.01-0.4	200-500	75-85	
			25-75	
		300-500	85-100	
		400-500	15-25	
		2-500	0.5-35	
			45-65	
6	0.01-0.4	5-100	75-100	
1x10 ⁻⁰			35-45	
		5-500	65-75	
		100 - 00	45-65	
	0.02-0.4	100-500	75-100	
	0.01-0.4	2-50	5-65	
		2-100	0.5-5	
		5-50	65-100	
	0.03-0.4	50-100	15-100	
1x10 ⁻⁵	0.05-0.4	50-300	5-15	
		100 000	55-65	
		100-200	85-100	
			0-5-5	
		100-300	15-55	
			65-85	
	0.01.0.4	2-10	0.5-75	
1x10 ⁻⁴	0.01-0.4	5-10	75-100	
1710	0.03-0.4	10-15 0.5-100		
	0.05-0.4	15-20	0.5-100	

Tabla 14. Relación de variables para gas con caudal que disminuye luego aumenta.

λ	ω	<i>k</i> (md)	q (MMPCS/D)
			0.5-5
		100-500	45-55
			35-45
1×10^{-7}	0.01-0.4	200, 500	55-65
		200-300	85-100
		300-500	65-85
		400-500	5-35
			45-65
		5-100	75-100
	0.01-0.4		0.5-25
1×10^{-6}		2-500	25-45
		5-500	65-75
			45-65
	0.02-0.4	100-500	75-100
	0.01-0.4		5-25
		3-50	35-55
			0.5-5
		2-100	25-35
		5-50	55-100
	0.03-0.4		15-25
1x10 ⁻⁵		50-100	35-65
			75-100
		50-200	65-75
		50-300	5-15
			25-65
	0.05-0.4	100-200	75-100
		100-300	0-5-5
			15-25
		2-10	0.5-75
1×10^{-4}	0.01-0.4	5-10	75-100
1x10 ⁻⁴	0.03-0.4	10-15	0.5-100
	0.05-0.4	15-20	0.5-100
		•	

 Tabla 15. Relación de variables para gas con caudal variado.

3.4 GRAFICAS DE RELACIÓN DE VARIABLES

La lectura de éstas gráficas se realiza de la siguiente manera:

- 1. Identifique en las tablas a que letra corresponden los valores de caudal y permeabilidad.
- Las letras simbolizan los rangos de las características previamente mencionadas, es decir, la primera letra encarna el valor en el que comienza el intervalo y la última, el número en el que éste termina, por ejemplo: para CG cm, los rangos corresponden a 1000 BPD – 10000 BPD con un intervalo de permeabilidad de 30 md a 180 md.
- 3. Sabiendo ya que las variables de su yacimiento está entre esos valores, va a la gráfica y lee el almacenamiento adimensional de la fractura de color rojo desde donde se puede empezar a usar, y siempre terminará en 0.4 y el coeficiente de flujo interporoso en la parte de abajo.

3.5.1 GRAFICAS DE RELACIÓN DE VARIABLES PARA PETRÓLEO

<i>k</i> (md)		<i>k</i> (md)	
5	а	160	1
10	b	180	m
30	С	200	n
50	d	300	0
60	e	400	q
70	f	500	r
80	g	600	S
90	h	700	t
100	i	800	u
120	j	900	V
140	k	1000	W

Tabla 16. Valores de permeabilidad para petróleo.

q (BPD)	
0	А
500	В
1000	С
2000	D
3000	Е
5000	F
10000	G
20000	Η
30000	Ι
40000	J
50000	Κ

Tabla 17. Valores de caudal para petróleo.

Fig 31. Relación de variables para petróleo con caudal aumentando.

58

Fig 32. Relación de variables para petróleo con caudal disminuyendo

ω
 λ

Fig 33. Relación de variables para petróleo con caudal variable

Fig 34. Relación de variables para petróleo con caudal que aumenta y luego disminuye

Fig 35. Relación de variables para petróleo con caudal que disminuye y luego aumenta

3.5.2 GRAFICAS DE RELACIÓN DE VARIABLES PARA GAS

q (MMPCS)	
0,5	А
5	В
15	С
25	D
35	Е
45	F
55	G
65	Н
75	Ι
85	J
100	K

Tabla 18. Valores de caudal para gas.

Tabla 19. Valores de permeabilidad para gas

<i>k</i> (md)	
2	А
5	В
10	С
15	D
20	Е
30	F
50	G
70	Н
100	Ι
200	J
300	K
400	L
500	М

Fig 36. Relación de variables para gas con caudal aumentado.

Fig 37. Relación de variables para gas con caudal disminuyendo.

1 005 07	1 005	1 00	1 005 02	1 005 02	1 00E 01	
						AB im
						FG im
						HI im
						BC im
						JK KM
						CE Im
	•					FG ai
	•					FK bi
						DF bm
						FK im
						BD ag 🖉 🖉
						El ag
						AB ai
						DE ai
						IK bi
						Cl gi
						AB IK
						Al ac
						IK bc
						AK cd
						AK de

Fig 38. Relación de variables para gas con caudal aumentando y luego disminuyendo.

AK de K bc Al ac (bg ω Δ IKim Him HI em F bm IK bi -H bi Eam CD Im K km DI km IJjm AC jm 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

Fig 39. Relación de variables para gas con caudal disminuyendo y luego aumentando.

Fig 40. Relación de variables para gas con caudal variable.

Capítulo 4

EJEMPLOS

A partir de una prueba de presión a una tasa constante para cada uno de los fluidos, se buscó diseñar varias pruebas multitasa partiendo del caudal de la prueba a una sola tasa, donde en el gráfico log-log de la derivada de presión versus el tiempo se pudiera observar una aproximación en los valores mínimos, máximos y flujos, como el radial; y así los valores del coeficiente de almacenamiento adimensional (ω), parámetro de flujo interporoso (λ), permeabilidad (k), almacenamiento (c) y factor de daño o <u>skin</u> (s) coincidieran aproximadamente.

A diferencia de las pruebas hechas para el capítulo 3, la cantidad de rata de flujo usadas fueron pocas, menores a diez, y los valores de tiempo fueron altos a comparación de los anteriores. Además se variaron aleatoriamente valores del coeficiente de almacenamiento adimensional (ω), parámetro de flujo interporoso (λ), permeabilidad (k), almacenamiento (c) y factor de daño o skin (s).

4.1 PETRÓLEO

Los datos del yacimiento naturalmente fracturado al cual se le va a realizar una simulación de prueba multitasa están dados a continuación

Presión inicial (Pi)	131.506	psi
Temperatura del yacimiento	160	°F
Radio de pozo (rw)	0.3	Ft
Factor de daño o Skin	-1	
Almacenamiento de pozo (C)	0	bbl/psi
Espesor de la formación (h)	242	Ft
Porosidad (ϕ)	0.06	Fracción
Factor volumétrico (B_g)	1.07	bbl/BST
Viscosidad (μ_g)	0.971	ср
Compresibilidad total de la formación (ct)	3.57×10^{-5}	psi ⁻¹
Gravedad específica	0.729	
Λ	1.79x10 ⁻⁶	
Ω	0.44	
K	9	md

Tabla 20. Datos de entrada al simulador Ecrin v4.02.04

Se ejecutaron simulaciones, pero solo las que fueron con datos de caudal aumentando, otra con datos de caudal variable y finalmente una con el caudal aumentando y luego disminuyendo fueron exitosas, de éstas se obtuvieron valores iguales para las características propias de los yacimientos naturalmente fracturados.

Para diseñar la prueba multirata y que dieran resultados acertados y útiles, se modificaron datos de la prueba de restauración, por ejemplo, se ignoró el almacenamiento y de esta manera se vio el flujo radial, ya que como una consecuencia directa del almacenamiento, se tiende a ocultar el periodo de flujo radial en tiempo temprano², también se variaron los valores de las características del yacimiento naturalmente fracturado y las obtenidas al final son los valores reales usados en esta simulación.

Se puede observar que a pesar que la depresión formada en la prueba de declinación es muy pequeña, en la multirata se alcanzaron los mismos resultados en cuanto al flujo radial, punto mínimo y máximo.

A realizar este ejemplo se vio que pueden ocurrir ciertas tergiversaciones entre los resultados obtenidos y los rangos plasmados en las tablas, esto se debe a que el primer cambio de caudal ocurrió a un tiempo mayor y la dispersión se corrió hacia la derecha, por eso se pudo observar la depleción, si en otro caso, el tiempo hubiera sido más pequeño, la depleción se habría visto interrumpida por el desorden de puntos. Estos cambios también pueden suceder por la cantidad de caudales que se introducen al programa y sus valores. A continuación la prueba de restauración para este yacimiento naturalmente fracturado

Fig 41. Gráfico log-log de derivada de presión de una prueba de restauración simulada para un yacimiento naturalmente fracturado con caudal constante

² ESCOBAR, Freddy H. Análisis moderno de pruebas de presión. Neiva, Universidad Surcolombiana, 2010, p. 382

Fig 43. Gráfico de presión contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando.

Fig 44. Gráfico log-log de derivada de presión de una prueba de restauración simulada a un yacimiento naturalmente fracturado con un caudal constante y una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando.

Fig 45. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal variado.

Fig 46. Gráfico de presión contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal variado.

Fig 47. Gráfico log-log de derivada de presión de una prueba de restauración simulada a un yacimiento naturalmente fracturado con un caudal constante y una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal variable.

Fig 49. Gráfico de presión contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal que aumenta y luego disminuye.

Fig 50. Gráfico log-log de derivada de presión de una prueba de restauración simulada a un yacimiento naturalmente fracturado con un caudal constante y una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal que aumenta y luego disminuye.

INTERPRETACIÓN

Determine:

- 1. La permeabilidad
- 2. El parámetro de flujo interporoso.
- 3. El coeficiente de almacenamiento adimensional
- 4. El factor de daño

De las figuras mostradas más adelante y/o las tablas en anexos para cada prueba multitasa se leyeron los siguientes valores

 Tabla 21. Datos observados en las gráficas y tablas para determinar las propiedades en petroleo

PARÁMETROS	$(t^* \Delta P')_r$	$(t^* \Delta P')_{min}$	ΔP_{r2}	$(t^*\Delta P')_{r^2}$	<i>t_{min}</i>	t_{r2}
Caudal aumentando	6.29	4.52	85.32	6.4	16.35	186.85
Caudal variable	6.33	4.55	82.03	6.3	16	100.46
Caudal sube luego baja	5.76	4.39	75.11	5.76	15.63	101.18

Caudal aumentando

Muestra de cálculo:

A partir de éstos datos sacados de se proceden a realizar los cálculos

$$(t^* \Delta P')_{min} = 4.52 psia$$

 $t_{min} = 16.35 hrs$
 $(t^* \Delta P')_r = 6.29 psia$
 $\Delta P_{r2} = 86.31 psia$
 $t_{r2} = 196.02 hrs$

Se halla el caudal promedio para facilidad de determinación de las propiedades de los yacimientos naturalmente fracturados ya que son pruebas multitasa:

$$\overline{q} = \frac{\sum q^* t}{\sum t} \text{STB} / \text{d}$$

$$\overline{q} = \frac{250^* 106 + 147^* 147 + 178^* 167 + 178^* 178 + 158^* 190}{250 + 147 + 178 + 178 + 158} = 153.17 \text{ STB} / \text{d}$$

La permeabilidad se calcula de la ecuación

$$k_{2} = \frac{70.6q\mu B}{h(t^{*}\Delta P)_{r}}$$

$$k_{2} = \frac{70.6^{*}153.17^{*}0.971^{*}1.07}{242^{*}6.29} = 7.38 md$$

El coeficiente de almacenamiento se calcula con la ecuación, y tomando un punto conveniente del flujo radial y en el punto mínimo:

$$\omega = 0.15866 \left[\frac{(t^* \Delta P')_{\min}}{(t^* \Delta P')_r} \right] + 0.54653 \left[\frac{(t^* \Delta P')_{\min}}{(t^* \Delta P')_r} \right]^2$$
$$\omega = 0.15866 \left[\frac{4.52}{6.29} \right] + 0.54653 \left[\frac{4.52}{6.29} \right]^2 = 0.39$$

El parámetro de flujo interporoso se calcula con la ecuación, y tomando el valor de la coordenada mínima:

$$\lambda = \frac{42.5hS_T r_w^2}{qB} \left(\frac{t^* \Delta P'}{t}\right)_{\min}$$
$$\lambda = \frac{42.5^* 242^* 2.14e - 6^* 0.3^2}{153.17^* 1.07} \left(\frac{4.52}{16.35}\right)_{\min} = 3.34e - 6$$

Se calcula el daño seleccionando un punto conveniente para ΔP y $t^*\Delta P'$ durante el periodo de flujo de acción infinita a tiempos lejanos,

$$s_{m} = \frac{1}{2} \left[\left(\frac{\Delta P}{t^{*} \Delta P'} \right)_{r_{2}} - \ln \left(\frac{k_{2} t_{r_{2}}}{S_{T} \mu r_{w}^{2}} \right) + 7.43 \right]$$
$$s_{m} = \frac{1}{2} \left[\left(\frac{85.42}{6.4} \right)_{r_{2}} - \ln \left(\frac{6.92 * 186.85}{2.14e - 6 * 0.971 * 0.3^{2}} \right) + 7.43 \right] = -0.97$$

Las demás pruebas mutitasa fueron interpretadas usando el mismo procedimiento dando como resultado:

Tabla	22.	Datos	de	propiedades	de	los	yacimientos	naturalmente	fracturados
obtenio	dos p	oara pe	tróle	20					

PARÁMETROS	(STB/d)	$k_2(md)$	ω	λ	Sm
Caudal aumentando	153.17	7.38	0.39	3.44e-06	-0.97
Caudal variable	141.41	6.77	0.39	3.72e-06	-0.78
Caudal sube luego baja	132.94	6.98	0.43	3.91e-06	-0.79

Fig 51. Gráfico log-log de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando.

Fig 52. Gráfico log-log de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando y luego disminuyendo

Fig 53. Gráfico log-log de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal variado.

4.2 GAS

El presente ejemplo se tomó de una prueba de presión real generada en un pozo de gas ubicado en los Llanos Orientales en Colombia. Los datos de roca y fluido se presentan a continuación.

Presión inicial (Pi)	5180	psi
Temperatura del yacimiento	255	°F
Radio de pozo (<i>rw</i>)	0.354	ft
Factor de daño o <u>Skin</u>	49	
Almacenamiento de pozo (C)	0.04	bbl/psi
Espesor de la formación (h)	350	Ft
Porosidad (ϕ)	0.035	Fracción
Compresibilidad de la formación (ct)	1.66×10^{-4}	psi ⁻¹
Gravedad específica	0.729	
Viscosidad del gas (µg)	0.024	ср
YCO ₂	4	%
Λ	2.8×10^{-6}	
Ω	0.01	
K	2.7	md

Tabla 23: Datos de entrada al simulador Ecrin v4.02.04

Primero se observan las gráficas de caudal contra tiempo y presión contra tiempo de cada prueba multitasa; las que van continuación de estas muestran que los valores de almacenamiento, daño, coeficiente de flujo interporoso y parámetro de almacenamiento de la fractura son los mismos que los de la **tabla 21**, simulándose 5 diferentes cambios de caudal, aumentando, disminuyendo, aumentando y luego disminuyendo, viceversa y variado.

Fig 54. Gráfico log-log de derivada de pseudopresión para una prueba de restauración simulada para un yacimiento naturalmente fracturado para un caudal constante.

Fig 55. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando.

Fig 56. Gráfico de presión contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando.

Fig 57. Gráfico log-log de derivada de pseudopresión para una prueba de restauración simulada a un yacimiento naturalmente fracturado para un caudal constante y una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando.

84

Fig 59. Gráfico de presión contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal disminuyendo.

85

Fig 60. Gráfico log-log de derivada de pseudopresión para una prueba de restauración simulada a un yacimiento naturalmente fracturado para un caudal constante y una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal disminuyendo.

Fig 61. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando y luego disminuyendo.

Tiempo, hr

Fig 62. Gráfico de presión contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando y luego disminuyendo.

Fig 63. Gráfico log-log de derivada de pseudopresión para una prueba de restauración simulada a un yacimiento naturalmente fracturado para un caudal constante y una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando y luego disminuyendo.

Fig 64. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal disminuyendo y luego aumentando.

Fig 65. Gráfico de presión contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal disminuyendo y luego aumentando.

Fig 66. Gráfico log-log de derivada de pseudopresión para una prueba de restauración simulada para un yacimiento naturalmente fracturado para un caudal constante y una prueba multitasa simulada a un yacimiento naturalmente fracturado para un caudal disminuyendo y luego aumentando.

Fig 67. Gráfico de caudal contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal variado.

Fig 68. Gráfico de presión contra tiempo para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal variado.

Fig 69. Gráfico log-log de derivada de pseudopresión para una prueba de restauración simulada a un yacimiento naturalmente fracturado para un caudal constante y una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal variado.

En las diferentes pruebas de presión se puede observar como en la curva de la derivada coinciden el flujo radial, los mínimos y máximos, los cuales son los más significativos en estas pruebas para yacimientos naturalmente fracturados. Por otro lado una prueba multitasa se puede realizar en periodos de tiempo más largos sin que exista una pérdida económica tan alta como ocurre en una prueba de declinación o restauración debido al cierre del pozo, y así dejarla correr el tiempo suficiente para obtener mejores resultados.

Además se pudo determinar cómo los rangos mostrados en tablas y gráficas en el capítulo 3 para los diferentes parámetros se cumplen en su mayoría respecto a los ejemplos vistos anteriormente.

INTERPRETACIÓN

Los datos de presión medidos en la simulación de cada prueba multitasa se muestran en anexos. Otros datos conocidos del pozo y del yacimiento se pueden observar en la **tabla 21**.

Caudal aumentando

Muestra de cálculo

Determine:

- 1. La permeabilidad.
- 2. Almacenamiento
- 3. El parámetro de flujo interporoso.
- 4. El coeficiente de almacenamiento adimensional.
- 5. El factor de daño.

De las figuras se leyeron los siguientes valores

Tabla 24: Datos observados en las gráficas y tablas para determinar las propiedades de los yacimientos naturalmente fracturados para gas

PARAMETROS	t*∆m'(P) _r	$\Delta \mathbf{m}(\mathbf{P})_{\mathbf{r}}$	t*∆m'(P) _{min}	t _r	ti	t _{us,i}
	(psi²/cp)	(psi²/cp)	(psi²/cp)	(hr)	(hr)	(hr)
AUMENTANDO	9033006.43	1138929968.41	1855343.67	172.64	0.002	20
DISMINUYENDO	8621772.16	1039918272.10	1852378.13	129.22	0.0024	20,1
AUMENTANDO Y	9090070.77	1097292553.89	1900068.60	247.06	0.0024	22
DISMINUYENDO						
DISMINUYENDO Y	9445289.65	1102728176.41	1069168742.89	321.99	0.002	19
AUMENTANDO						
VARIADO	9149837.60	1125356966.42	1906382.01	47.75	0.0021	20

Para esto se cuenta con los datos de presión de la tabla D en anexos y los leídos respectivamente en la **figura 70.**

$$t * \Delta m'(P)_r = 90330006.43 psi^2 / cp$$

 $\Delta m(P)_r = 1138929968.41 psi^2 / cp$
 $t * \Delta m'(p)_{min} = 1855343.67 psi^2 / cp$
 $t_r = 172.64 hr$
 $t_i = 0.002 hr$
 $t_{us,i} = 20 hr$

Primero se calcula un caudal promedio ya que es una prueba multitasa

$$\begin{split} q_{promedio} &= \frac{\sum qt}{\sum t} PCSD \\ &\quad (13873 \text{PCSD} * 70 hr) + (14603 \text{PCSD} * 40 hr) + (15371 \text{PCSD} * 30 hr) \\ q_{promedio} &= \frac{+(16180 \text{PCSD} * 60 hr) + (17032 \text{PCSD} * 50 hr) + (17929 \text{PCSD} * 80 hr)}{(70 + 40 + 30 + 60 + 50 + 80) hr} \\ q_{promedio} &= 15979.03 \text{PCSD} \end{split}$$

La permeabilidad se calcula

$$k = 711.26 \frac{qT}{h(t * \Delta m'(P))_r}$$

$$k = 711.26 \frac{15979.03PCS * 715R}{350Ft * 90330006.43psi^2 / cp}$$

$$k = 2.67md$$

El almacenamiento se calcula conociendo el ti que es el intercepto entre el flujo radial y el almacenamiento.

$$c = \frac{khti}{1695\mu}$$

$$c = \frac{2.67md * 350Ft * 0.002hr}{1695 * 0.024cp}$$

$$c = 0.044bbl / psi$$

El coeficiente de almacenamiento se calcula tomando el valor de la derivada mínima y un punto conveniente de la deriva flujo radial:

$$\omega = 0.0033483377 + 0.60583 \left[\frac{(t * \Delta m'(p))_{\min}}{(t * \Delta m'(P))_r} \right]^{1.565617}$$
$$\omega = 0.0033483377 + 0.60583 \left[\frac{1855343.67psi^2 / cp}{9033006.43psi^2 / cp} \right]^{1.565617}$$
$$\omega = 0.05$$

El parámetro de flujo interporoso se calcula tomando el valor de t_{us,i}

$$\lambda = \left(\frac{\mu\phi ctrw^2}{0.0002637k}\right) \left(\frac{1}{t_{us,i}}\right)$$
$$\lambda = \left(\frac{0.024cp * 0.035 * 1.66 \times 10^{-6} * 0.354^2}{0.0002637 * 2.67md}\right) \left(\frac{1}{20hr}\right)$$
$$\lambda = 1.27 \times 10^{-6}$$

Por último se calcula el daño aparente tomando los valores en el flujo radial.

$$s' = 0.5 \left[\frac{\Delta m(P)_r}{t^* \Delta m'(P)_r} - \ln\left(\frac{kt_r}{\mu \phi ctrw^2}\right) + 7.43 \right]$$

$$s' = 0.5 \left[\frac{1138929968.41 psi^2 / cp}{9033006.43 psi^2 / cp} - \ln\left(\frac{2.67 md^* 172.64 hr}{0.024 cp^* 0.035^* 1.66 \times 10^{-6} * 0.354^2}\right) + 7.43 \right]$$

$$s' = 47.33$$

Factor de turbulencia

$$D = \frac{9.106 \times 10^{-9} \gamma_g}{k^{1/3} \mu_g r w}$$
$$D = \frac{9.106 \times 10^{-9} * 0.729}{2.67^{1/3} * 0.024 c p * 0.354}$$
$$D = 1.59 \times 10^{-6}$$

<u>Skin</u>

$$s = s' - Dq_g$$

 $s = 47.33 - (1.59 \times 10^{-6} * 15979.03PCSD)$
 $s = 47.30$

Las demás pruebas mutitasa fueron interpretadas usando el mismo procedimiento dando como resultado:

PARAMETROS	k	с	ω	λ	S
	(md)	(bbl/psi)			
AUMENTANDO	2.67	0.044	0.05	1.274×10^{-6}	47.30
DISMINUYENDO	2.70	0.046	0.05	1.241×10^{-6}	44.71
AUMENTANDO Y	2.57	0.053	0.05	1.173×10^{-6}	44.44
DISMINUYENDO					
DISMINUYENDO Y	2.69	0.044	0.05	1.341×10^{-6}	42.32
AUMENTANDO					
VARIADO	2.68	0.049	0.05	1.246×10^{-6}	46.38

 Tabla 25: Valores de las propiedades de yacimientos naturalmente fracturados hallados para gas

Las diferencias en los resultados se deben al orden de magnitud, y esta razón se aplica tanto para petróleo como para gas.

Fig 70. Gráfico log-log de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando

Fig 71. Gráfico log-log de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal disminuyendo.

Fig 72. Gráfico log-log de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando y luego disminuyendo.

Fig 73. Gráfico log-log de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal disminuyendoy luego aumentando.

Fig 74. Gráfico log-log de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal variado.

CONCLUSIONES

- Se obtuvieron los rangos mostrados en tablas y gráficos donde se relacionan el coeficiente de almacenamiento adimensional (ω), parámetro de flujo interporoso (λ), permeabilidad (k) y caudal (q) entre sí, y así se puede hacer un buen diseño de pruebas de presión multitasa, es decir, que sean interpretables, para yacimientos naturalmente fracturados de gas o petróleo teniendo en cuenta que esto aplica solo en pozos verticales.
- 2. En el diseño de pruebas, los datos pueden variar de las tablas debido al valor del tiempo en el que ocurre el primer cambio de caudal, por los valores de caudal o la cantidad de estos ingresada al simulador.
- 3. Se confirmó que las pruebas multirata son mejores que las pruebas a tasa constante, ya que se puede obtener el mismo comportamiento de las simulaciones, teniendo en cuenta que no hay que cerrar el pozo, por lo tanto, pueden tomar más tiempo y resultan más económicas.
- 4. Los resultados de estos diseños permitirían tener pruebas de flujo múltiple más largos que conlleven al desarrollo de estado pseudoestable o estable para así poder determinar la presión promedio.

RECOMENDACIONES

- Al generar las curvas de derivada de presión vs tiempo para petróleo, o derivada de psedupresión vs tiempo para gas, debido al efecto de almacenamiento (C) o skin (s), en algunos casos pueden existir pequeñas variaciones para los rangos obtenidos que relacionan (ω), parámetro de flujo interporoso (λ), permeabilidad (k) y caudal (q). Esto se puede solucionar creando un algoritmo donde se pueda interpretar la prueba de presión por segmentos o partes.
- 2. Ya que la dispersión aparece cuando el primer cambio de caudal ocurre, para obtener mejores resultados, se puede aumentar el valor del primer tiempo, para que ésta aparezca más a la derecha y se pueda observar en ciertos casos con mayor claridad la depleción de la fractura y posterior respuesta del yacimiento homogéneo equivalente.

NOMENCLATURA

- *B* Factor de volumen de formación del aceite, rb/ST
- *C* Coeficiente de almacenamiento, bbl/psi
- *ct* Compresibilidad total, 1/psi
- h Espesor de la formación, ft
- *k* Permeabilidad de la formación, md
- P Presión, psi
- q_o Caudal de petróleo, Bbl/dia
- q_g Caudal de gas, PCS/día
- *rw* Radio del pozo, ft
- s Daño o <u>Skin</u>
- *Z* Factor de compresibilidad del gas

Griego

- ω Coeficiente adimensional de almacenaje de un yacimiento naturalmente fracturado
- λ Parámetro de flujo interporoso de un yacimiento naturalmente fracturado.
- μ_o Viscosidad del aceite, cp
- μ_g Viscosidad del gas, cp
- ϕ Porosidad, fracción.
- Δ Cambio
- ρ Densidad, lbm/ft³
- μ Viscosidad, cp

BIBLIOGRAFIA

CHAUDHRY, Amanat U. Oil well testing handbook. Oxford. Elsevier inc, 2004. p.254

ESCOBAR, F.H. Análisis Moderno de Pruebas de Presión. Neiva: Universidad Surcolombiana, Agosto 2010. p.162-165, 344-346

MONGI, Sonatrach. y D. Tiab. Application of Tiab's Direct Synthesis Technique to Multi-Rate Tests. Paper SPE 62607. Was prepared for presentation at the 2000 SPE/AAPG Western Regional Meeting held in Long Beach, California, 19–23 June 2000.

NELSON, Ronald A. Geologic analysis of naturally fractured resevoirs. 2001 p. 4-7

REYES, Jesus A. Metodología para la determinación del tensor de permeabilidad en yacimientos naturalmente fracturados. Tesis (Ingeniero de Petróleo.) Carácas, Venezuela. Universidad central de Venezuela, Facultad de Ingeniería, 2002. p.4,5,14,15

RIVERA, José. Prácticas de ingeniería de yacimientos petrolíferos. Septiembre 2004.

SILVA, Ramón. y RAMONES, Miguel. Análisis de Pruebas de Presión Nivel II. Maracaibo: CIED, Marzo 1997. 2-61p

WAYNE NARR, David W. Schechter, Laird B. Thompson. Naturally Fractured Reservoir Characterization, SPE 2006. p. 1,2

ANEXO 1

En este anexo se muestran algunas pruebas de presión multitasa para yacimiento naturalmente fracturados generadas para determinar los diferentes rangos de almacenamiento adimensional de la fractura, ω , coeficiente de flujo interporoso, λ , permeabilidad y caudal de flujo.

Se presentan diferentes gráficos log-log de pseudopresión y derivada de presión para una prueba simulada para un yacimiento naturalmente fracturado para gas variando los parámetros como q, λ , ω y k.

CURVAS DE PRESIÓN PARA PETRÓLEO

1. q=1000 BPD - 2000 BPDCaudal disminuyendo $\lambda = 1 \times 10^{-7}$ $\omega = 0.1$ k = 1000 md

2. q= 1000 BPD - 2000 BPD Caudal variable $\lambda = 1 \times 10^{-6}$ $\omega = 0.1$ k = 300 md

Tiempo, hr

3. q=1000 BPD - 2000 BPD Caudal disminuyendo $\lambda = 1 \times 10^{-7}$ $\omega = 0.1$ k = 1000 md

4. q=3000 BPD - 5000 BPDCaudal sube luego baja $\lambda = 1 \times 10^{-5}$ $\omega = 0.1$ k = 200 md

5. q=5000 BPD -10000 BPD Caudal aumentando $\lambda = 1 \times 10^{-4}$ $\omega = 0.1$ k = 300 md

Tiempo, hr
6. q=5000 BPD - 10000 BPD Caudal baja luego sube $\lambda = 1 \times 10^{-5}$ $\omega = 0.1$ k = 90 md

7. q=10000 BPD - 20000 BPDCaudal subiendo $\lambda = 1 \times 10^{-5}$ $\omega = 0.1$

k= 90 md

8. q=10000 BPD - 20000 BPD Caudal variable $\lambda = 1 \times 10^{-5}$ $\omega = 0.1$

k= 500 md

9. q=10000 BPD -20000 BPD Caudal sube y luego baja $\lambda = 1 \times 10^{-6}$ $\omega = 0.1$ k = 180 md

10. q=20000 BPD - 30000 BPD Caudal baja luego sube $\lambda = 1 \times 10^{-4}$ $\omega = 0.1$ k = 80 md

11. q=20000 BPD -30000 BPD Caudal sube luego baja $\lambda = 1 \times 10^{-6}$ $\omega = 0.1$ k = 600 md

12. q=20000 BPD - 30000 BPDCaudal aumentando $\lambda = 1 \times 10^{-5}$ $\omega = 0.1$ k = 1000 md

Tiempo, hr

14. q=30000 BPD - 40000 BPDCaudal subiendo $\lambda = 1 \times 10^{-4}$ $\omega = 0.1$ k = 160 md

Tiempo, hr

15. q=30000 BPD - 40000 BPDCaudal variable $\lambda = 1 \times 10^{-5}$ $\omega = 0.08$ k = 700 md

Tiempo, hr

16. q= 40000 BPD – 50000 BPD Caudal sube y luego baja $\lambda = 1 \times 10^{-7}$ $\omega = 0.07$ k= 300 md

17. q=40000 BPD - 50000 BPDCaudal baja luego sube $\lambda = 1 \times 10^{-5}$ $\omega = 0.09$ k = 800 md

Tiempo, hr

18. q=2000 BPD - 3000 BPDCaudal bajando $\lambda = 1 \times 10^{-4}$ $\omega = 0.1$ k = 200 md

19. q=2000 BPD -3000 BPD Caudal variable $\lambda = 1 \times 10^{-6}$ $\omega = 0.1$ k = 400 md

Tiempo, hr

CURVAS DE PRESIÓN PARA GAS

20. q=15 MMPCS - 25 MMPCS Caudal disminuyendo $\lambda = 1 \times 10^{-7}$ $\omega = 0.1$ k = 200 md

21. *q*= 25 MMPCS - 35 MMPCS

 \hat{C} audal aumentando y luego disminuyendo $\lambda = 1 \times 10^{-6}$

- $\omega = 0.1$
- k=50 md

22. *q*= 35 MMPCS - 45 MMPCS

Caudal disminuyendo y luego aumentando $\lambda = 1 \times 10^{-4}$

- $\omega = 0.1$
- *k*= 15 md

23. q= 45 MMPCS - 55 MMPCS Caudal variado λ = 1x10⁻⁷ ω = 0.1 k= 500 md

24. *q*= 55 MMPCS - 65 MMPCS Caudal aumentando $\lambda = 1 \times 10^{-6}$

 $\omega = 0.1$

k=5 md

25. q=65 MMPCS - 75 MMPCS Caudal disminuyendo $\lambda = 1 \times 10^{-5}$ $\omega = 0.1$ k = 20 md

26. *q*= 75 MMPCS - 85 MMPCS

Caudal aumentado y luego disminuyendo $\lambda = 1 \times 10^{-4}$

- $\omega = 0.1$
- *k*= 10 md

27. *q*= 75 MMPCS - 85 MMPCS

Caudal disminuyendo y luego aumentando $\lambda = 1 \times 10^{-7}$

- $\omega = 0.1$
- *k*= 300 md

28. q=85 MMPCS - 100 MMPCS Caudal variado $\lambda = 1 \times 10^{-6}$ $\omega = 0.1$

k= 100 md

29. *q*= 0.5 MMPCS - 5 MMPCS

Caudal aumentando $\lambda = 1 \times 10^{-5}$

 $\omega = 0.1$

k=3 md

30. q=5 MMPCS - 15 MMPCS Caudal disminuyendo $\lambda = 1 \times 10^{-4}$

 $\omega = 0.1$

k=7 md

31. *q*= 15 MMPCS - 25 MMPCS

Caudal aumenta y luego disminuye $\lambda = 1 \times 10^{-7}$

- $\omega = 0.1$
- *k*= 400 md

32. *q*= 25 MMPCS - 35 MMPCS

Caudal disminuye y luego aumenta $\lambda = 1 \times 10^{-6}$

- $\omega = 0.1$
- k=50 md

33. q=35 MMPCS - 45 MMPCS Caudal variado $\lambda = 1 \times 10^{-5}$ $\omega = 0.1$ k=30 md

34. *q*= 45 MMPCS - 55 MMPCS Caudal aumentando $\lambda = 1 \times 10^{-4}$

 $\omega = 0.1$

k=4 md

35. q=55 MMPCS - 65 MMPCS Caudal disminuyendo $\lambda = 1 \times 10^{-7}$ $\omega = 0.1$ k = 70 md

36. *q*= 65 MMPCS - 75 MMPCS

Caudal aumentando y luego disminuyendo $\lambda = 1 \times 10^{-6}$

- $\omega = 0.1$
- *k*= 15 md

37. q= 75 MMPCS - 85 MMPCS

Caudal disminuyendo y luego aumentando $\lambda = 1 \times 10^{-5}$

- $\omega = 0.1$
- *k*= 25 md

38. q = 85 MMPCS - 100 MMPCS Caudal variado $\lambda = 1 \times 10^{-4}$ $\omega = 0.1$ k = 12 md

39. q=0.5 MMPCS – 5 MMPCS Caudal aumentando $\lambda = 1 \times 10^{-7}$

 $\omega = 0.1$ k = 250 md

ANEXO 2

En estos anexos se observan las tablas de presión para cada una de las pruebas multitasa mostradas en el capítulo 4, para petróleo y gas respectivamente

PETROLEO

Tabla A. Datos de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando.

t,(hr)	dP, (psia)	t*dP', (psia)	t,(hr)	dP, (psia)	t*dP', (psia)
0.00911	27.6631428	6.00761778	100.307341	81.4654838	6.27182339
0.01822	31.8742703	6.1431279	104.862341	81.7445934	6.29267514
0.02733	34.3811646	6.21035647	109.417341	82.0126508	6.31044383
0.03644	36.1734052	6.24487016	113.972341	82.2704489	6.32532774
0.04555	37.5694928	6.26563753	118.527341	82.5186987	6.33804268
0.05466	38.7132215	6.27919162	123.082341	82.7580397	6.34882088
0.06377	39.6819518	6.28844027	127.637341	82.9889801	6.35801076
0.07288	40.522134	6.29491269	132.192341	83.2120747	6.36555987
0.08199	41.2638684	6.29946437	136.747341	83.4278667	6.37211299
0.09199429	41.9893462	6.30288378	141.302341	83.6368016	6.3778522
0.10321929	42.7151611	6.30531911	145.857341	83.8392853	6.38227712
0.11581395	43.4411995	6.3067715	150.412341	84.0356888	6.38644352
0.12994539	44.1673489	6.30723798	154.967341	84.226352	6.38993285
0.14580113	44.8934948	6.30669741	159.522341	84.4115478	6.39287498
0.16359156	45.6195196	6.3051283	164.077341	84.5915637	6.39535263
0.18355275	46.3453042	6.30248931	168.632341	84.7667165	6.3973901
0.20594957	47.0707214	6.29873861	173.187341	84.9372569	6.39905159
0.23107922	47.7956424	6.29381242	177.742341	85.1034169	6.40033882
0.25927515	48.5199253	6.28764641	182.297341	85.2654112	6.40143612
0.2909115	49.2434265	6.28015183	186.852341	85.4234391	6.40266619
0.32640807	49.9659837	6.27123935	191.407341	85.577686	6.40343736
0.36623588	50.6874327	6.2607925	195.962341	85.7283247	6.40390452
0.41092341	51.4075844	6.24869429	200.517341	85.8754935	6.40441596
0.46106365	52.1262477	6.2347979	209.627341	86.1600496	6.40505751
0.51732193	52.8431997	6.2189563	218.737341	86.4325281	6.40527364
0.58044475	53.5582153	6.20099036	227.847341	86.6939046	6.52116121
0.65126972	54.2710305	6.18072141	236.957341	86.9450409	6.50952695
0.73073664	54.981379	6.15793777	246.067341	87.1867024	6.49952267
0.8199	55.6889481	6.1324294	251.861971	79.8835976	5.38380447
0.91994293	56.3934231	6.10395507	258.642505	82.2983757	4.99160782
1.03219295	57.0944357	6.07227714	267.240462	83.3349815	4.87460974
1.15813953	57.7916166	6.03713336	276.350462	84.0370648	5.1234446

1.29945393	58.484537	5.99826816	285.460462	84.5967426	5.44018687	
1.45801129	59.1727688	5.95541573	294.570462	85.0795042	5.70089313	
1.63591557	59.8558221	5.90832162	303.680462	85.5098047	5.90233661	
1.83552746	60.5332102	5.8567475	312.790462	85.9001428	6.05122957	
2.05949569	61.2043881	5.80047305	321.900462	86.2583922	6.15732731	
2.31079217	61.8688184	5.73933816	331.010462	86.5899641	6.22740585	
2.59275145	62.5259195	5.67320965	340.120462	86.8990164	6.28063244	
2.90911498	63.1751232	5.60208333	349.230462	87.1887717	6.3126103	
3.26408069	63.8158469	5.52599296	358.340462	87.4617199	6.34014363	
3.66235877	64.4475301	5.44520253	367.450462	87.7200092	6.35942753	
4.10923413	65.0696511	5.36002532	376.560462	87.9653262	7.05162421	
4.61063653	65.6817216	5.27114394	385.670462	88.1990362	6.86065905	
5.17321927	66.2833769	5.17929679	394.780462	88.4223922	6.74663599	
5.80444749	66.8742987	5.08576373	405.642505	86.3003163	4.82932504	
6.5126972	67.4544172	4.99187064	418.795462	87.0658011	5.33980092	
7.30736644	68.0237194	4.89965819	432.460462	87.6013104	5.7082841	
8.199	68.5826052	4.81116877	446.125462	88.0505846	5.95477742	
9.19942931	69.131532	4.72925102	459.790462	88.4480728	6.14503096	
10.3219295	69.6715555	4.65665931	473.455462	88.8078215	6.25765581	
11.5813953	70.2037674	4.59681769	487.120462	89.1380373	6.31614044	
12.9945393	70.7300119	4.55291357	500.785462	89.444304	6.3536951	
14.5801129	71.2521145	4.52827265	514.450462	89.7306287	6.3699513	
16.3591557	71.7726852	4.52585106	528.115462	90.0000529	6.38396669	
18.3552746	72.2942302	4.5477635	541.780462	90.2549021	37.1016239	
20.5949569	72.8198464	4.59573819	555.445462	90.4970381	9.0061264	
23.1079217	73.352438	4.66947145	569.110462	90.7279082	7.51897512	
25.9275145	73.895032	4.76846765	583.642505	89.5950192	5.02874785	
29.0911498	74.4504183	4.8893705	601.350462	90.1678646	5.58171753	
32.6408069	75.0208511	5.02901734	619.570462	90.5832503	5.93409085	
36.6235877	75.6083923	5.18155527	637.790462	90.9416976	6.1392592	
41.0923413	76.2139483	5.34186349	656.010462	91.2641348	6.28341678	
45.6473413	76.7833821	5.48908558	674.230462	91.560022	6.32775956	
50.2023413	77.3116266	5.61753426	692.450462	91.8351027	6.36797118	
54.7573413	77.8049773	5.73051294	710.670462	92.0932475	56.494492	
59.3123413	78.26723	5.83003629	728.890462	92.3371966	8.54174533	
63.8673413	78.7020224	5.9149171	747.110462	92.5689698	7.2974135	
68.4223413	79.112416	5.98807721	765.685462	91.3938862	5.08567908	
72.9773413	79.5006626	6.05088052	783.905462	91.8528061	9.73986977	
77.5323413	79.8688613	6.10414588	802.125462	92.197404	5.91693352	
82.0873413	80.2188306	6.14979161	824.900462	92.565698	6.16595984	
86.6423413	80.5521637	6.18765971	847.675462	92.8907547	6.31592884	
91.1973413	80.8702579	6.22089139	870.450462	93.1857005	6.36487736	
95,7523413 81,1743434 6,24748496 893,225462 93,4580386 0						
--	------------	------------	------------	------------	------------	---
	95.7523413	81.1743434	6.24748496	893.225462	93.4580386	0

t,(hr)	dP, (psia)	t*dP', (psia)	t,(hr)	dP, (psia)	t*dP', (psia)
0.01	28.4533534	6.07262014	159.265121	84.9797281	6.43000338
0.02	32.7064389	6.19919047	166.615121	85.2699449	6.43436444
0.03	35.2350044	6.26171493	173.965121	85.5478027	6.43757336
0.04	37.0415935	6.29346146	181.315121	85.8142895	6.39203528
0.05	38.4483015	6.31232862	188.665121	86.0702793	6.39535505
0.06	39.6004084	6.32445499	196.015121	86.3165492	6.39791623
0.07	40.5760262	6.33258048	200.64633	98.990972	5.85227081
0.08	41.42204	6.33811118	206.463304	94.0210084	4.72948229
0.09	42.1688133	6.34185163	213.924767	92.9018334	4.0209057
0.10098166	42.8991268	6.3444966	220.438762	92.4825646	3.75422329
0.11330329	43.6296877	6.34615766	227.788762	92.2075384	3.7006025
0.12712838	44.3603836	6.34684067	235.138762 92.0324255		3.8161179
0.14264039	45.0911017	6.34652357	242.488762	91.9153709	3.8675525
0.16004515	45.8217246	6.34519042	249.838762	91.8375588	3.80888696
0.17957361	46.5521358	6.3427989	257.188762	91.7884689	3.82192991
0.2014849	47.2822081	6.33931333	264.538762	91.7618485	3.80877947
0.22606978	48.0118167	6.3346689	271.888762	91.7529947	3.7706008
0.25365446	48.7408195	6.32880815	279.238762	91.7586164	3.70607356
0.28460499	49.4690786	6.32164118	286.588762	91.7760588	3.61388862
0.31933205	50.1964312	6.31308629	293.938762	91.8032426	3.49128714
0.35829645	50.9227204	6.30302576	301.288762	91.8385263	3.33368759
0.40201523	51.6477565	6.29135097	308.638762	91.880556	3.13453587
0.45106851	52.3713575	6.27791373	315.988762	91.9281522	2.88488095
0.50610719	53.0932995	6.26257588	323.338762	91.9803963	3.24836603
0.56786161	53.8133689	6.2451568	338.038762	92.0960374	2.84834684
0.63715121	54.5313	6.22548677	315.988762 91.9281522 323.338762 91.9803963 338.038762 92.0960374 346.463304 85.4623064		4.44482276
0.71489541	55.2468402	6.2033525	360.438762	87.0471112	4.91253236
0.80212584	55.9596747	6.17855206	375.138762	87.8699833	5.30757924
0.9	56.6695044	6.15084256	389.838762	88.4915216	5.72932755
1.00981661	57.3759586	6.11999204	404.538762	89.0090804	6.00285308
1.13303287	58.0786846	6.08573667	419.238762	89.4570492	6.16012027
1.27128379	58.7772512	6.04782164	430 89.7519413		6.30547663
1.42640387	59.471247	6.00597984	443.924767	86.1803687	4.71363322
1.60045147	60.1601792	5.95994881	457.788762	87.1079093	5.29510377
1.79573608	60.843576	5.9094895	472.488762	87.8124874	5.71138488
2.01484902	61.5208894	5.85435935	487.188762	88.3929232	5.98983492
2.26069779	62.191592	5.79439853	501.888762	88.8937724	6.18174576
2.53654464	62.855099	5.72942978	516.588762	89.3365665	6.29532408
2.84604989	63.510842	5.6594508	531.288762	89.7347515	6.35995229

Tabla B. Datos de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal variable.

3.1933205	64.1582357	5.58441982	545.988762	90.097441	6.24651552
3.58296453	64.7967022	5.50460489	560.688762	90.4312656	6.25866227
4.02015233	65.4257178	5.42020178	574.403398	93.1665719	2.6338368
4.5106851	66.0447497	5.33189963	590.438762	92.784417	7.5346908
5.06107193	66.6534331	5.24026952	605.138762	92.8249331	-66.3453586
5.6786161	67.2513664	5.14660006	619.838762	92.9218232	6.66844806
6.37151206	67.8384815	5.0520035	634.538762	93.0419685	6.53063133
7.14895411	68.4146332	4.95853036	649.238762	93.174458	6.47877031
8.02125844	68.9802253	4.86799276	671.288762	93.3849349	6.45930773
9	69.5355299	4.78324905	693.338762	93.6010307	6.86974572
10.0981661	70.0816091	4.70687878	715.388762	93.8175414	6.68159863
11.3303287	70.6193288	4.64231572	737.438762	94.0316558	6.54297889
12.7128379	71.1505418	4.59274411	759.488762	94.2418777	6.55835273
14.2640387	71.6768473	4.56150233	779.486833	87.9169048	4.37575788
16.0045147	72.2008666	4.55183835	797.788762	89.3558337	5.14472868
17.9573608	72.7249468	4.56588583	819.838762	90.3067025	5.72852739
20.1484902	73.2522006	4.60600705	841.888762	91.0147223	6.09923451
22.6069779	73.7855191	4.67192022	863.938762	91.5885749	6.25926993
25.3654464	74.32795	4.76398708	885.988762	92.0745378	6.36255944
28.4604989	74.8824676	4.87886116	908.038762	92.4986153	6.40855747
31.933205	75.4513493	5.01416408	930.088762	92.8769096	6.42868337
35.8296453	76.0370216	5.16402092	952.138762	93.2199061	6.43690959
40.2015233	76.6404091	5.323528	974.188762	93.5348906	6.44E+00
45.106851	77.2628092	5.48604038	1003.58876	93.9199516	6.44129351
50.6107193	77.9036165	5.64546179	1032.98876	94.2728621	6.44101086
56.786161	78.5627248	5.79657909	1062.38876	94.5996514	6.44051024
63.7151206	79.2383282	5.93421866	1091.78876	94.9047068	6.43991044
71.0651206	79.8930281	6.04813166	1121.18876	95.1913083	6.43939569
78.4151206	80.4932428	6.13420481	1150.58876	95.4619972	6.43897144
85.7651206	81.0467906	6.20535675	1179.98876	95.7187749	6.438632
93.1151206	81.559904	6.26049535	1209.38876	95.9632558	6.43839296
100.465121	82.0376297	6.30343274	1238.78876	96.1967643	6.43821802
107.815121	82.4841376	6.33691772	1268.18876	96.4204024	6.43809115
115.165121	82.9031367	6.36231371	1297.58876	96.6350991	6.43800602
122.515121	83.2976288	6.38213392	1334.33876	96.8920903	6.43794151
129.865121	83.6699972	6.39754193	1371.08876	97.1376484	6.43789858
137.215121	84.0225925	6.40938582	1407.83876	97.3728749	6.43788098
144.565121	84.357362	6.41799293	1444.58876	97.5987061	0
151.915121	84.6759525	6.42537919			

Tabla C. Datos de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal que aumenta y luego disminuye.

t,(hr)	dP, (psia)	t*dP', (psia)	t,(hr)	dP, (psia)	t*dP', (psia)
0.00389	20.5952364	5.19572417	46.721565	70.8406967	5.18778927
0.00778	24.2727471	5.41532878	48.666565	71.053197	5.23192104
0.01167	26.4945171	5.52774766	50.611565	71.2590156	5.27355263
0.01556	28.0945869	5.58971895	52.556565	71.4586495	5.31281997
0.01945	29.3467051	5.62950638	54.501565	71.6525046	5.34975954
0.02334	30.3758024	5.65735025	56.446565	71.8407945	5.38398633
0.02723	31.2495735	5.67793954	58.391565	72.0238188	5.41657542
0.03112	32.0088726	5.69376564	60.336565	72.2018537	5.44668539
0.03501	32.6802776	5.70628054	62.281565	72.3751546	5.47437621
0.03928187	33.3379044	5.71727558	64.226565	72.5439578	5.50088609
0.04407498	33.996729	5.7271368	66.171565	72.7085129	5.52569216
0.04945294	34.6566264	5.73592745	68.116565	72.8690188	5.54889479
0.05548711	35.3174751	5.74369659	70.061565	73.0256297	5.57061506
0.06225756	35.9791614	5.7504913	72.006565	73.178518	5.59093402
0.06985413	36.6415746	5.75634809	73.951565	73.3278452	5.60979492
0.07837763	37.3046095	5.76130139	75.896565	73.4737626	5.62668222
0.08794114	37.9681633	5.76537443	77.841565	73.6164122	5.64252081
0.09867159	38.632136	5.76858828	79.786565	73.7559275	5.65811798
0.11071134	39.2964298	5.77095212	81.731565	73.892434	5.67193451
0.12422017	39.9609469	5.77247286	83.676565	74.0260348	5.68492587
0.13937732	40.6255908	5.77314461	85.621565	74.1568547	5.69688866
0.15638393	41.2902625	5.77295916	89.511565	74.4105801	5.7192025
0.17546565	41.9548638	5.77189433	93.401565	74.6543941	5.73849928
0.1968757	42.6192903	5.76992547	97.291565	74.8889957	5.75464309
0.22089817	43.2834382	5.76701261	101.181565	75.1150129	5.76905189
0.24785182	43.9471941	5.7631131	105.071565	75.3329709	5.78156611
0.27809431	44.6104441	5.75816737	108.961565	75.5433816	5.79244503
0.31202695	45.2730611	5.75211287	112.851565	75.746773	5.80146442
0.3501	45.934917	5.7448685	116.741565	75.9435777	5.80961256
0.39281866	46.595866	5.73634976	120.631565	76.1341898	5.81678333
0.44074979	47.2557604	5.72645207	124.521565	76.3189689	5.82233608
0.49452939	47.9144303	5.71506693	128.411565	76.4982445	5.82766063
0.55487111	48.5717031	5.70206487	132.301565	76.6722721	5.83227907
0.62257562	49.2273792	5.68731175	136.191565	76.8413479	6.06948543
0.69854134	49.8812551	5.67065291	140.081565	77.0057702	6.04275095
0.78377627	50.5330953	5.65192811	143.971565	77.1657814	6.02104525
0.87941144	51.1826596	5.63095952	147.861565	77.3216056	6.00366026
0.98671586	51.8296717	5.60756255	151.712922	73.9364993	5.36962678

1.10711341	52.4738486	5.58154214	155.416734	74.9917807	5.04598912
1.24220168	53.1148692	5.55269517	159.306734	75.5124737	4.89960567
1.3937732	53.7524039	5.52082163	163.196734	75.875838	4.90688908
1.56383926	54.3860854	5.4857122	167.086734	76.1697996	4.95131959
1.7546565	55.0155358	5.44718399	170.976734	76.4253078	5.03082243
1.96875698	55.6403459	5.40504377	176.811734	76.7648951	5.17473873
2.20898166	56.2600932	5.35916198	182.646734	77.0701162	5.30995138
2.47851819	56.8743385	5.30939853	188.481734	77.3511661	5.4214705
2.78094315	57.4826273	5.25573277	194.316734	77.6134212	5.51739357
3.12026953	58.0845157	5.19813532	200.151734	77.8602387	5.58679128
3.501	58.6795422	5.13677483	205.986734	78.0939271	5.62677203
3.92818661	59.2673018	5.07181729	211.821734	78.3161122	5.69283972
4.40749787	59.8473713	5.00372841	217.656734	78.5281313	5.74235273
4.94529394	60.4194529	4.93298616	222.690378	71.6407099	4.83578841
5.54871107	60.9832334	4.8604816	228.306734	73.357855	4.69582371
6.22575621	61.5386201	4.7871496	234.141734	74.2530444	4.60540668
6.98541336	62.0855153	4.71442645	239.976734	74.8834961	4.69582125
7.83776271	62.6241569	4.64384921	245.811734	75.3931872	4.85986516
8.7941144	63.1548011	4.57744382	251.646734	75.8328038	5.03316695
9.86715864	63.6781523	4.51741985	257.481734	76.2251486	5.18001523
11.0711341	64.1949754	4.46625269	265.261734	76.6945238	5.3479177
12.4220168	64.706545	4.42668376	273.041734	77.1168396	5.47841678
13.937732	65.2142571	4.40120023	280.821734	77.5020042	5.41491248
15.6383926	65.7199588	4.39256917	288.601734	77.8565691	5.45324962
17.546565	66.2256835	4.40222534	296.361734	79.32374	6.50482276
19.491565	66.6893786	4.43096951	304.141734	79.4194598	6.24732654
21.436565	67.1121378	4.47384737	311.921734	79.5962303	6.07377991
23.381565	67.5019701	4.52071533	319.701734	79.7901771	5.97905926
25.326565	67.8646886	4.57394981	327.481734	79.9863742	5.97074233
27.271565	68.2048642	4.63082454	335.261734	80.1801258	6.26752739
29.216565	68.5256986	4.69029067	343.041734	80.369751	6.09588954
31.161565	68.82968	4.75137252	352.766734	80.5999933	5.97513517
33.106565	69.1189661	4.81201489	362.491734	80.8224087	5.92451105
35.051565	69.3954063	4.8715706	372.216734	81.0371578	5.89560686
36.996565	69.660038	4.93052433	381.941734	81.2445172	0
38.941565	69.9139747	4.98616991			
40.886565	70.1581735	5.04073827			

GAS

En esta parte se observan las tablas de presión respectivamente para cada prueba multitasa con caudal de gas utilizado en el capítulo 4, EJEMPLOS, para la interpretación de las mismas.

Tabla D. Datos de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando.

t,(hr)	$m(P), (psi^2/cp)$	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
0.00	16552666.18	13373807.26	0.19	635491423.30	384751827.87
0.01	32850903.18	34735342.08	0.21	682158663.51	386801399.07
0.01	48900930.23	51266524.40	0.24	729103083.30	384294434.26
0.01	64706075.04	66004182.17	0.26	775661597.44	376872378.00
0.02	80272322.52	80278973.03	0.30	821195033.67	364459537.25
0.02	95603119.45	95209255.74	0.31	997933557.17	575664643.12
0.02	110700411.13	108920122.30	0.32	1025925016.49	590142315.50
0.03	125572663.03	123082546.39	0.33	1053916475.82	604619987.89
0.03	140219017.67	135249774.23	0.34	1081907935.15	619097660.28
0.03	156050844.10	148367530.68	1.49	1111236203.53	23147555.47
0.04	173502392.60	163844785.51	1.67	1112077677.69	15057378.81
0.04	192700781.82	179148174.15	1.87	1112555309.97	9473250.06
0.05	213768742.07	195532592.47	2.10	1112812880.79	5892321.82
0.05	236827063.20	212895073.50	2.36	1113016196.25	3768859.50
0.06	261988767.79	230997659.56	2.65	1113185341.13	2628860.10
0.07	289350887.48	249667022.34	2.97	1113370019.12	2141251.54
0.07	318998360.09	268655384.55	3.33	1113564133.47	1855343.68
0.08	350978954.64	287699532.46	3.74	1113776985.06	2068909.62
0.09	385323528.98	306417753.11	4.20	1114008770.94	2220480.59
0.11	421996727.81	324420284.53	4.71	1114262790.58	2434493.91
0.12	460942174.53	341188499.15	5.28	1114542884.62	2669764.59
0.13	502001723.63	356212436.58	5.93	1114852534.27	2933278.97
0.15	544995069.43	368874656.66	6.65	1115194801.02	3218641.26
0.17	589603538.48	378593178.61	7.46	1115572619.01	3527153.90

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
8.37	1115988155.83	3857293.59	61.09	1130079140.68	9642148.82
9.39	1116443699.20	4205557.24	62.74	1130339405.39	9683748.10
10.54	1116941195.68	4570224.11	64.39	1130593554.02	9806973.73
11.82	1117482582.75	4949055.68	66.04	1130841783.23	9849355.48
13.27	1118069556.93	5344098.40	67.69	1131084448.18	9830984.91
14.89	1118703663.94	5743598.40	69.34	1131321772.69	9829168.60
16.54	1119324708.82	6113711.12	70.99	1129946546.17	9617641.05
18.19	1119921935.94	6447699.23	73.13	1130929114.03	9590407.15
19.84	1120496192.01	6755324.65	76.25	1131399430.12	9814667.27
21.49	1121049377.03	7030786.40	79.55	1131874979.05	9855348.09
23.14	1121582218.81	7281362.70	82.85	1132329021.20	9860039.89
24.79	1122095687.11	7518168.28	86.15	1132763178.75	9951001.76
26.44	1122591240.78	7720327.33	89.45	1133179095.94	9945675.99
28.09	1123069680.73	7913043.47	92.75	1133578182.26	9948113.44
29.74	1123531682.09	8084993.78	96.05	1133961675.56	9964227.91
31.39	1123978117.65	8246327.10	99.35	1134330734.52	9970043.54
33.04	1124410061.36	8402218.69	102.65	1134686234.32	9514235.82
34.69	1124828141.09	8524356.45	105.95	1135029120.91	9559495.55
36.34	1125232910.05	8649489.44	109.25	1135360329.74	9363932.46
37.99	1125625027.66	8756508.97	112.13	1134502081.83	9999221.53
39.64	1126005123.24	8861954.04	116.25	1134977247.46	9497901.70
41.29	1126373859.22	8959413.74	119.55	1135336977.50	9531155.86
42.94	1126731758.00	9284850.90	122.85	1135682342.22	9392265.42
44.59	1127079295.11	9277218.48	126.15	1136014241.78	9498699.41
46.24	1127416957.73	9291289.37	129.45	1136333686.05	9682218.61
47.89	1127745205.33	9381707.11	132.75	1136641643.30	9694901.15
49.54	1128064470.73	9407615.06	136.05	1136938951.83	9796892.26
51.19	1128375151.75	9431281.51	139.35	1137226408.60	9868455.77
52.84	1128677622.09	9468959.40	143.13	1136340446.33	9458983.66
54.49	1128972267.10	9531407.93	147.90	1136822046.33	9677388.35
56.14	1129259428.96	9554142.24	152.85	1137292304.31	9792985.69
57.79	1129539429.51	9587619.69	157.80	1137735264.22	9913857.27
59.44	1129812571.67	9609881.15	162.75	1138154097.87	9934171.56

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
172.65	1138929968.41	9233006.44	244.20	1142264541.75	9885899.95
177.60	1139291284.04	9307582.19	250.00	1142573473.18	9909009.65
182.55	1139637177.34	9630410.79	256.25	1141496974.07	9263943.20
187.50	1139969110.09	9666538.43	262.85	1141948804.71	9613810.71
192.45	1140288311.38	9790948.11	269.45	1142366808.15	9773168.02
197.40	1140595860.93	9866956.22	276.05	1142756406.69	9862486.80
202.13	1139477653.51	10003264.02	282.65	1143122047.12	9896754.02
207.90	1139941144.43	9663736.19	289.25	1143467215.71	9941657.49
212.85	1140310498.48	9782768.55	297.50	1143874083.46	9653524.82
217.80	1140659564.52	9850261.99	305.75	1144257563.67	9774387.09
224.40	1141097586.25	9442483.14	314.00	1144621006.40	9873038.05
231.00	1141508679.90	9537672.84	322.25	1144967009.83	9984916.93
237.60	1141896661.29	9776892.25	330.00	1145278269.19	0.00

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
0.00	10117128.68	8137243.15	0.33	729287516.80	339606581.19
0.01	20129983.62	21447578.11	0.37	770212858.61	325960172.09
0.01	30041108.11	31838198.94	0.42	809196105.30	308038780.74
0.01	39849785.27	41218527.34	0.47	845660978.97	286037896.72
0.01	49559525.51	50397659.47	0.52	878928051.67	260815032.64
0.02	59171629.86	60130223.26	0.59	908665497.98	233076409.83
0.02	68685407.48	69200546.22	0.66	934366249.63	203895468.88
0.02	78101997.97	78711099.92	0.74	956064238.83	174347565.92
0.02	87425935.87	86918030.93	0.83	973601547.56	145398863.68
0.03	97553603.11	95882274.59	0.93	987368699.96	118172116.88
0.03	108786550.90	106760387.28	1.05	997626650.20	93248841.01
0.03	121221913.98	117599929.54	1.17	1004956192.20	71452375.80
0.04	134970931.77	129460215.98	1.32	1009921158.44	52874081.83
0.04	150142246.03	142324252.71	1.48	1013057606.99	37834859.08
0.05	166850010.86	156127111.46	1.66	1014978729.04	26022386.08
0.05	185210667.04	170792537.05	1.86	1016022193.61	17263576.40
0.06	205330841.85	186298830.28	2.09	1016628837.32	11055104.99
0.07	227327335.25	202511719.39	2.34	1016937775.15	6914335.83
0.07	251282787.20	219347216.24	2.63	1017160538.82	4377188.23
0.08	277301582.85	236570132.23	2.95	1017328079.10	2912985.60
0.09	305418725.81	254006571.79	3.31	1017502077.04	2231332.88
0.10	335706368.70	271302138.99	3.71	1017683852.17	1852378.14
0.12	368121164.88	288166025.93	4.16	1017881581.75	1957708.60
0.13	402675061.18	304126610.04	4.67	1018097031.18	2066336.42
0.15	439211440.81	318760568.12	5.24	1018332427.64	2253109.04
0.17	477646539.90	331519188.77	5.88	1018591110.53	2466400.09
0.19	517678972.32	341860241.60	6.60	1018876595.71	2706491.25
0.21	559090733.05	349252407.61	7.40	1019191670.47	2966500.14
0.23	601421486.53	353099692.48	8.30	1019539496.54	3246475.46
0.26	644288249.04	353037583.19	9.32	1019922066.74	3546283.92
0.29	687094296.86	348548692.51	10.45	1020341625.08	3871526.20

Tabla E. Datos de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal disminuyendo.

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
11.73	1020799815.38	4204366.71	54.63	1030940041.63	8314544.54
13.03	1021253508.92	4524785.35	55.93	1031143915.08	8407114.24
14.33	1021693911.99	4820462.17	57.23	1031343910.73	8469592.80
15.63	1022121625.45	5093629.22	59.83	1031732755.79	8579255.25
16.93	1022537172.33	5355908.60	62.43	1032107368.04	8672316.79
18.23	1022940863.60	5592188.65	65.03	1032468756.77	8737290.60
19.53	1023333455.78	5814675.29	67.63	1032817724.95	8790769.66
20.83	1023715435.82	6023849.94	69.46	1033057082.64	8825072.01
22.13	1024086937.71	6216402.39	71.14	1034831001.57	8880973.55
23.43	1024448392.29	6399552.31	73.62	1034417248.91	8392513.56
24.73	1024800503.42	6568431.72	76.22	1034689458.64	8404849.63
26.03	1025143482.61	6731197.59	78.82	1034955308.54	8881378.73
27.33	1025477546.09	6875666.16	81.42	1035214379.32	8938412.05
28.63	1025803045.74	7015077.49	84.02	1035467226.85	8447398.54
29.93	1026120333.22	7144378.78	86.62	1035714177.95	8461608.04
31.23	1026430060.11	7267126.28	89.22	1035955473.25	8455080.91
32.53	1026732204.34	7382746.55	91.82	1036191290.05	8457862.44
33.83	1027027015.81	7487830.01	94.42	1036421866.13	8430815.00
35.13	1027314764.95	7584972.35	97.02	1036647205.38	8421751.61
36.43	1027595716.96	7671469.46	99.62	1036867657.69	8379180.12
37.73	1027870129.72	7771155.74	102.22	1037083405.30	8359309.47
39.03	1028138415.14	7855999.33	104.82	1037294649.68	8303336.10
40.33	1028400632.39	7926123.90	107.42	1037501559.51	8272595.39
41.63	1028656986.77	8003878.03	110.00	1037702692.83	9085130.89
42.93	1028907684.70	7799197.72	113.62	1039048479.86	8724168.59
44.23	1029152925.49	7837467.10	117.52	1039268375.51	9025856.38
45.53	1029392901.07	7897931.44	121.42	1039486949.32	8836545.25
46.83	1029627795.89	7926433.57	125.32	1039703589.59	8715790.25
48.13	1029857809.08	7976559.00	129.22	1039918272.10	8621772.16
49.43	1030083114.56	8021497.26	132.47	1041308436.57	8448934.97
50.73	1030303841.38	8035417.69	136.22	1041433015.34	8613809.73
52.03	1030520141.82	8069795.44	140.12	1041573255.40	8676263.69
53.33	1030732161.92	8073949.18	144.02	1041716925.49	8700768.74

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
147.92	1041863668.51	8721538.64	202.22	1044859061.93	9217905.04
151.82	1042012633.43	8723699.87	207.42	1044999412.22	9190479.80
155.72	1042163165.81	8718548.64	212.62	1045142374.74	9165190.21
159.62	1042314760.85	8707731.36	217.82	1045287164.92	9141031.43
163.52	1042466918.14	8688052.39	223.02	1045433131.30	9117275.81
167.42	1042619304.76	8662850.34	228.22	1045579775.08	9093191.89
171.68	1044240130.86	10840139.45	233.62	1047210604.54	-12782484.07
176.22	1044237765.40	9687563.34	240.12	1047268150.52	46326917.72
181.42	1044346267.26	9481583.24	246.62	1047343621.35	17241439.30
186.62	1044464275.71	9379967.52	253.12	1047433482.12	13273099.15
191.82	1044590209.43	9287403.07	259.62	1047534501.15	0.00
197.02	1044722279.72	9249105.50			

Tabla F. Datos de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal aumentando y luego disminuyendo.

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
0.01	26362296.31	21479312.99	0.83	1021970818.72	153950802.73
0.01	52056169.59	54216170.37	0.93	1036586329.96	125259537.13
0.02	77104416.96	79102050.74	1.04	1047505006.97	98969183.59
0.03	101521867.57	100746247.31	1.17	1055318320.30	75928568.98
0.03	125329655.70	121259373.57	1.31	1060624558.95	56273510.95
0.04	148543077.95	142105417.86	1.47	1063987021.74	40322060.06
0.05	171176246.44	160686363.87	1.65	1066047310.84	27781631.93
0.05	193247486.12	179249146.03	1.85	1067174429.19	18455529.10
0.06	214766069.70	195081911.63	2.08	1067823941.61	11834522.88
0.07	237787356.97	211645341.55	2.33	1068158569.62	7405236.05
0.07	262863129.98	230007608.63	2.61	1068393305.93	4680508.39
0.08	290101816.54	247834729.41	2.93	1068571115.73	3104920.87
0.09	319543903.84	266056527.34	3.29	1068752720.06	2360990.88
0.10	351262913.22	284228647.71	3.69	1068943318.28	2056227.94
0.12	385219553.80	301968304.47	4.14	1069150152.02	1900068.60
0.13	421422792.61	318781883.24	4.65	1069375656.16	2164037.59
0.15	459717281.68	334220244.57	5.21	1069621983.10	2357288.73
0.16	500010039.64	347714197.60	5.85	1069892620.40	2580904.62
0.18	541996393.31	358691864.90	6.56	1070191261.51	2831899.51
0.21	585441215.18	366595059.78	7.36	1070520870.65	3105655.90
0.23	629874336.12	370799814.17	8.26	1070884746.28	3401254.79
0.26	674887092.99	370911224.64	9.27	1071285044.68	3718273.35
0.29	719864667.85	366394189.75	10.40	1071724096.32	4054272.14
0.33	764222183.77	357194662.41	11.67	1072203663.08	4407106.01
0.37	807277713.70	343063743.53	13.10	1072725670.51	4773644.07
0.41	848321854.91	324415337.28	14.69	1073291495.45	5150950.59
0.46	886744610.03	301473093.69	16.49	1073902803.48	5535444.88
0.52	921836939.37	275100940.30	18.50	1074560273.70	5924269.01
0.58	953231945.79	246056333.87	20.76	1075265129.81	6314172.23
0.66	980407946.08	215445333.47	23.29	1076016731.49	6701624.05
0.74	1003371295.90	184403785.71	26.13	1076814997.30	7071530.06

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
29.32	1077657961.11	7439713.17	136.57	1091572923.60	9629639.34
32.57	1078465602.60	7749081.06	139.82	1091799887.15	9633108.01
35.82	1079225350.14	8013379.12	143.07	1092021657.34	9633899.72
39.07	1079941536.00	8253268.79	149.57	1092450513.57	9637465.70
42.32	1080618135.66	8427235.87	156.07	1092861044.13	9652676.28
45.57	1081258282.80	8596726.82	162.57	1093254812.90	9647855.12
48.82	1081865143.17	8755816.66	169.07	1093633140.84	9657771.81
52.07	1082441527.16	8859002.53	175.57	1093997186.11	9650358.58
55.32	1082989823.97	8971502.93	182.07	1094347981.29	9646845.44
58.57	1083512257.64	9052837.41	188.57	1094686450.89	9645630.98
61.82	1084010718.21	9137585.38	195.07	1095013387.96	9503747.91
65.07	1084487074.79	9217066.07	201.57	1095329580.87	9492245.00
68.32	1084943061.54	9261388.38	208.07	1095635718.26	9479860.72
71.57	1085380164.05	9317504.48	214.57	1095932420.12	9471454.72
74.82	1085799717.23	9353910.91	221.07	1096220250.83	9456865.98
78.07	1086202710.94	9396838.14	227.57	1096499725.59	9441028.03
81.32	1086590450.00	9434114.79	234.07	1096771316.02	9423814.63
84.57	1086964006.70	9456672.56	240.57	1097035458.41	9405075.04
87.82	1087324306.70	9482904.79	247.07	1097292553.89	9090070.78
91.07	1087672188.76	9497062.12	252.86	1094881594.64	9691752.49
94.32	1088008415.20	9524032.51	259.05	1095335466.47	9634562.28
97.57	1088333485.86	9543143.10	265.55	1095769813.75	9631741.49
100.82	1088648218.18	9551721.61	272.05	1096169753.56	9526869.75
104.07	1088953263.21	9566945.45	278.55	1096540825.37	9471512.81
107.32	1089249175.30	9580089.98	285.05	1096887551.86	9424805.00
110.57	1089536462.53	9585356.86	294.80	1097369592.46	9384270.47
113.82	1089815591.79	9597386.91	304.55	1097814043.71	9634895.51
117.07	1090086993.06	9601054.29	314.30	1098227771.60	9640523.86
120.32	1090351025.05	9608909.69	321.95	1095713960.01	9599593.99
123.57	1090607988.78	9615558.60	332.30	1096519075.13	9575638.02
126.82	1090858346.78	9617733.42	342.05	1097130393.38	9425521.70
130.07	1091102424.29	9624013.51	351.80	1097672714.23	9616695.78
133.32	1091340523.05	9625486.56	361.55	1098161574.27	9638360.44

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
371.30	1098608079.52	8407617.70	496.80	1103474917.97	9994414.31
381.05	1099020387.45	7614334.80	509.05	1105788024.17	10799170.94
390.80	1099404585.61	7810117.67	522.05	1105767055.93	9898271.00
400.00	1099745460.94	7955591.85	535.05	1105809452.05	9723512.71
412.30	1101944723.19	9606465.48	548.05	1105893102.45	9667526.61
422.05	1102079967.96	9696519.12	560.91	1110608202.60	13714284.52
431.80	1102237542.71	9749394.35	575.55	1108226995.96	95858.14
444.80	1102469189.97	9842751.04	591.80	1108118200.21	18052664.58
457.80	1102714801.97	9881981.86	608.05	1108100645.25	10762109.39
470.80	1102967058.01	9929069.79	624.30	1108140445.00	9987653.89
483.80	1103221364.16	9963586.61	640.55	1108217502.14	0.00

m(P), (psi^2/cp) m(P), (psi^2/cp) $t^{*}m'(P)$, (psi²/cp) $t^{*}m'(P)$, (psi²/cp) t,(hr) t,(hr) 0.01 49180938.47 40755709.29 1.27 1065370169.95 33558113.92 0.02 96046068.72 96755300.31 1.43 1066918541.53 22653279.47 0.03 140719585.43 137631194.96 1067746148.93 14752916.17 1.60 0.04 183312265.71 1.80 1068217995.96 9280969.83 171207711.13 0.05 201451046.61 2.01 5755779.94 223924651.58 1068465680.13 0.06 262651949.12 229988379.62 2.26 1068660188.49 3656976.79 0.07 299593889.00 253670392.76 2.54 1068817300.69 2516163.38 1068989099.99 0.08 334815434.76 275263498.20 2.85 2022405.95 0.09 368419766.76 3.19 293382196.40 1069168742.89 1841611.50 0.10 403526613.37 310882961.56 3.58 1069365894.27 1921925.69 0.11 440823160.36 326526292.54 4.02 2057295.59 1069580420.07 0.13 480151871.38 341173836.27 4.51 1069815381.68 2255857.41 0.14 521352531.08 353611531.31 5.06 1070074529.83 2474329.01 0.16 564112461.96 363118440.83 5.68 1070361255.40 2720260.03 0.18 608123898.06 369200646.03 6.37 1070678378.86 2986918.04 0.20 652900226.97 371355176.03 7.15 1071028737.57 3275916.42 0.23 697972473.44 369163425.25 8.02 1071414452.51 3586024.74 742699738.67 0.25 362252972.92 9.00 1071837776.54 3915027.87 0.28 786475321.18 350568264.99 10.10 1072300557.99 4260890.59 0.32 828584565.31 334073192.01 11.33 1072804710.75 4621059.60 0.36 12.71 868361606.63 313217613.87 1073351958.23 4993002.81 0.40 905166971.30 288417144.39 14.26 1073943945.24 5370317.96 0.45 938411678.75 260608835.80 16.00 1074581872.23 5682409.39 0.51 17.96 967719092.48 230635434.23 1075266786.98 6110467.26 0.57 992739874.01 199687791.69 20.15 1075998570.33 6516822.50 1076777144.49 0.64 1013505331.25 168834325.99 22.61 6904540.70 0.71 23.14 1030024982.06 139150730.31 1082640425.59 7426849.98 0.80 1042736748.88 23.95 111619642.79 1077405317.18 7198398.35 0.90 1052004177.56 86882397.32 25.04 1077598621.58 7296083.89 1.01 1058483631.51 65559463.73 26.00 1077871910.42 7402669.00 1.13 1062739307.73 47737952.48 27.40 1078264211.86 7577727.09

Tabla G. Datos de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal disminuyendo y luego aumentando.

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
29.46	1078819467.03	7769507.98	148.00	1094429661.96	9624142.77
32.49	1079593132.56	8028337.71	152.40	1094913915.27	9680517.65
36.92	1080647961.53	8370505.81	157.49	1095158678.61	9685555.60
41.93	1081735930.75	8502273.89	161.92	1095371150.72	9834411.35
46.93	1082730570.06	8883340.41	166.93	1095608925.07	9697866.27
51.94	1083644291.21	9041402.71	171.93	1095844202.18	9684946.87
56.94	1084487698.92	9037301.99	176.00	1096305530.23	9577860.06
61.95	1085269592.31	9097689.30	182.49	1096575634.59	9519294.16
63.97	1085570059.97	9106618.94	186.92	1096759751.25	9517240.05
66.00	1085862138.01	9190843.96	191.93	1096966208.06	9503967.52
68.04	1086327164.18	9355906.28	196.93	1097170957.72	9625356.26
70.40	1086638969.65	9390919.45	201.94	1097373648.81	9641044.16
72.46	1086904666.93	9416500.80	206.94	1097574030.22	9663503.86
75.49	1087282599.55	9309471.43	213.46	1098105094.48	9631494.44
79.92	1087813047.58	9342743.40	220.92	1098365597.18	9767875.64
84.93	1088379767.01	9319528.32	227.46	1098874659.03	9491121.40
86.96	1088601446.64	9312185.95	232.95	1099484698.60	9660697.02
89.00	1088818366.63	9473990.64	238.46	1099500819.47	9665226.61
92.00	1089332472.77	9364692.59	245.92	1099703298.43	9666530.92
95.46	1089667245.89	9417084.51	255.93	1099982214.10	9726252.28
98.49	1089950897.10	9417393.76	265.94	1100264795.18	9669525.56
101.04	1090403845.74	9560951.43	272.46	1100749393.53	9578526.68
103.40	1090604354.61	9567877.04	279.46	1101224179.34	9718534.74
108.49	1091026597.95	9470375.79	285.95	1101824037.37	9594073.77
112.92	1091382353.29	9625434.06	294.49	1101842176.03	9595876.74
117.93	1091770085.55	9631654.61	303.93	1102021076.21	9590483.84
122.00	1092075390.50	9665409.41	313.94	1102223113.50	9583912.55
125.00	1092529452.89	9648396.92	322.00	1102728176.42	9445289.65
128.46	1092763051.46	9579897.58	332.92	1102915582.39	9459714.70
132.04	1093247508.15	9610028.61	341.46	1103398711.53	9462323.13
136.46	1093514030.86	9555155.57	349.39	1103889554.33	9700093.42
140.74	1093768726.03	9558410.10	357.49	1103966931.62	9684060.21
144.04	1094219373.29	9617750.13	366.93	1104092892.10	9679818.96

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
376.94	1104240478.22	9654594.87	507.95	1108485656.93	5057512.02
386.95	1104397740.56	9646889.45	520.92	1108354691.86	6100976.78
397.46	1104911554.26	9939516.06	535.94	1108409346.04	7109056.50
409.93	1105073586.90	9866040.82	549.00	1108488748.60	7580183.66
419.94	1105215175.10	9867533.50	562.92	1108945733.33	8090304.07
431.46	1105736261.27	10179652.23	576.49	1109392980.26	8240103.38
443.93	1105879660.04	10052460.38	590.93	1109443049.92	8609870.03
456.49	1106383354.10	10411317.57	605.46	1109139398.26	9234630.96
470.93	1106529653.64	10268756.51	621.92	1108961362.33	8858047.62
483.49	1107024233.13	11056799.97	637.00	1108805883.71	8847848.84
496.46	1107506559.14	14492915.61			

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
0.01	26404075.22	21497234.43	0.67	1056620520.55	170538255.47
0.01	52162320.12	54400897.08	0.76	1073154546.18	139989830.86
0.02	77296387.07	79454273.26	0.85	1085762949.08	111763243.78
0.02	101819732.08	101294170.19	0.95	1094901257.57	86599396.88
0.03	125752738.73	122035332.33	1.07	1101233793.00	64978161.24
0.03	149109290.99	143168010.78	1.20	1105346808.29	47070481.89
0.04	171903330.10	162058243.76	1.34	1107879777.42	32874665.84
0.04	194151166.14	180998319.39	1.51	1109337513.91	22067019.73
0.05	215864067.12	197149623.27	1.69	1110129383.69	14284977.12
0.05	239111114.08	214113378.80	1.90	1110565917.11	8949222.13
0.06	264466772.16	233016364.18	2.13	1110812415.51	5557034.04
0.07	292032363.56	251424382.36	2.39	1111002903.93	3553335.91
0.08	321881382.80	270301122.51	2.68	1111168544.43	2502549.53
0.08	354069544.91	289275277.88	3.01	1111347445.25	2052505.56
0.10	388608748.73	307901831.13	3.38	1111536965.73	1906382.02
0.11	425476101.43	325751467.45	3.79	1111744580.16	2013235.87
0.12	464587624.77	342320254.60	4.25	1111970706.57	2169034.78
0.13	505802406.93	357077716.24	4.77	1112218680.54	2378698.92
0.15	548904538.43	369413101.89	5.35	1112492418.04	2611057.92
0.17	593596197.31	378746063.48	6.01	1112795259.29	2870118.34
0.19	639502008.64	384451607.40	6.74	1113130238.97	3151047.43
0.21	686143121.19	386018099.79	7.56	1113500097.50	3455098.35
0.24	732982296.03	382967928.51	8.48	1113907122.76	3780704.02
0.27	779372095.69	375022653.68	9.52	1114353536.78	4125676.09
0.30	824656268.63	362055628.25	10.68	1114841311.58	4487732.01
0.34	868092371.52	344182750.90	11.98	1115372357.57	4864308.03
0.38	909007385.88	321792580.42	13.44	1115948535.54	5252589.34
0.43	946710528.56	295469862.27	15.08	1116571376.89	5649421.04
0.48	980665324.38	266127713.87	16.92	1117242278.17	6052448.45
0.54	1010428143.53	234731814.92	18.99	1117961951.71	6458262.87
0.60	1035757044.39	202504065.70	21.31	1118730480.55	6856396.39

Tabla E. Datos de pseudopresión y derivada de pseudopresión para una prueba multitasa simulada para un yacimiento naturalmente fracturado para un caudal variado.

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
23.91	1119547364.46	7254688.92	111.36	1133642286.61	9974880.56
26.56	1120334476.25	7598946.81	114.01	1133877744.08	9981612.32
29.21	1121079518.50	7897888.05	116.66	1134107859.56	9983959.60
31.86	1121785352.26	8170501.11	121.96	1134552970.71	10406116.65
34.51	1122455752.38	8381290.61	127.26	1134979293.80	10430152.64
37.16	1123092894.03	8581810.75	132.56	1135388150.83	10469758.10
39.81	1123699293.22	8770517.17	137.86	1135781038.65	10510159.87
42.46	1124277493.73	8903534.79	143.16	1136159145.84	10551594.03
45.11	1124829429.76	9042311.08	148.46	1136523532.40	10594321.01
47.76	1125356966.42	9149837.60	153.76	1136875148.21	10618289.74
50.41	1125861846.68	9257352.16	159.06	1137214847.82	10664055.85
53.06	1126345627.45	9359719.71	164.36	1137543353.69	10712093.25
55.71	1126809795.55	9422865.68	169.66	1137861407.13	10762761.78
58.36	1127255679.68	9497463.49	174.96	1138169663.95	10793990.40
61.01	1127684484.92	9550646.43	180.26	1138468708.18	10850677.09
63.66	1128097308.72	9609261.76	185.56	1138759073.11	10911030.59
66.31	1128494943.10	9661329.95	190.86	1139041247.08	10975444.67
68.96	1128878546.17	9696201.19	196.16	1139315678.30	11044351.54
71.61	1129248997.77	9733938.86	200.74	1147271813.82	9632165.01
74.26	1129607089.47	9757246.91	207.38	1142812517.67	8699397.68
76.91	1129953544.83	9796904.07	212.68	1142845565.45	9070141.82
79.56	1130289026.89	9825841.24	217.98	1142901241.15	9260191.41
82.21	1130613973.79	9840914.90	223.28	1142975213.94	9354357.96
84.86	1130929074.73	9864490.38	228.58	1143063798.10	9406468.06
87.51	1131234939.28	9885299.69	233.88	1143164052.83	9445700.44
90.16	1131532064.17	9895287.37	241.83	1143331234.20	9459261.17
92.81	1131820907.23	9915010.11	249.78	1143513218.44	9469608.47
95.46	1132101891.34	9922503.76	257.73	1143705443.21	9450354.34
98.11	1132375407.90	9935853.15	265.68	1143904509.02	9443732.56
100.76	1132641819.88	9947537.37	272.33	1142499563.24	10450770.26
103.41	1132901312.48	9952412.23	280.03	1142860457.47	9818989.42
106.06	1133154343.87	9963527.63	287.98	1143202309.18	9617967.32
108.71	1133401241.04	9967167.82	295.93	1143520268.81	9527021.30

t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)	t,(hr)	m(P), (psi ² /cp)	t*m'(P), (psi ² /cp)
303.88	1143819115.20	9495357.95	400.63	1145355320.63	8180440.59
311.83	1144102305.98	9453383.20	411.23	1145888125.99	8513611.52
319.78	1144372392.40	9418682.83	421.83	1146342338.67	9027222.49
327.38	1152419095.30	11061895.71	432.43	1146740060.36	9339945.35
335.33	1151920663.04	12422087.99	443.03	1147096035.98	9049760.95
343.28	1151549300.85	12987102.82	453.43	1144156028.51	5801353.70
351.23	1151274733.34	13251116.25	465.33	1144925104.21	8592441.67
361.83	1151020863.09	13404002.14	478.58	1145625527.03	8620073.86
372.43	1150861535.98	13461908.21	491.83	1146213452.12	9229420.62
381.08	1142627693.28	3863088.88	505.08	1146723140.92	9633357.04
390.03	1144710727.30	6342469.44	518.33	1147176257.49	0.00