ANÁLISIS DE PRESIÓN Y DERIVADA DE PRESIÓN EN YACIMIENTOS DE DOBLE PERMEABILIDAD

PRESENTADO POR:

JAMES VEGA, Q.E.P.D MAIVER RAMIRO DIAZ SUAREZ

UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA DE PETRÓLEOS GRUPO DE INVESTIGACIÓN EN PRUEBAS DE POZOS NEIVA 2012

ANÁLISIS DE PRESIÓN Y DERIVADA DE PRESIÓN EN YACIMIENTOS DE DOBLE PERMEABILIDAD

PRESENTADO POR:

JAMES VEGA, Q.E.P.D MAIVER RAMIRO DIAZ SUAREZ

Proyecto de Grado presentado como requisito para optar al título de Ingeniero de Petróleos

Director: FREDDY HUMBERTO ESCOBAR MACUALO Doctor en Ingeniería de Petróleos

UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA DE PETRÓLEOS GRUPO DE INVESTIGACIÓN EN PRUEBAS DE POZOS NEIVA 2012

Nota de aceptación

Firma del presidente del jurado

Firma del jurado

Firma del jurado

TABLA DE CONTENIDO

1. RESUMEN	10
ABSTRACT	11
2. INTRODUCCION	12
3. MARCO TEORICO	13
3.1 BARAENBLATT (1959), WARREN Y ROOT (1964)	13
3.1.1 YACIMIENTOS DE DOBLE POROSIDAD:	13
3.2 BREMER (1986)	14
3.2.1 YACIMIENTOS DE DOBLE PERMEABILIDAD:	14
3.2.2 DESARROLLO DE ECUACION DE DIFUSIVIDAD	15
3.2.3 DESCRIPCION DEL SISTEMA DE DOBLE PERMEABILIDAD	18
4. TIAB`S DIRECT SYNTHESIS TECHNIQUE PARA YACIMIENTOS	
NATURALMENTE FRACTURADOS DE DOBLE PERMEABILIDAD	19
4.1 SIN EFECTOS DE ALMACENAMIENTO.	19
4.1.1 MÉTODO PARA DETERMINAR LA RELACIÓN DE LA CAPACIDAD	DE
FLUJO:	22
4.1.2 MÉTODO PARA DETERMINAR EL COEFICIENTE DE	
ALMACENAMIENTO:	25
4.1.3 MÉTODO PARA DETERMINAR EL PARÁMETRO DE FLUJO	
INTERPOROSO:	27
4.2 CON EFECTOS DE ALMACENAMIENTO	28
4.2.1 MÉTODO PARA DETERMINAR LA CORRECCIÓN DEL MÍNIMO PO	R
EFECTO DE ALMACENAMIENTO:	29
5. EJERCICIOS	31
6. CONCLUSIONES	41
7. RECOMENDACIONES	42
8. REFERENCIAS	43
9. NOMENCLATURA	44
10. ANEXO A	46
11. ANEXO B	85

DEDICATORIA

"Esta tesis va dedicada principalmente a Dios por haberme dado la salud para lograr alcanzar mis metas, las fuerzas y la motivación para no desmayar y poder llegar hasta aquí"

En especial a mi compañero de tesis, que aunque hoy no se encuentra entre nosotros fue un ser muy especial para cada persona que compartió con él, pero sobre todo para la mía, puesto que no solo fue compañero de tesis sino, amigo, quién estuvo en todo momento al desarrollar este trabajo, en las investigaciones, en los desvelos, y en cada información que se aporto a este documento, James Vega. Que aunque dejo un gran vacío sigue vigente en la memoria de quienes lo recordamos como un ejemplo de vida.

MAIVER DIAZ S.

AGRADECIMIENTOS

Primordialmente agradecemos a Freddy Humberto Escobar Macualo, Ph.D, Director y tutor de esta tesis, por su esfuerzo, confianza, paciencia y guía incansable de cada una de las etapas de la tesis; además de agradecerle por sus conocimientos del área de yacimientos estamos completamente agradecidos por inculcar en nosotros cualidades y valores que nos permiten ser más humanos y éticamente profesionales.

A Javier Martinez, y Ricardo Parra Pinzón, ingenieros de petróleos, evaluadores de este proyecto; por su colaboración y tiempo prestado.

LISTA DE GRAFICAS

Gráfica 1.	Constante para determinar λ . $0.1 \le \kappa \le 0.99$.28
Gráfica 2.	Efecto del almacenamiento en la derivada de presión del mínimo,	
	ω=0.05	.29
Gráfica 3.	Determinación de la κ para el ejercicio1	.32
Gráfica 4.	Determinación de la ω para el ejercicio 2	.34
Gráfica 5.	Determinación de la ω y λ para el ejercicio 3	.36
Gráfica 6.	Determinación de la <i>kte</i> para el ejercicio 3	.37
Gráfica 7.	Determinación de la ω para el ejercicio 4	.39
Gráfica 8.	Determinación de κ , ω y λ . ω =0.05, λ =1e-5, κ =0.1	.47
Gráfica 9.	Determinación de κ , ω y λ . ω =0.05, λ =1e-5, κ =0.2	.47
Gráfica 10.	Determinación de κ , ω y λ . ω =0.05, λ =1e-5, κ =0.3	.48
Gráfica 11.	Determinación de κ , ω y λ . ω =0.05, λ =1e-5, κ =0.4	.48
Gráfica 12.	Determinación de κ , ω y λ . ω =0.05, λ =1e-5, κ =0.5	.49
Gráfica 13.	Determinación de κ , ω y λ . ω =0.05, λ =1e-5, κ =0.6	.49
Gráfica 14.	Determinación de κ , ω y λ . ω =0.05, λ =1e-5, κ =0.7	.50
Gráfica 15.	Determinación de κ , ω y λ . ω =0.05, λ =1e-5, κ =0.8	.50
Gráfica 16.	Determinación de κ , ω y λ . ω =0.05, λ =1e-5, κ =0.9	.51
Gráfica 17.	Determinación de κ , ω y λ . ω =0.05, λ =1e-5, κ =0.99	.51
Gráfica 18.	Determinación de κ , ω y λ . ω =0.05, λ =1e-5, 0.1 $\leq \kappa \leq$ 0.99	.52
Gráfica 19.	Determinación de κ , ω y λ . ω =0.005, λ =1e-6, κ =0.1	.52
Gráfica 20.	Determinación de κ , ω y λ . ω =0.005, λ =1e-6, κ =0.2	.53
Gráfica 21.	Determinación de κ , ω y λ . ω =0.005, λ =1e-6, κ =0.3	.53
Gráfica 22.	Determinación de κ , ω y λ . ω =0.005, λ =1e-6, κ =0.4	.54
Gráfica 23.	Determinación de κ , ω y λ . ω =0.005, λ =1e-6, κ =0.5	.54
Gráfica 24.	Determinación de κ , ω y λ . ω =0.005, λ =1e-6, κ =0.6	.55
Gráfica 25.	Determinación de κ , ω y λ . ω =0.005, λ =1e-6, κ =0.7	.55
Gráfica 26.	Determinación de κ , ω y λ . ω =0.005, λ =1e-6, κ =0.8	.56
Gráfica 27.	Determinación de κ , ω y λ . ω =0.005, λ =1e-6, κ =0.9	.56
Gráfica 28.	Determinación de κ , ω y λ . ω =0.005, λ =1e-6, κ =0.99	.57
Gráfica 29.	Determinación de κ , ω y λ . ω =0.005, λ =1e-6, 0.1 $\leq \kappa \leq$ 0.99	57
Gráfica 30.	Determinación de κ , ω y λ . ω =0.01, λ =1e-6, κ =0.1	.58
Gráfica 31.	Determinación de κ , ω y λ . ω =0.01, λ =1e-6, κ =0.2	.58
Gráfica 32.	Determinación de κ , ω y λ . ω =0.01, λ =1e-6, κ =0.3	.59
Gráfica 33.	Determinación de κ , ω y λ . ω =0.01, λ =1e-6, κ =0.4	.59
Gráfica 34.	Determinación de κ , ω y λ . ω =0.01, λ =1e-6, κ =0.5	.60
Gráfica 35.	Determinación de κ , ω y λ . ω =0.01, λ =1e-6, κ =0.6	.60
Gráfica 36.	Determinación de κ , ω y λ . ω =0.01, λ =1e-6, κ =0.7	.61
Gráfica 37.	Determinación de κ , ω y λ . ω =0.01, λ =1e-6, κ =0.8	.61
Gráfica 38.	Determinación de κ , ω y λ . ω =0.01, λ =1e-6, κ =0.9	.62
Gráfica 39.	Determinación de κ , ω y λ . ω =0.01, λ =1e-6, κ =0.99	.62
Gráfica 40.	Determinación de κ , ω y λ . ω =0.01, λ =1e-6, 0.1 $\leq \kappa \leq$ 0.99	.63
Gráfica 41.	Determinación de κ , ω y λ . ω =0.05, λ =1e-6, κ =0.1	.63
Gráfica 42.	Determinación de κ , ω y λ . ω =0.05, λ =1e-6, κ =0.2	.64
Gráfica 43.	Determinación de κ , ω y λ . ω =0.05, λ =1e-6, κ =0.3	.64
Gráfica 44.	Determinación de κ , ω y λ . ω =0.05, λ =1e-6, κ =0.4	.65
Gráfica 45.	Determinación de κ , ω y λ . ω =0.05, λ =1e-6, κ =0.5	.65
	- · · · · · · · · · · · · · · · · · · ·	

Gráfica 46.	Determinación de κ , ω y λ . ω =0.05, λ =1e-6, κ =0.666	Ś
Gráfica 47.	Determinación de κ , ω y λ . ω =0.05, λ =1e-6, κ =0.766	5
Gráfica 48.	Determinación de κ , ω y λ . ω =0.05, λ =1e-6, κ =0.867	7
Gráfica 49.	Determinación de κ , ω y λ . ω =0.05, λ =1e-6, κ =0.967	1
Gráfica 50.	Determinación de κ, ω y λ. ω=0.05, λ=1e-6, κ=0.9968	3
Gráfica 51.	Determinación de κ , ω y λ . ω =0.05, λ =1e-6, 0.1 $\leq \kappa \leq$ 0.9968	3
Gráfica 52.	Determinación de κ, ω y λ. ω=0.08, λ=1e-7, κ=0.169)
Gráfica 53.	Determinación de κ , ω y λ . ω =0.08, λ =1e-7, κ =0.269)
Gráfica 54.	Determinación de κ , ω y λ . ω =0.08, λ =1e-7, κ =0.370)
Gráfica 55.	Determinación de κ , ω y λ . ω =0.08, λ =1e-7, κ =0.470)
Gráfica 56.	Determinación de κ , ω y λ . ω =0.08, λ =1e-7, κ =0.571	Ĺ
Gráfica 57.	Determinación de κ , ω y λ . ω =0.08, λ =1e-7, κ =0.671	Ĺ
Gráfica 58.	Determinación de κ , ω y λ . ω =0.08, λ =1e-7, κ =0.772	2
Gráfica 59.	Determinación de κ , ω y λ . ω =0.08, λ =1e-7, κ =0.872	2
Gráfica 60.	Determinación de κ , ω y λ . ω =0.08, λ =1e-7, κ =0.973	5
Gráfica 61.	Determinación de κ , ω y λ . ω =0.08, λ =1e-7, κ =0.9973	5
Gráfica 62.	Determinación de κ , ω y λ . ω =0.08, λ =1e-7, 0.1 $\leq \kappa \leq$ 0.9974	ł
Gráfica 63.	Análisis de pendiente unitaria. Sistema de doble permeabilidad74	
Gráfica 64.	Análisis de pendiente unitaria. Sistema de doble permeabilidad75	
Gráfica 65.	Comparación entre modelo de doble porosidad y doble	
	permeabilidad75	5
Gráfica 66.	Comparación entre modelo de doble porosidad y doble	_
	permeabilidad70	5
Gráfica 67.	Constante para determinar λ para $\kappa = 0.99$)
Gráfica 68.	Constante para determinar λ para $\kappa = 0.9$	/
Gráfica 69.	Constante para determinar λ para $\kappa = 0.8$	/
Gráfica 70.	Constante para determinar λ para $\kappa = 0.7$	}
Gráfica 71.	Constante para determinar λ para $\kappa = 0.6$	5
Gráfica 72.	Constante para determinar λ para $\kappa=0.5$)
Gráfica 73.	Constante para determinar λ para $\kappa = 0.4$)
Gráfica 74.	Constante para determinar λ para $\kappa = 0.3$)
Gráfica 75.	Constante para determinar λ para $\kappa = 0.2$ 80)
Gráfica 76.	Constante para determinar λ para $\kappa = 0.1$	L
Gráfica 77.	Determinación de la correlación que corrige t $Dmin$, $\omega = 0.05$, $\lambda = 1e$ 8	l
Gráfica 78.	Determinación de la correlación que corrige t $Dmin$, $\omega = 0.05$, $\lambda = 1e$ 82	2
Gráfica 79.	Determinación de la correlación que corrige t _{Dmin} , ω =0.05, λ =1e82	2
Gráfica 80.	Efecto de almacenamiento en el modelo de doble porosidad83	j
Gráfica 81.	Efecto de almacenamiento en el modelo de doble porosidad83	5
Gráfica 82.	Efecto de almacenamiento en el modelo de doble porosidad84	1
Gráfica 83	Etecto de almacenamiento en el modelo de doble porosidad84	Ł

LISTA DE FIGURAS

Figura 1.	Yacimientos de doble porosidad14
Figura 2.	Yacimientos de doble permeabilidad14
Figura 3.	Modelo para el sistema de doble permeabilidad (adaptado de Bremer el
C	al. ³) 18

LISTA DE TABLAS

Tabla 1.	Rango de los parámetros del modelo	20
Tabla 2.	κ =0.5, ω= 0.05, λ=1x10 ⁻⁵	20
Tabla 3.	κ = 0.5, ω = 0.05, λ = 1x10-6	21
Tabla 4.	$\lambda = 1 \times 10^{-6}, \omega = 0.03$	22
Tabla 5.	$\lambda = 1 \times 10^{-6}, \omega = 0.1$	23
Tabla 6.	$\lambda = 1 \times 10^{-6}, \omega = 0.9$	23
Tabla 7.	Ecuación de κ , para diferentes valores de ω	24
Tabla 8.	Determinación de la ecuación de κ	24
Tabla 9.	Determinación de la ecuación de ω	26
Tabla 10.	Determinación del efecto de almacenamiento	29
Tabla 11.	Datos de presión y derivada de presión para el ejercicio 1	31
Tabla 12.	Datos de presión y derivada de presión para el ejercicio 2	33
Tabla 13.	Datos de presión y derivada de presión para el ejercicio 3	35
Tabla 14.	Datos de presión y derivada de presión para el ejercicio 4	38

ANEXOS

ANEXO A	46
ANEXO B	

1. RESUMEN

Hoy por hoy, el estudio de los yacimientos naturalmente fracturados ha tomado importancia debido a que aproximadamente el 60% de la reservas de petróleo y gas del mundo se encuentra acumulado en este tipo de yacimientos. Actualmente la caracterización de yacimientos es indispensable debido a que es una muy buena herramienta que permite determinar el mejor esquema de explotación, ya que predice el mejor comportamiento del yacimiento, de ahí la necesidad de poder guiar una investigación al análisis de presión y derivada de presión en yacimientos de doble permeabilidad.

Las investigaciones del comportamiento transitorio de la presión y derivada de presión en yacimientos naturalmente fracturados ha sido objeto de estudio en muchas partes del mundo. Frecuentemente, el modelo de doble porosidad ha sido ampliamente utilizado para explicar el comportamiento de flujo de yacimientos naturalmente fracturados. No obstante, debido a las limitantes de este modelo (se asume propiedades homogéneas de la matriz a través de todo el sistema, el flujo de fluido hacia el pozo es matriz-fractura-pozo y se asume estado pseudoestable al flujo de fluidos entre la matriz y las fracturas) se ha visto la necesidad de crear modelos más complejos que se ajusten más al comportamiento real de este tipo de yacimientos presentes en el mundo, es por ello que se ha introducido modelos de doble permeabilidad de estado transitorio que además de considerar a la matriz como fuente de almacenamiento y de alimentación a las fracturas es una fuente importante de alimentación al pozo, además, no existe estado pseudoestable o pendiente unitaria entre la matriz-fractura. El análisis de presión de este tipo de yacimientos hasta ahora se ha realizado por medio de curvas tipo y ajuste histórico (Simulaciones).

En este estudio, se aplica la técnica Tiab's Direct Synthesis para generar ecuaciones de tres parámetros muy importantes para la caracterización de yacimientos naturalmente fracturados de doble permeabilidad (Parámetro de flujo interporoso, λ , coeficiente de almacenamiento, ω , y relación de la capacidad de flujo, κ) a partir de simulaciones generadas en un software, permitiendo caracterizar el yacimiento de forma práctica. La metodología propuesta se verificó exitosamente mediante el análisis de casos de campo reportados en la literatura y pruebas simuladas.

El porcentaje de error relativo que presenta las correlaciones generadas no supera el 5%, pero la correlación de corrección del mínimo generada por Tiab y otros⁹ presenta un error relativamente alto, cuyo error aumenta a medida que se aumenta el almacenamiento, por lo tanto se recomienda utilizar para almacenamientos bajos.

ABSTRACT

At the present time, the study of naturally fractured reservoirs has become important because approximately 60% of the oil and gas reserves in the world are accumulated in these fields. Currently reservoir characterization is essential because it is a very good tool to determine the optimal schedule of exploitation, and to better predict the reservoir behavior, hence the need for research to guide the analysis of pressure and pressure derivative in dual reservoir permeability.

The investigations transient behavior of pressure and pressure derivative in naturally fractured reservoirs has been studied in many parts of the world. Often the double porosity model has been widely used to explain the flow behavior of naturally fractured reservoirs. However, due to the limitations of this model (assuming homogeneous properties of the matrix through all the system, fluid flow to the well is matrix-fracture well and pseudosteady state is assumed to fluid flow between the matrix and fractures) has been the necessity to create more sophisticated models that most closely match the actual behavior of this type reservoirs present in the world, is why it has been introduced double permeability models transient state in addition to considering the matrix as a source of supply storage and fractures is an important source of supply to the well, also, does not exist pseudosteady state or unit slope between the matrix-fracture. Pressure analysis this type of reservoirs so far been performed by means of type curves and history matching (Simulations).

In this study, we applied the technique Tiab's Direct Synthesis to generate equations of three very important parameters for the characterization of naturally fractured reservoirs dual permeability (Interporosity flow parameter, λ , storage coefficient, ω , and flow capacity ratio, κ) from simulations generated in a software, allowing to characterize the reservoir practically. The proposed methodology is successfully verified by analysis of field cases reported in the literature and simulated tests.

The percentage of relative error generated correlations having not more than 5%, but the correlation correction generated minimum by Tiab and others⁹ current error relatively high, whose error increases as does the storage, so storage is recommended for low.

2. INTRODUCCION

Es un reto tecnológico para la industria petrolera caracterizar y modelar los yacimientos naturalmente fracturados debido a la geología y rasgos característicos de éstos, pero debido a que comprende un significativo porcentaje de reservas de crudo y gas en el mundo y además la mayor parte de la producción se encuentra asociada a este tipo de yacimientos se hace necesario hacer estudios cada vez más detallados, con en el objetivo de lograr niveles de recuperación óptimos.

El comportamiento del transiente de presión en yacimientos naturalmente fracturados ha sido objeto de muchas investigaciones. El pionero en desarrollar un modelo para simular formaciones naturalmente fracturados estuvo a manos de Barenblatt y otros² en 1960, quien considero a este tipo de yacimientos como un sistema de doble porosidad y tres años más tarde Warren y Root¹⁰ extendieron dicho modelo en pruebas de presión. Este sistema consiste en dos medios, bloques de matriz y una red de fracturas. Los bloques de matriz contienen la mayor parte del volumen y es una fuente alimentación a la red de fracturas. Por otro lado, las fracturas contienen un volumen relativamente pequeño, pero una permeabilidad alta, lo que facilita el flujo de fluidos hacia el pozo.

En el caso donde la permeabilidad de la matriz es alta, el flujo de fluidos de la matriz se hace en forma perpendicular hacia las fracturas y paralela al estrato en dirección al pozo, a este modelo se le conoce como sistema de doble permeabilidad y fue estudiado por primera vez por Hill y Thomas⁸ en 1985. Posteriormente Bremer et al. en 1986 desarrollo un modelo matemático y un análisis de pruebas de presión. En sistema de doble permeabilidad existen tres parámetros de suma importancia para describir las propiedades de la matriz y las fracturas. El coeficiente de almacenamiento, $\boldsymbol{\omega}$, que representa la razón del coeficiente de almacenaje de fluido entre la fractura y sistema, el parámetro de flujo interporoso, λ , que representa el grado de flujo de interporosidad entre los bloques de la matriz y la red de fracturas, y la relación de la capacidad de flujo, $\boldsymbol{\kappa}$, que representa la razón de la capacidad de flujo entre la fractura y sistema.

3. MARCO TEORICO

Clasificación de los yacimientos naturalmente fracturados de acuerdo a los modelos matemáticos:

3.1 BARAENBLATT (1959), WARREN Y ROOT (1964)

Explicó este tipo de yacimientos como un sistema de doble porosidad bajo las siguientes condiciones ⁽¹¹⁾:

- Los bloques de la matriz son homogéneos e idénticos.
- Los bloques tienen forma de paralelepípedo rectangular con caras que corresponden a fracturas planas ortogonales.
- Los bloques de matriz están divididos en tres clases, de acuerdo a las dimensiones relativas de los lados del paralelepípedo, estas son:
 - Bloques cúbicos de la matriz: las tres dimensiones tienen dimensiones en el mismo orden de magnitud.
 - Bloques de matriz de láminas paralelas: uno de los lados es mucho más largo que los otros dos.
 - Bloques de matriz en forma de tablilla: uno de los lados es mucho más corto que los otros dos

3.1.1 YACIMIENTOS DE DOBLE POROSIDAD:

Significa que dos medios homogéneos porosos de distinta porosidad y permeabilidad están interactuando.

La doble porosidad describe los sistemas siguientes:

- Yacimientos naturalmente fracturados
- Yacimientos de capas múltiples con alta permeabilidad contrastante entre las capas
- Yacimientos de una sola capa con alta variación de permeabilidad a lo largo del espesor del yacimiento
- Penetración parcial.

Como se observa en la *Figura 1*, en este tipo de yacimiento la matriz (k_2) , le entrega fluido a las fracturas (k_1) , y las fracturas posteriormente le aportan fluidos al pozo.

3.2 BREMER (1986)

3.2.1 YACIMIENTOS DE DOBLE PERMEABILIDAD:

Se refiere a dos distintas porosidades medias, cada una aporta fluidos al pozo. Puede describir los siguientes sistemas:

- Yacimientos de capas múltiples, con contraste bajo de permeabilidad
- Zonas múltiples separadas por capas impermeables
- Terminación parcial

Como se observa en la *Figura 2*, en este tipo de yacimientos tanto la matriz como la fractura le aportan fluidos al pozo. Caso contrario con el de doble porosidad.

Como consecuencia de las limitaciones del sistema de doble porosidad para explicar este tipo de yacimientos, viéndose reflejados en la presencia de regímenes de flujo no característicos en análisis semilog de este sistema, Bremer et al. establece el modelo matemático para el sistema de doble permeabilidad bajo las siguientes asunciones:

- Fluidos ligeramente compresibles con compresibilidad constante
- Viscosidad constante
- Flujo Darcy horizontal (insignificantes gradientes de presión al cuadrado)
- Flujo a través de la zona apretada está en estado pseudoestable
- Flujo vertical a través de la zona apretada
- Baja permeabilidad de la zona apretada
- Fluido almacenado en la zona apretada es despreciable

Para Bremer el yacimiento lo componen dos capas permeables separadas por una tercera de permeabilidad relativamente baja. Este modelo permite propiedades diferentes en las dos capas permeables. Adicionalmente incorporo los efectos de almacenamiento y daño. La distribución y la geometría del yacimiento se esquematizan en la Fig. 1. Como se muestra en la figura, una capa fluye al pozo, mientras que el flujo hacia el pozo de la segunda capa es impedido por un obturador. Debido a que las permeabilidades de las dos capas pueden ser diferentes, es necesario registrar presiones en ambas capas pero manteniendo una sola capa abierta al pozo.

3.2.2 DESARROLLO DE ECUACION DE DIFUSIVIDAD

El desarrollo de la Ecuación de difusividad para este sistema se generó asumiendo flujo inestable o yacimiento infinito. A partir de este modelo se simuló varias pruebas, que permite generar curvas tipo bajo condiciones dadas.

La ecuación de difusividad en estado inestable aplicada para cada capa permeable es ⁽³⁾:

$$\frac{k_1 h_1}{\mu} \nabla^2 P_1 = (\phi c_t h)_1 \frac{\partial P_1}{\partial t} + \frac{k_v}{\mu \Delta h} (P_2 - P_1)$$
(1)

$$\frac{k_2 h_2}{\mu} \nabla^2 P_2 = (\phi c_t h)_2 \frac{\partial P_1}{\partial t} - \frac{k_v}{\mu \Delta h} (P_2 - P_1)$$
(2)

Inicialmente, la presión es constante en todas partes:

$$P_1(r) = P_2(r) = P_i$$
(3)

Para t=0. El reservorio se asume infinito:

$$\lim_{x \to \infty} P_1 = \lim_{x \to \infty} P_2 = P_i \tag{4}$$

Para $t \ge 0$. El pozo se supone que se produce a un caudal de superficie constante, pero esto implica que la presión en el fondo del pozo está sujeta a almacenamiento y daño cerca al pozo:

$$P_{1w} = P_1(r_w) - sr_w \frac{\partial P_1}{\partial r}\Big|_{r_w}$$
(5)

у

$$-q = C \frac{dP_{1w}}{dt} - 2\pi r_w \frac{k_1 h_1}{\mu} \frac{\partial P_1}{\partial r} \Big|_{r_w}$$
(6)

Para t > 0. En la capa 2 no hay flujo de fluidos al pozo:

$$P_{2w} = P_2(r_w) \tag{7}$$

Y

$$\frac{\partial P_2}{\partial r}\Big|_{r_w} = 0 \tag{8}$$

Parámetros adimensionales que se utilizaron:

$$P_{1D,2D} = \frac{(k_1 h_1 + k_2 h_2)}{\alpha_p q \mu} (P_i - P_{1,2})$$
(9)

$$t_{DV} = \frac{\alpha_t (k_1 h_1 + k_2 h_2) t}{\left[(\phi c_t h)_1 + (\phi c_t h)_2 \right] \mu r_w^2}$$
(10)

$$r_D = \frac{r}{r_w} \tag{11}$$

$$\kappa = \frac{k_1 h_1}{k_1 h_1 + k_2 h_2} \tag{12}$$

$$\omega = \frac{(\phi c_t h)_1}{(\phi c_t h)_1 + (\phi c_t h)_2}$$
(13)

$$\lambda = \frac{r_w^2}{(k_1 h_1 + k_2 h_2)} \frac{k_v}{\Delta h}$$
(14)

Y

$$C_{DV} = \frac{\alpha_c C}{\left[(\phi c_t h)_1 + (\phi c_t h)_2\right] r_w^2}$$
(15)

Para determinar el comportamiento de la presión y derivada de presión adimensional en yacimientos de doble permeabilidad, Bremer convirtió el sistema de ecuaciones (1 a 8) en forma adimensional y las solucionó en el espacio Laplaciano, posteriormente para obtener la presión adimensional en el espacio real, se usó el algoritmo numérico desarrollado por Stehfest.

La solución para la distribución de presión radial en la capa 1 es:

$$\overline{p}_{1D} = (1/\ell - C_{DV}\ell\overline{p}_{wD}) \times \left\{ \frac{1}{\kappa(a_2 - a_1)} \left[\frac{a_2 K_0(\sigma_2 r_D)}{\sigma_2 K_1(\sigma_2)} - \frac{a_1 K_0(\sigma_1 r_D)}{\sigma_1 K_1(\sigma_1)} \right] \right\}$$
(16)

Donde

$$a_{1,2} = \frac{(1-\kappa)}{\lambda} \left[\frac{(1-\omega)\ell + \lambda}{1-\kappa} - \sigma_{1,2}^2 \right]$$
(17)

$$\sigma_{1,2}^{2} = \frac{1}{2} \left[\frac{(1-\omega)\ell + \lambda}{1-\kappa} + \frac{\omega\ell + \lambda}{\kappa} \right] \pm \frac{1}{2} \left\{ \left[\frac{(1-\omega)\ell + \lambda}{1-\kappa} - \frac{\omega\ell + \lambda}{\kappa} \right]^{2} + \frac{4\lambda^{2}}{\kappa(1-\kappa)} \right\}^{1/2}$$
(18)

$$K_1^0(z) = K_0(z) / [zK_1(z)]$$
(19)

Donde K_0 y K_1 son funciones Bessel de la segunda clase que sirve como solución a la ecuación diferencial.

La solución para la distribución de presión radial en la capa 2 es:

$$\overline{p}_{2D} = (1/\ell - C_{DV}\ell\overline{p}_{wD}) \times \left\{ \frac{1}{\kappa(a_2 - a_1)} \left[\frac{K_0(\sigma_2 r_D)}{\sigma_2 K_1(\sigma_2)} - \frac{K_0(\sigma_1 r_D)}{\sigma_1 K_1(\sigma_1)} \right] \right\}$$
(20)

La solución para la distribución de presión en el pozo con daño es:

$$\overline{p}_{wD} = \left(\ell \left\{ C_{DV} \ell + \frac{\kappa}{\frac{1}{a_2 - a_1} \left[a_2 K_1^0(\sigma_2) - a_1 K_1^0(\sigma_1) \right] + s} \right\} \right)$$
(21)

3.2.3 DESCRIPCION DEL SISTEMA DE DOBLE PERMEABILIDAD

Un sistema de doble porosidad como ya se indicó anteriormente se comporta como yacimientos homogéneo, por lo tanto, es de esperarse que en análisis semilog se produzcan dos porciones de líneas rectas paralelas. Sin embargo, el sistema de doble permeabilidad no presenta dicho comportamiento, a causa de que se presenta líneas rectas no paralelas, debido a que la matriz además de aportar fluido a la fractura aporta al pozo, estos cambios presentados en el periodo contralado por el flujo de la

matriz, son mejor vistos, en un análisis log-log de la derivada de la presión vs. El tiempo.

- Tiempos tempranos, corresponde al flujo transiente radial a través de las fracturas. Se debe tener en cuenta, que este régimen de flujo casi siempre esta enmascarado por el almacenamiento, donde su duración depende de la severidad del efecto del almacenamiento en la cara del pozo.
- Inmediatamente se presenta un periodo de transición. A diferencia del sistema de doble porosidad no presenta pendiente unitaria ni es constante bajo diferentes condiciones de yacimiento, lo que indica que el flujo entre la matriz y la fractura no está gobernado por condición de estado pseudoestable.
- Finalmente, para tiempos tardíos aparecerá un flujo transciente radial a través del sistema matriz-fracturado, con derivada diferente a la de tiempos tempranos.

4. TIAB'S DIRECT SYNTHESIS TECHNIQUE PARA YACIMIENTOS NATURALMENTE FRACTURADOS DE DOBLE PERMEABILIDAD

Como ya se había mencionado, existen dos parámetros importantes para el estudio de un yacimiento de doble permeabilidad, los parámetros λ y ω , que para este tipo de yacimientos están en función de la relación de la capacidad de flujo, κ , y van a ser objeto de estudio para determinar las correlaciones que describan el comportamiento de dicho tipo de yacimientos. Para realizar el estudio de este tipo de yacimientos nos basamos en las ecuaciones ya existentes para un modelo de doble porosidad, descrito por los autores Thomas Engler y Djebbar Tiab⁶, comparando el desarrollo aplicado por estos autores al modelo de doble permeabilidad.

El estudio de este tipo de yacimientos se baso en dos etapas:

- A) Sin efectos de almacenamiento, skin (s=0).
- B) Con almacenamiento, skin(s=0).

4.1 SIN EFECTOS DE ALMACENAMIENTO.

Mediante un software comercial se simularon los siguientes datos: *Parámetros de los fluidos:* Factor de volumen de formación del aceite (B_o): 1.15 rb/STB Viscosidad del petróleo (μ_o): 2.5 cp Compresibilidad total (c_t): 4x10⁻⁶ Psi⁻¹

Parámetros de la capa:

Espesor de la formación (h): 115 ft Porosidad (ϕ): 20% Presión de la capa (P): 5000 psia

Parámetros del modelo:

Permeabilidad (k):50 md Daño (s): 0 Coeficiente de almacenamiento (ω): Variable Parámetro flujo interporoso (λ): Variable Relación de la capacidad de flujo (k): Variable

Para las diferentes simulaciones los parámetros del fluido y de la capa permanecieron constantes, mientras que para los parámetros del modelo se variaron el coeficiente de almacenamiento y relación de la capacidad de flujo, κ , mientras se dejaba el parámetro de flujo interporoso fijo.

Durante todas las simulaciones estos fueron los valores trabajados de λ , ω y κ :

λ	$1 \times 10^{-3} - 1 \times 10^{-7}$
ω	0.005 - 1
К	0.1 – 0.99

 Tabla 1. Rango de los parámetros del modelo

A continuación se presenta los resultados de las simulaciones para dos diferentes valores de λ . Los datos fueron exportados en forma adimensional, como se presenta a continuación:

t_D	P_D	$t_D * P_D'$	t_D	P_D	$t_D * P_D'$
2.69E+01	2.0959374	4.65E-01	6.17E+01	2.4985086	4.81E-01
2.75E+01	2.1055789	4.65E-01	6.30E+01	2.5084811	4.81E-01
2.81E+01	2.1152308	4.66E-01	6.43E+01	2.5184595	4.81E-01
2.87E+01	2.124893	4.66E-01	6.57E+01	2.5284435	4.81E-01
2.93E+01	2.1345655	4.67E-01	6.71E+01	2.5384332	4.82E-01
2.99E+01	2.144248	4.67E-01	6.85E+01	2.5484285	4.82E-01
3.05E+01	2.1539405	4.67E-01	6.99E+01	2.5584293	4.82E-01
3.11E+01	2.1636428	4.68E-01	7.14E+01	2.5684354	4.82E-01
3.18E+01	2.1733548	4.68E-01	7.29E+01	2.5784469	4.83E-01
3.24E+01	2.1830764	4.69E-01	7.44E+01	2.5884635	4.83E-01
3.31E+01	2.1928074	4.69E-01	7.60E+01	2.5984853	4.83E-01
3.38E+01	2.2025477	4.70E-01	7.75E+01	2.6085121	4.83E-01
3.45E+01	2.2122972	4.70E-01	7.92E+01	2.6185438	4.84E-01
3.53E+01	2.2220557	4.71E-01	8.08E+01	2.6285804	4.84E-01
3.60E+01	2.2318232	4.71E-01	8.25E+01	2.6386218	4.84E-01
3.67E+01	2.2415996	4.71E-01	8.43E+01	2.6486679	4.84E-01
3.75E+01	2.2513846	4.72E-01	8.60E+01	2.6587186	4.85E-01
3.83E+01	2.2611782	4.72E-01	8.78E+01	2.6687738	4.85E-01
3.91E+01	2.2709803	4.73E-01	8.97E+01	2.6788335	4.85E-01

Tabla 2. $\kappa = 0.5$, $\omega = 0.05$, $\lambda = 1 \times 10^{-5}$

3.99E+01	2.2807907	4.73E-01	9.15E+01	2.6888975	4.85E-01
4.08E+01	2.2906094	4.74E-01	9.35E+01	2.6989659	4.85E-01
4.16E+01	2.3004362	4.74E-01	9.54E+01	2.7090385	4.86E-01
4.25E+01	2.310271	4.74E-01	9.74E+01	2.7191152	4.86E-01
4.34E+01	2.3201136	4.75E-01	9.95E+01	2.7291959	4.86E-01
4.43E+01	2.3299641	4.75E-01	1.02E+02	2.7392807	4.86E-01
4.52E+01	2.3398222	4.75E-01	1.04E+02	2.7493693	4.86E-01
4.62E+01	2.3496879	4.76E-01	1.06E+02	2.7594618	4.87E-01
4.71E+01	2.3595611	4.76E-01	1.08E+02	2.7695581	4.87E-01
4.81E+01	2.3694415	4.76E-01	1.10E+02	2.779658	4.87E-01
4.91E+01	2.3793293	4.77E-01	1.13E+02	2.7897615	4.87E-01
5.02E+01	2.3892241	4.77E-01	1.15E+02	2.7998686	4.87E-01
5.12E+01	2.399126	4.77E-01	1.17E+02	2.8099792	4.87E-01
5.23E+01	2.4090348	4.78E-01	1.20E+02	2.8200931	4.88E-01
5.34E+01	2.4189504	4.78E-01	1.22E+02	2.8302104	4.88E-01
5.45E+01	2.4288727	4.78E-01	1.25E+02	2.840331	4.88E-01
5.56E+01	2.4388017	4.79E-01	1.28E+02	2.8504547	4.88E-01
5.68E+01	2.4487371	4.79E-01	1.30E+02	2.8605815	4.88E-01
5.80E+01	2.458679	4.79E-01	1.33E+02	2.8707114	4.88E-01
5.92E+01	2.4686272	4.80E-01	1.36E+02	2.8808443	4.89E-01
6.05E+01	2.4785816	4.80E-01	1.39E+02	2.8909801	4.89E-01

Tabla 3. $\kappa = 0.5$, $\omega = 0.05$, $\lambda = 1 \times 10^{-6}$

t _D	P_D	$t_D * P_D'$	t _D	P_D	$t_D * P_D'$
2.69E+01	2.0961429	4.65E-01	6.17E+01	2.4890447	4.81E-01
2.75E+01	2.1057891	4.65E-01	6.30E+01	2.4990225	4.81E-01
2.81E+01	2.1154458	4.66E-01	6.43E+01	2.5090064	4.81E-01
2.87E+01	2.125113	4.66E-01	6.57E+01	2.5189964	4.82E-01
2.93E+01	2.1347905	4.67E-01	6.71E+01	2.5289924	4.82E-01
2.99E+01	2.1444782	4.67E-01	6.85E+01	2.5389943	4.82E-01
3.05E+01	2.1541759	4.68E-01	6.99E+01	2.549002	4.83E-01
3.11E+01	2.1638836	4.68E-01	7.14E+01	2.5590155	4.83E-01
3.18E+01	2.1736011	4.69E-01	7.29E+01	2.5690347	4.83E-01
3.24E+01	2.1833283	4.69E-01	7.44E+01	2.5790594	4.83E-01
3.31E+01	2.193065	4.70E-01	7.60E+01	2.5890896	4.84E-01
3.38E+01	2.2028112	4.70E-01	7.75E+01	2.5991252	4.84E-01
3.45E+01	2.2125667	4.70E-01	7.92E+01	2.6091661	4.84E-01
3.53E+01	2.2223314	4.71E-01	8.08E+01	2.6192123	4.84E-01
3.60E+01	2.2321052	4.71E-01	8.25E+01	2.6292637	4.85E-01
3.67E+01	2.2418879	4.72E-01	8.43E+01	2.6393201	4.85E-01
3.75E+01	2.2516795	4.72E-01	8.60E+01	2.6493816	4.85E-01
3.83E+01	2.2614798	4.73E-01	8.78E+01	2.6594481	4.85E-01
3.91E+01	2.2712887	4.73E-01	8.97E+01	2.6695194	4.86E-01

				· · · · · · · · · · · · · · · · · · ·	
3.99E+01	2.2811061	4.73E-01	9.15E+01	2.6795955	4.86E-01
4.08E+01	2.2909319	4.74E-01	9.35E+01	2.6896763	4.87E-01
4.16E+01	2.300766	4.74E-01	9.54E+01	2.6997618	4.87E-01
4.25E+01	2.3106082	4.75E-01	9.74E+01	2.7098518	4.87E-01
4.34E+01	2.3204585	4.75E-01	9.95E+01	2.7199464	4.87E-01
4.43E+01	2.3303167	4.75E-01	1.02E+02	2.7300454	4.87E-01
4.52E+01	2.3401828	4.76E-01	1.04E+02	2.7401488	4.88E-01
4.62E+01	2.3500566	4.76E-01	1.06E+02	2.7502565	4.88E-01
4.71E+01	2.359938	4.77E-01	1.08E+02	2.7603684	4.88E-01
4.81E+01	2.369827	4.77E-01	1.10E+02	2.7704845	4.88E-01
4.91E+01	2.3797234	4.77E-01	1.13E+02	2.7806047	4.88E-01
5.02E+01	2.389627	4.78E-01	1.15E+02	2.790729	4.89E-01
5.12E+01	2.399538	4.78E-01	1.17E+02	2.8008572	4.89E-01
5.23E+01	2.409456	4.78E-01	1.20E+02	2.8109894	4.89E-01
5.34E+01	2.419381	4.79E-01	1.22E+02	2.8211254	4.89E-01
5.45E+01	2.429313	4.79E-01	1.25E+02	2.8312653	4.89E-01
5.56E+01	2.4392518	4.79E-01	1.28E+02	2.8414088	4.89E-01
5.68E+01	2.4491973	4.80E-01	1.30E+02	2.8515561	4.90E-01
5.80E+01	2.4591494	4.80E-01	1.33E+02	2.8617069	4.90E-01
5.92E+01	2.4691081	4.80E-01	1.36E+02	2.8718613	4.90E-01
6.05E+01	2.4790732	4.81E-01	1.39E+02	2.8820193	4.90E-01

4.1.1 MÉTODO PARA DETERMINAR LA RELACIÓN DE LA CAPACIDAD DE FLUJO:

Con los datos exportados lo que se buscaba era de alguna forma relacionar los diferentes valores de κ , para los diferentes ω 's , por medio de las graficas de derivada de presión.(ver gráficas de 8 a 62, Anexo A).

Se abandonó la idea de pendiente unitaria del periodo de transición, expresado por los autores Thomas Engler, Djebbar Tiab ⁵, ya que para los diferentes valores de κ , se dificultaba correlacionar los diferentes puntos mínimos para trazar la pendiente unitaria (ver gráficas 64 y 65, Anexo A). Como respuesta a este problema se procedió a correlacionar los diferentes periodos de flujo del primer y segundo radial, para un mismo valor de λ , y diferentes ω 's, de la gráfica de derivada de presión, esto con el fin de determinar una ecuación que permitiera calcular el valor de κ en función del coeficiente de almacenamiento, ω .

к	$(t^*\Delta P')_{r1}$	$(t^*\Delta P')_{r2}$	$\frac{\left(t^*\Delta P'\right)_{r2}}{\left(t^*\Delta P'\right)_{r1}}$
0.1	0.5	0.04999918	0.09999837
0.2	0.5	0.09999298	0.19998596
0.3	0.5	0.14997803	0.29995606
0.4	0.5	0.19995413	0.39990826

Tabla 4. Para $\lambda = 1 \times 10^{-6}$, $\omega = 0.03$

0.5	0.5	0.24992413	0.49984826
0.6	0.5	0.29989397	0.59978794
0.7	0.5	0.34987271	0.69974542
0.8	0.5	0.39987254	0.79974508
0.9	0.5	0.4499088	0.8998176
0.99	0.5	0.4949879	0.9899758

Tabla 5.	Para $\lambda =$	1×10^{-6} .	$\omega = 0.1$
		1/11/0 1	$\omega = 0.1$

к	$(t^*\Delta P')_{r1}$	$(t^*\Delta P')_{r2}$	$(t^*\Delta P')_{r2}$
			$(t * \Delta P')_{r1}$
0.1	0.5	0.05	0.1
0.2	0.5	0.099998	0.199996
0.3	0.5	0.14999	0.29998
0.4	0.5	0.19998	0.39996
0.5	0.5	0.24997	0.49994
0.6	0.5	0.29996	0.59992
0.7	0.5	0.34995	0.6999
0.8	0.5	0.39995	0.7999
0.9	0.5	0.44996	0.89992
0.99	0.5	0.49499	0.98998

Tabla 6. Para $\lambda = 1 x 10^{-6}$, $\omega = 0.9$

к	$(t^*\Delta P')_{r1}$	$(t^*\Delta P')_{r1}$	$(t * \Delta P')_{r2}$
			$\overline{(t^*\Delta P')_{r1}}$
0.1	0.5	0.050003	0.10000674
0.2	0.5	0.100010	0.20002054
0.3	0.5	0.150017	0.30003394
0.4	0.5	0.200021	0.40004222
0.5	0.5	0.250022	0.50004306
0.6	0.5	0.300018	0.60003642
0.7	0.5	0.350012	0.70002428
0.8	0.5	0.400005	0.80001034
0.9	0.5	0.450000	0.9000002
0.99	0.5	0.495000	0.98999948

Se observó que independientemente del valor de ω , los valores de estos dos periodos de flujo daban iguales o variaban muy poco en cuanto a cifras significativas. Para cada valor de ω se busco la mejor ecuación usando el software *Table Curve 2d* (ver tabla 7).

ω	Ecuación
0.005	$\kappa = 0.998739 \left[\frac{(t * \Delta P')_{r_2}}{(t * \Delta P')_{r_1}} \right] - 0.0002501(22)$
0.05	$\kappa = 0.999891 \left[\frac{(t^* \Delta P')_{r_2}}{(t^* \Delta P')_{r_1}} \right] - 0.0000115(23)$
0.08	$\kappa = 1.000066 \left[\frac{(t * \Delta P')_{r_2}}{(t * \Delta P')_{r_1}} \right] + 0.0000056(24)$
0.2	$\kappa = 1.000024 \left[\frac{(t * \Delta P')_{r_2}}{(t * \Delta P')_{r_1}} \right] - 0.00000001(25)$
0.4	$\kappa = 1.0000078 \left[\frac{(t * \Delta P')_{r_2}}{(t * \Delta P')_{r_1}} \right] - 0.0000015(26)$
0.8	$\kappa = 1.0000306 \left[\frac{(t * \Delta P')_{r_2}}{(t * \Delta P')_{r_1}} \right] - 0.0000332(27)$
0.99	$\kappa = 1.0000235 \left[\frac{(t * \Delta P')_{r_2}}{(t * \Delta P')_{r_1}} \right] - 0.0000355(28)$

Tabla 7. Ecuación de κ , para diferentes valores de ω

Posteriormente se tomó arbitrariamente el valor de un ω y con los datos tabulados de κ y relación de derivadas del segundo y primer radial, se reemplazaron los datos para cada una de las ecuaciones obtenidas, y se construyó una nueva tabla (ver tabla 8)

$(t^*\Delta P')_{r2}$	ω	к	$(t^*\Delta P')_{r2}$	Ω	к
$(t * \Delta P')_{r1}$			$(t^*\Delta P')_{r_1}$		
0.09999722	0.005	0.09962104	0.89972286	0.05	0.89961351
0.19997767	0.005	0.1994755	0.98996332	0.05	0.98984416
0.29993166	0.005	0.29930353	0.09999722	0.06	0.1000147
0.39985868	0.005	0.39910462	0.19997767	0.06	0.20000364
0.49976752	0.005	0.49888756	0.29993166	0.06	0.2999661
0.59967626	0.005	0.5986704	0.39985868	0.06	0.3999016
0.69961226	0.005	0.69848046	0.49976752	0.06	0.49981891
0.79961232	0.005	0.7983545	0.59967626	0.06	0.59973612
0.89972286	0.005	0.89833889	0.69961226	0.06	0.6996806
0.98996332	0.005	0.98846563	0.79961232	0.06	0.79968914
0.09999722	0.01	0.09968629	0.89972286	0.06	0.89980817
0.19997767	0.01	0.19874061	0.79961232	0.07	0.79968041

Tabla 8. Determinación de la ecuación de κ.

0.29993166	0.01	0.29776871	0.89972286	0.07	0.89979858
0.39985868	0.01	0.39677008	0.98996332	0.07	0.99004592
0.49976752	0.01	0.49575345	0.09999722	0.08	0.1000095
0.59967626	0.01	0.59473672	0.19997767	0.08	0.19999661
0.69961226	0.01	0.69374699	0.29993166	0.08	0.29995724
0.79961232	0.01	0.79282073	0.39985868	0.08	0.39989091
0.89972286	0.01	0.89200393	0.49976752	0.08	0.49980639
0.98996332	0.01	0.98140847	0.98996332	0.09	0.99002574
0.09999722	0.02	0.10006027	0.09999722	0.1	0.09998308
0.19997767	0.02	0.20006856	0.19997767	0.1	0.19995546
0.29993166	0.02	0.30005037	0.29993166	0.1	0.29990137
0.39985868	0.02	0.40000521	0.69961226	0.2	0.69962879
0.49976752	0.02	0.49994187	0.79961232	0.2	0.79963124
0.59967626	0.02	0.59987842	0.89972286	0.2	0.89974417
0.69961226	0.02	0.69984225	0.98996332	0.2	0.98998679
0.79961232	0.02	0.79987015	0.09999722	0.3	0.09999714
0.89972286	0.02	0.9000856	0.19997767	0.3	0.19997908
0.98996332	0.02	0.99027414	0.69961226	0.4	0.69961626
0.09999722	0.03	0.10003772	0.79961232	0.4	0.7996171
0.19997767	0.03	0.20003658	0.89972286	0.4	0.89972842
0.29993166	0.03	0.30000897	0.98996332	0.4	0.98996958
0.39985868	0.03	0.39995438	0.09999722	0.5	0.0999778
0.49976752	0.03	0.49988162	0.19997767	0.5	0.19996518
0.59967626	0.03	0.59980875	0.69961226	0.6	0.69960679
0.69961226	0.03	0.69976315	0.79961232	0.6	0.7996132
0.79961232	0.03	0.79978162	0.89972286	0.6	0.8997301
0.89972286	0.03	0.89991059	0.98996332	0.6	0.98997629
0.98996332	0.03	0.99016766	0.09999722	0.7	0.10002384
0.09999722	0.04	0.10002641	0.19997767	0.7	0.20001253
0.19997767	0.04	0.20002056	0.79961232	0.8	0.79960349
0.29993166	0.04	0.29998824	0.89972286	0.8	0.89971709
0.39985868	0.04	0.39992895	0.98996332	0.8	0.98996032
0.49976752	0.04	0.49985148	0.09999722	0.9	0.09996498
0.59967626	0.04	0.59977391	0.19997767	0.9	0.19994779

Los valores de la tabla 8 fueron ingresados al *Table Curve 3D*, tratando de buscar una ecuación que se ajustará mejor a toda esta serie de datos, escogiendo para este caso la ecuación 29.

$$\ln(\kappa) = 0.00073002267 + 0.999971542 * \ln\left(\frac{(t^* \Delta P')_{r_2}}{(t^* \Delta P')_{r_1}}\right) - \frac{0.00030874828}{\omega^{0.5}}$$
(29)

4.1.2 MÉTODO PARA DETERMINAR EL COEFICIENTE DE ALMACENAMIENTO:

Para determinar la ecuación del coeficiente de almacenamiento, $\boldsymbol{\omega}$, se tomó para un $\lambda = 10^{-6}$, y se leyeron todas las derivadas del punto mínimo, así como la del segundo flujo radial $(t^* \Delta P')_{r_2}$, se tabularon los siguientes datos como se muestra, para los diferentes valores de omega ($\boldsymbol{\omega}$):

к	$(t^*\Delta P')_{\min}$	ω	к	$(t^*\Delta P')_{\min}$	ω
	$(t^* \Lambda P')$			$(t^* \Lambda P')$	
0.1	$(r \Delta r)_{r2}$	0.005	0.5	$(r \Delta r)_{r2}$	0.03
0.1	0.34478024	0.000	0.5	0.220070230	0.03
0.1	0.515/5501	0.01	0.5	0.207330102	0.04
0.1	0.633651474	0.02	0.5	0.300434219	0.05
0.1	0.033031474	0.03	0.5	0.343300402	0.00
0.1	0.72110000	0.04	0.5	0.411207137	0.07
0.1	0.73140	0.05	0.5	0.410010000	0.00
0.1	0.000002200	0.00	0.5	0.40214034	0.03
0.2	0.1209966884	0.000	0.5	0.407134433	0.1
0.2	0.331238806	0.07	0.5	0.822104094	0.2
0.2	0.42293577	0.02	0.5	0.935333461	0.0
0.2	0.497444378	0.00	0.0	0.048834031	0.005
0.2	0.560545781	0.05	0.0	0.040004001	0.000
0.2	0.615782713	0.06	0.0	0 144170049	0.07
0.2	0.663451916	0.00	0.0	0.192206359	0.02
0.2	0.706616757	0.07	0.0	0.132200500	0.03
0.2	0 745287148	0.00	0.0	0.270760108	0.05
0.2	0.780326597	0.00	0.0	0.30430311	0.06
0.2	0.089601028	0.005	0.6	0.34883944	0.07
0.3	0 153288691	0.01	0.6	0.363635664	0.08
0.3	0.24718841	0.02	0.6	0.41205325	0.09
0.3	0.321316222	0.03	0.6	0.415360348	0.1
0.3	0.383264385	0.04	0.6	0.612367293	0.2
0.3	0.436949807	0.05	0.6	0.750329598	0.3
0.3	0.484459515	0.06	0.6	0.853955284	0.4
0.3	0.552555784	0.07	0.6	0.938224981	0.5
0.3	0.566138367	0.08	0.7	0.042533117	0.005
0.3	0.601847784	0.09	0.7	0.075795012	0.01
0.3	0.634891933	0.1	0.7	0.127379986	0.02
0.3	0.870424989	0.2	0.7	0.170758502	0.03
0.4	0.069875812	0.005	0.7	0.208526002	0.04
0.4	0.120888457	0.01	0.7	0.242312309	0.05
0.4	0.198555775	0.02	0.7	0.27307812	0.06
0.4	0.261005612	0.03	0.7	0.310425198	0.07
0.4	0.313974384	0.04	0.7	0.327764936	0.08
0.4	0.360456878	0.05	0.7	0.361704662	0.09
0.4	0.402087885	0.06	0.7	0.375683012	0.1
0.4	0.468352545	0.07	0.7	0.559317629	0.2
0.4	0.47465358	0.08	0.7	0.691552825	0.3
0.4	0.52437191	0.09	0.7	0.792961961	0.4
0.4	0.536825633	0.1	0.7	0.874546932	0.5
0.4	0.765385951	0.2	0.7	0.94597648	0.6
0.4	0.908054658	0.3	0.8	0.037720905	0.005
0.5	0.057429856	0.005	0.8	0.067520015	0.01
0.5	0.100582331	0.01	0.8	0.114456706	0.02
0.5	0.166696227	0.02	0.8	0.15417472	0.03

Tabla 9. Determinación de la ecuación de ω

Los valores de la tabla 9 se ingresaron al *Table Curve 3D*, lo que permitió determinar la ecuación 30:

$$\ln(\omega) = 13.46 - 81.83(\kappa) + 80.26(\kappa)^{0.5} * \ln(\kappa) + 16.78\ln(\kappa) + 39.06\exp(-\kappa) + 48.17 \left\{ \frac{(t*\Delta P')_{\min}}{(t*\Delta P')_{r2}} \right\}^{1.5} -22.88 \left\{ \frac{(t*\Delta P')_{\min}}{(t*\Delta P')_{r2}} \right\}^{1.5} + 11.46 \left\{ \frac{(t*\Delta P')_{\min}}{(t*\Delta P')_{r2}} \right\}^{0.5} + 46.86\exp\left(-\left\{ \frac{(t*\Delta P')_{\min}}{(t*\Delta P')_{r2}} \right\} \right\} \dots (30)$$

4.1.3 MÉTODO PARA DETERMINAR EL PARÁMETRO DE FLUJO INTERPOROSO:

Para el desarrollo de la ecuación de flujo interporoso se tomó como ecuación base la generada por Thomas Engler⁵. Se adicionó una nueva variable independiente (κ) y se agregó una constante que es dependiente del coeficiente de almacenamiento, ω y del (κ). Dicha constante se obtiene entrando al gráfico 1.

Nótese en los gráficos 65 y 66 (Ver anexo A), que el punto mínimo del tiempo adimensional para sistemas de doble permeabilidad se desplaza aproximadamente un ciclo con respecto al sistema de doble porosidad. Este patrón fue el punto de partida para la obtención de una ecuación análoga a la generada por Thomas Engler⁵.

Se trato de generar una ecuación con el **Table Curve 3D** pero no se logró obtener buenos resultados, así, que se optó por jugar con la ecuación ya generada por Thomas Engler, adicionándole la nueva variable, κ , y la constante, *Kte*. Se observó en el proceso de obtención de la ecuación, que para los λ estudiado (1x10⁻³ a 1x10⁻⁷), al graficar ω vs. *Kte* para un κ dado, las líneas se superponían (Ver gráficos 62 a 71. Anexo A) lo que permitió generar el gráfico1. El resultado obtenido fue el siguiente:

$$\lambda = \frac{\kappa + kte}{t_{D\min}} \ln\left(\frac{1}{\omega}\right) \tag{31}$$

4.2 CON EFECTOS DE ALMACENAMIENTO:

Cuando se tiene efectos de almacenamiento en los yacimientos naturalmente fracturados, el reto principal es corregir los efectos que presenta este factor en las coordenadas del punto mínimo, así como el enmascaramiento del primer flujo radial. El tratamiento que se le hace en el presente trabajo es similar al desarrollado por Tiab y otros⁷.

La influencia del almacenamiento en las coordenadas mínimas es de mayor importancia en el análisis. Como muestra la gráfica 2, el dilema es sí el punto mínimo observado es el mínimo real o un "pseudo-mínimo" como resultado directo del almacenamiento.

Investigaciones detalladas han mostrado que el punto mínimo no es afectado por el almacenamiento para todos los ω 's y λ 's, proporcionados, en sistemas de doble porosidad, siempre que

$$\frac{(t_D)_{\min}}{(t_D)_x} \ge 10 \tag{32}$$

Cuando la relación del tiempo mínimo con el tiempo en el pico es menor que el límite definido por la ecuación 32 ocurre un "pseudo-mínimo" en la curva de la derivada de presión.

4.2.1 MÉTODO PARA DETERMINAR LA CORRECCIÓN DEL MÍNIMO POR EFECTO DE ALMACENAMIENTO:

En el presente trabajo, se determino que el mínimo no es afectado por WBS, para cualquier valor de ω siempre y cuando el almacenamiento no sea mayor a los proporcionados en la tabla 10 para su respectivo parámetro de flujo interporoso.

	CD				
κ	$\lambda = 1 \times 10^{-4}$	$\lambda = 1 \times 10^{-5}$	$\lambda = 1 \times 10^{-6}$	$\lambda = 1 \times 10^{-7}$	
0.1	3.89E+01	3.11E+02	1.94E+03	1.94E+04	
0.2	3.89E+01	3.11E+02	1.94E+03	1.94E+04	
0.3	3.89E+01	3.11E+02	3.11E+03	2.33E+04	
0.4	7.77E+01	7.77E+01	7.77E+03	3.85E+04	
0.5	7.77E+01	7.77E+01	7.77E+03	7.77E+04	
0.6	7.77E+01	7.77E+01	7.77E+03	7.77E+04	
0.7	7.77E+01	7.77E+01	7.77E+03	7.77E+04	
0.8	7.77E+01	7.77E+01	7.77E+03	7.77E+04	
0.9	1.55E+02	1.55E+03	7.77E+03	7.77E+04	
0.99	1.55E+02	7.77E+02	7.77E+03	7.77E+04	

Tabla 10. Determinación del efecto de almacenamiento).
--	----

De acuerdo a las condiciones anteriores, se propone la misma ecuación utilizada por Tiab y otros⁷, para corregir la derivada del punto mínimo, como se muestra en la ecuación 33.

$$(t^* \Delta P')_{\min} = (t^* \Delta P')_{r_2} + \frac{(t^* \Delta P')_{\min,o} - (t^* \Delta P')_{r_2} [1 + 2D_1 D_2]}{1 + D_2 \left[\ln \left(\frac{C}{(\phi C_t)^* h r_w^2} \right) + 2s - 0.8801 \right]}$$
(33)

Donde:

$$C = \left(\frac{qB}{24}\right) \frac{t}{t^* \Delta P}$$
(34)

$$D_{1} = \left[\ln \left(\frac{qBt_{\min,o}}{(t^{*}\Delta P')_{r2}^{*} (\phi C_{t})^{*} h r_{w}^{2}} \right) + 2s - 4.17 \right]$$
(35)

$$D_{2} = \frac{48.02C}{qB} \left(\frac{(t * \Delta P')_{r2}}{t_{\min,o}} \right)$$
 (36)

Corregido los valores de la derivada del mínimo, se procede a calcular los valores de ω y λ con las ecuaciones 30 y 31 respectivamente.

5. EJERCICIOS

EJERCICIO 1.

La tabla 11 presenta los datos de una prueba de declinación de presión. Otros datos conocidos del pozo y yacimiento son:

q = 600 STB	$\phi = 0.16$	$\mu = 10 \text{ cp}$
$c_t = 4.0 \text{ x } 10^{-6} \text{ psi}^{-1}$	$B_o = 1.2 \text{ rb/STB}$	h = 200 ft
$r_w = 0.5 {\rm ft}$	P_i (t=0) = 4500 psia	$\omega = 0.06$
k = 100 md		

Calcular la relación de capacidad de flujo.

SOLUCION

Paso 1 – Un gráfico de Log – Log de $\Delta P y t^* \Delta P'$ vs tiempo es presentado en la gráfica 3 con los puntos y líneas característicos marcados.

<i>t</i> ,hrs	ΔP , psia	$t^*\Delta P$	<i>t</i> ,hrs	ΔP , psia	$t^*\Delta P$
0.0012626	100.503871	23.2581089	5.58258651	284.118195	7.12394112
0.00159416	105.966766	23.5771473	7.04857411	285.610465	5.87702809
0.00201279	111.498986	23.8544125	8.89953056	286.858929	5.06565544
0.00254134	117.091182	24.0933442	11.2365482	287.972816	4.72075706
0.0032087	122.73483	24.2974449	14.1872671	289.060433	4.80716785
0.00405131	128.422209	24.4701364	17.912845	290.214619	5.24096321
0.00511518	134.14639	24.6146447	22.61676	291.504537	5.91909564
0.00645842	139.901157	24.7339062	28.5559239	292.97497	6.74600774
0.00815441	145.680954	24.8304977	36.0547119	294.650514	7.64720776
0.01029576	151.480768	24.9065785	45.522683	296.541216	8.56983449
0.01299942	157.296045	24.9638483	57.4769462	298.647028	9.47664839
0.01641307	163.122572	25.0035059	72.5703985	300.960616	10.339944
0.02072315	168.956342	25.026209	91.6273923	303.469022	11.1383668
0.02616505	174.793452	25.0320278	115.688754	306.154955	11.856382
0.03303599	180.629936	25.0203832	146.068634	308.998202	12.4848109
0.04171125	186.461617	24.9899734	184.426273	311.977196	13.0210473
0.05266463	192.283919	24.9386733	232.856634	315.070522	13.4683801
0.06649436	198.091674	24.8634109	294.004812	318.25813	13.8345144
0.08395579	203.878877	24.7600135	371.210506	321.522195	14.1297441
0.10600259	209.638417	24.6230213	468.690426	324.847482	14.3652462
0.13383888	215.361734	24.4454758	591.768583	328.221375	14.5517971
0.16898498	221.038474	24.2186802	747.167075	331.633661	14.699003
0.21336046	226.65603	23.9319582	943.373232	335.076202	14.8149788
0.26938894	232.199056	23.5724387	1191.10315	338.542574	14.9063366
0.34013051	237.648948	23.1249153	1503.88696	342.027717	14.9783457
0.42944881	242.983273	22.5718703	1898.80784	345.527668	15.035152
0.54222213	248.175259	21.8937928	2397.43499	349.039306	15.0800021
0.6846097	253.193369	21.0699748	3027.00168	352.560174	15.1154371
0.8643883	258.001166	20.0800445	3821.89265	356.088337	15.1434475
1.09137673	262.557619	18.9065649	4825.52208	359.622264	15.1655971

1.3779724	266.818169	17.5390687	6092.7047	363.160755	15.1831163
1.73982811	270.7369	15.9798022	7692.64962	366.702856	15.1969767
2.19670714	274.270293	14.2510465	9712.74025	370.247809	15.2079437
2.77356268	277.382828	12.4029114	12263.3069	373.795023	15.2166222
3.50190064	280.054344	10.5188223	15483.6526	377.344027	15.2234912
4.42150007	282.288238	8.71423244	19549.6615	380.894444	15.2289282

Paso 2 – el periodo de flujo radial de acción infinita a tiempos tardíos es fácilmente identificado.

 $(t^*\Delta P')_{r2} = 15.2289282$

Paso 3 – el periodo de flujo radial de acción infinita a tiempos tempranos es fácilmente identificado.

 $(t^*\Delta P')_{rl} = 25.0035$

Paso 4 – Usando la Ec. 29,

$$\ln(\kappa) = 0.00073002267 + 0.999971542 * \ln\left(\frac{(t * \Delta P')_{r_2}}{(t * \Delta P')_{r_1}}\right) - \frac{0.00030874828}{\omega^{0.5}}$$

 $\kappa = \exp(-0.47477361) = 0.62202586$

$$\%_error = abs\left(\frac{0.6 - 0.62202586}{0.6}\right) * 100 = 3.671\%$$

EJERCICIO 2.

Determinar el coeficiente de almacenamiento de un yacimiento naturalmente fracturado de doble permeabilidad cuya prueba de presión se da en la tabla 12. Información adicional:

q = 500 STB	$\phi = 0.1$	μ = 15 cp
$c_t = 1.0 \text{ x } 10^{-6} \text{ psi}^{-1}$	$B_o = 1.5 \text{ rb/STB}$	h = 170 ft
$r_w = 0.5 {\rm ft}$	P_i (t=0) = 3000 psia	$\kappa = 0.5$
K = 150 md		

SOLUCION

Paso 1 – Un gráfico de Log – Log de $\Delta P y t^* \Delta P'$ vs tiempo es presentado en la gráfica 4 con los puntos y líneas característicos marcados.

<i>t</i> ,hrs	ΔP , psia	$t^*\Delta P$	<i>t</i> ,hrs	ΔP , psia	$t^*\Delta P$
0.0012626	178.311249	30.4854305	5.58258651	411.71964	11.0901246
0.00159416	185.433666	30.5956107	7.04857411	414.058223	9.13236499
0.00201279	192.579405	30.6868735	8.89953056	415.978483	7.57412
0.00254134	199.744375	30.7618046	11.2365482	417.590387	6.52820176
0.0032087	206.925055	30.8226074	14.1872671	419.022884	6.03333785
0.00405131	214.118388	30.8711245	17.912845	420.404013	6.04625099
0.00511518	221.321693	30.9088455	22.61676	421.842533	6.46156014
0.00645842	228.532617	30.9369152	28.5559239	423.417335	7.14847239
0.00815441	235.749011	30.9561516	36.0547119	425.176197	7.98545553
0.01029576	242.968905	30.967045	45.522683	427.141321	8.87946707
0.01299942	250.190382	30.9697511	57.4769462	429.317105	9.76844836
0.01641307	257.411535	30.9640836	72.5703985	431.696803	10.6143171
0.02072315	264.63037	30.9494656	91.6273923	434.267052	11.3944438
0.02616505	271.844702	30.9249068	115.688754	437.010559	12.0957653
0.03303599	279.052088	30.8889294	146.068634	439.907871	12.7118784
0.04171125	286.249644	30.8394872	184.426273	442.938698	13.2417422
0.05266463	293.433968	30.7738685	232.856634	446.083106	13.6887598
0.06649436	300.600925	30.688533	294.004812	449.3224	14.0596708
0.08395579	307.74545	30.5789795	371.210506	452.639786	14.3632562
0.10600259	314.861319	30.4395204	468.690426	456.020656	14.6091143
0.13383888	321.940809	30.2630442	591.768583	459.452688	14.8066888
0.16898498	328.974382	30.0407589	747.167075	462.925697	14.9646144
0.21336046	335.950208	29.7618675	943.373232	466.431386	15.0904136
0.26938894	342.853717	29.4132815	1191.10315	469.963057	15.1904162
0.3401305	349.666986	28.9793357	1503.88696	473.515379	15.2698163
0.42944881	356.368127	28.4415935	1898.80784	477.084079	15.3328106
0.54222211	362.930619	27.7788545	2397.43499	480.665779	15.3827693
0.68460971	369.322693	26.967496	3027.00168	484.257782	15.422379
0.86438828	375.506811	25.98237	3821.89265	487.857946	15.4537783
1.09137675	381.439478	24.798565	4825.52208	491.464595	15.4786654

1.37797239	387.071533	23.394435	6092.7047	495.07637	15.4983846
1.7398281	392.349383	21.7563109	7692.64962	498.692207	15.5140086
2.19670717	397.217507	19.8852703	9712.74025	502.311271	15.5263852
2.77356268	401.62281	17.8058522	12263.3069	505.932883	15.5361891
3.50190057	405.521207	15.5754929	15483.6526	509.556513	15.5439559
4.42150019	408.886385	13.2914822	19549.6615	513.181751	15.5501062

Paso 2 – el periodo de flujo radial de acción infinita a tiempos tardíos es fácilmente identificado.

 $(t^*\Delta P')_{r2} = 15.5361$

Paso 3 – determinación de la derivada del mínimo

 $(t^*\Delta P')_{min} = 6.03333785$

Paso 4 – Usando la Ec. 30,

 $\ln(\omega) = 13.46 - 81.83(0.5) + 80.26(0.5)^{0.5} + \ln(0.5) + 16.78\ln(0.5) + 39.06\exp(-0.5) + 16.78\ln(0.5) +$

$$48.17\left\{\frac{6.03333785}{15.5361}\right\} - 22.88\left\{\frac{6.03333785}{15.5361}\right\}^{1.5} + 11.46\left\{\frac{6.03333785}{15.5361}\right\}^{0.5} + 46.86\exp\left(-\left\{\frac{6.03333785}{15.5361}\right\}\right)^{1.5}\right\}$$

$$\ln(\omega) = -2.64221054$$

$$\omega = 0.0712037$$

% _error = abs $\left(\frac{0.07 - 0.0712037}{0.07}\right) * 100 = 1.75957\%$

EJERCICIO 3.

Determinar el parámetro de flujo interporoso y coeficiente de almacenamiento de un yacimiento naturalmente fracturado de doble permeabilidad cuya prueba de presión se da en la tabla 13. Información adicional:

q = 800 STB	$\phi = 0.22$	$\mu = 20 \text{ cp}$
$c_t = 1.0 \text{ x } 10^{-6} \text{ psi}^{-1}$	$B_o = 1.4 \text{ rb/STB}$	h = 120 ft
$r_w = 0.5 {\rm ft}$	P_i (t=0) = 5000 psia	$\kappa = 0.7$
k = 160 md		

SOLUCION

Paso 1 – Un gráfico de Log – Log de $\Delta P y t^* \Delta P'$ vs tiempo es presentado en la gráfica 5 con los puntos y líneas característicos marcados.

<i>t</i> ,hrs	ΔP , psia	$t^*\Delta P$	<i>t</i> ,hrs	ΔP , psia	$t^*\Delta P$
0.0012626	390.840096	78.5137879	5.58258651	943.349173	12.5007264
0.00159416	409.223084	79.1130647	7.04857411	946.16262	12.3154121
0.00201279	427.734185	79.6178159	8.89953056	949.092419	13.3557128
0.00254134	446.352561	80.0381132	11.2365482	952.391007	15.3270246
0.0032087	465.059662	80.3829874	14.1872671	956.240133	17.9530554
0.00405131	483.838883	80.6602353	17.912845	960.763364	21.0210293
0.00511518	502.675266	80.8762847	22.61676	966.043199	24.3812631
0.00645842	521.555238	81.0360793	28.5559239	972.133473	27.921646
0.00815441	540.466147	81.1429649	36.0547119	979.064364	31.5409444
0.01029576	559.395968	81.1985805	45.522683	986.842479	35.1345329
0.01299942	578.332806	81.2027071	57.4769462	995.449219	38.5944633
0.01641307	597.264553	81.1530861	72.5703985	1004.84086	41.8191233
0.02072315	616.178263	81.0451726	91.6273923	1014.95142	44.7259039
0.02616505	635.059668	80.8718122	115.688754	1025.69862	47.2613443
0.03303599	653.892526	80.6228391	146.068634	1036.99157	49.40537
0.04171125	672.657827	80.2845691	184.426273	1048.73864	51.1688881
0.05266463	691.332937	79.8391878	232.856634	1060.854	52.5862669
0.06649436	709.890542	79.2640511	294.004812	1073.26205	53.7054948
0.08395579	728.29745	78.5308839	371.210506	1085.89937	54.5788681
0.10600259	746.513135	77.6049673	468.690426	1098.7147	55.2560622
0.13383888	764.488243	76.4443781	591.768583	1111.66783	55.7801646
0.16898498	782.162696	74.9994444	747.167075	1124.72757	56.1863064
0.21336046	799.463963	73.2127055	943.373232	1137.8701	56.5019865
0.26938894	816.305179	71.0197309	1191.10315	1151.07708	56.7482233
0.3401305	832.583748	68.3514215	1503.88696	1164.33443	56.94093
0.42944881	848.180601	65.138596	1898.80784	1177.63127	57.0921568
0.54222211	862.960888	61.3199077	2397.43499	1190.95915	57.2110762
0.68460971	876.776924	56.8542967	3027.00168	1204.31145	57.3047337
0.86438828	889.474685	51.7390006	3821.89265	1217.683	57.3785737
1.09137675	900.905218	46.0329822	4825.52208	1231.06974	57.4368366
1.37797239	910.942008	39.8827291	6092.7047	1244.46846	57.4828384
1.7398281	919.504385	33.5423095	7692.64962	1257.87665	57.5191753
2.19670717	926.584327	27.3736935	9712.74025	1271.29232	57.5478916

Tabla 13. Datos de presión y derivada de presión para el ejercicio 3.

2.77356268	932.27	21.8119387	12263.3069	1284.7139	57.5705919
3.50190057	936.756248	17.2896249	15483.6526	1298.14015	57.5885445
4.42150019	940.332955	14.1373974	19549.6615	1311.5701	57.6027445

Paso 2 – el periodo de flujo radial de acción infinita a tiempos tardíos es fácilmente identificado.

 $(t^*\Delta P')_{r2} = 57.62287$

Paso 3 – coordenadas del punto mínimo.

 $(t^*\Delta P')_{min} = 12.3154121$, $t_{min} = 7.048574$ hrs

Paso 4 – Se usa la ecuación 30 para calcular el coeficiente de almacenamiento.

$$\ln(\omega) = 13.46 - 81.83(0.7) + 80.26(0.7)^{0.5} * \ln(0.7) + 16.78\ln(0.7) + 39.06\exp(-0.7) + 48.17 \left\{ \frac{45.6798466}{57.6557046} \right\}^{1.5} + 11.46 \left\{ \frac{45.6798466}{57.6557046} \right\}^{0.5} + 46.86\exp\left(-\left\{ \frac{45.6798466}{57.6557046} \right\}\right) \\ \ln(\omega) = -0.91197563 \\ \omega = 0.40172977 \\ \%_{-}error = abs\left(\frac{0.4 - 0.40172977}{0.4} \right) * 100 = 0.4324425\%$$

Paso 5 – Se ingresa a la grafica 6 y determinamos la *Kte*.

Kte = 0.52

Paso 6 – calculamos el t_{Dmin} .

$$t_{D\min} = \frac{0.0002637kt_{\min}}{\phi\mu c_{t}r_{w}^{2}}$$

$$t_{D\min} = \frac{0.0002637*160*7.048574}{0.22*20*1\times10^{-6}*0.5^{2}} = 1.0638378\times10^{5}$$

Paso 7 – Usamos la ecuación 31 para calcular el parámetro de flujo interporoso.

$$\lambda = \frac{0.7 + 0.52}{1.0638378 \times 10^5} \ln\left(\frac{1}{0.40172977}\right) = 1.04585 \times 10^{-5}$$

% _ error = abs $\left(\frac{1.0 \times 10^{-5} - 1.04585 \times 10^{-5}}{1.0 \times 10^{-5}}\right) * 100 = 4.585\%$

EJERCICIO 4.

Determinar si el efecto de almacenamiento afecta el mínimo y si lo afecta corregirlo en un yacimiento naturalmente fracturado de doble permeabilidad cuya prueba de presión se da en la tabla 13. Información adicional:

q = 500 STB	$\phi = 0.1$	$\mu = 15 \text{ cp}$
$c_t = 1.0 \text{ x } 10^{-6} \text{ psi}^{-1}$	$B_o = 1.5 \text{ rb/STB}$	h = 150 ft
$r_w = 0.5 {\rm ft}$	P_i (t=0) = 3000 psia	$\mathbf{s} = 0$
k = 150 md	к=0.5	$\lambda = 1 \times 10^{-6}$

SOLUCION

Paso 1 – Un gráfico de Log – Log de $\Delta P y t^* \Delta P'$ vs tiempo es presentado en la grafica 7 con los puntos y líneas característicos marcados.

<i>t</i> ,hrs	ΔP , psia	$t^*\Delta P$	<i>t</i> ,hrs	ΔP , psia	$t^*\Delta P$
0.0012626	0.19711304	0.19883992	5.58258651	372.57248	137.71368
0.00159416	0.24885257	0.250987	7.04857411	402.616727	117.220315
0.00201279	0.31415991	0.31679391	8.89953056	427.237743	92.7722406
0.00254134	0.39658825	0.39982825	11.2365482	445.880725	67.7888859
0.0032087	0.50061836	0.50458422	14.1872671	458.850848	45.6736632
0.00405131	0.63189926	0.6367201	17.912845	467.180469	28.7878101
0.00511518	0.79755048	0.80335493	22.61676	472.275932	17.845413
0.00645842	1.00654088	1.01343829	28.5559239	475.502614	12.0467032
0.00815441	1.27016368	1.27820933	36.0547119	477.893871	9.79998671
0.01029576	1.60262918	1.61176482	45.522683	480.072799	9.52953576
0.01299942	2.02180432	2.03175765	57.4769462	482.337936	10.1345199
0.01641307	2.55013194	2.56025068	72.5703985	484.798996	11.0280201
0.02072315	3.21576787	3.22475095	91.6273923	487.480814	11.9612772
0.02616505	4.05398275	4.05944698	115.688754	490.377095	12.84506
0.03303599	5.10887616	5.10666871	146.068634	493.471062	13.648236
0.04171125	6.43545899	6.41856991	184.426273	496.741904	14.3586675
0.05266463	8.10215272	8.05901118	232.856634	500.167168	14.9724872
0.06649436	10.1937497	10.1055696	294.004812	503.724265	15.4916302
0.08395579	12.8148482	12.6515221	371.210506	507.391638	15.9225394
0.10600259	16.0937402	15.8075313	468.690426	511.149683	16.2746703
0.13383888	20.1866326	19.702563	591.768583	514.981272	16.5589243
0.16898498	25.2819588	24.4832956	747.167075	518.871876	16.7863382
0.21336046	31.6043279	30.3109154	943.373232	522.809513	16.9671759
0.26938894	39.4173433	37.3536876	1191.10315	526.784456	17.1104423
0.3401305	49.0240837	45.7731443	1503.88696	530.788909	17.2237144
0.42944881	60.763482	55.7012086	1898.80784	534.816674	17.3131928
0.54222211	75.0001379	67.2053303	2397.43499	538.862852	17.3838592
0.68460971	92.1044423	80.2392298	3027.00168	542.923573	17.4396734
0.86438828	112.419409	94.5788876	3821.89265	546.995781	17.4837659
1.09137675	136.210959	109.748074	4825.52208	551.077061	17.5186049
1.37797239	163.600024	124.945797	6092.7047	555.165522	17.5461368
1.7398281	194.478982	139.000175	7692.64962	559.259644	17.5678971

Tabla 14. Datos de presión y derivada de presión para el ejercicio 4.

2.19670717	228.422248	150.386536	9712.74025	563.358242	17.585096
2.77356268	264.611193	157.356436	12263.3069	567.460385	17.5986907
3.50190057	301.804848	158.215595	15483.6526	571.56533	17.6094368
4.42150019	338.394456	151.749094	19549.6615	575.672485	17.6179321

Paso 2 – el periodo de flujo radial de acción infinita a tiempos tardíos es fácilmente identificado.

 $(t^*\Delta P')_{r2} = 17.6179321$

Paso 3 – coordenadas del punto pseudo mínimo.

 $(t^*\Delta P')_{min} = 9.52953576, t_{min} = 45.522683$ hrs

Paso 4 – Cálculo de factor de almacenamiento. Ec. 34

$$C = \left(\frac{500*1.5}{24}\right) \frac{0.01299942}{2.03175756} = 0.2$$

Pasó 5 – De acuerdo a la tabla 10 se observa si el efecto de almacenamiento afecta el mínimo.

$$C_{D} = \frac{0.8936C}{\phi c_{t} h r_{w}^{2}}$$
$$C_{D} = \frac{0.8936 * 0.2}{0.1 * 1 \times 10^{-6} * 150 * 0.5^{2}} = 47658.667$$

Según la tabla 9 hay efecto de almacenamiento, ya que el C_D es mayor a 7.77×10^3 .

Paso 6 – Usamos la ecuación 33 para hacer la corrección del mínimo.

 $(t^*\Delta P')_{min_real} = 5.6746 \text{ psi}$

$$D_{1} = \left[\ln \left(\frac{500 * 1.5 * 45.522683}{17.6179 * (0.1 * 1x10^{-6}) * 150 * 0.5^{2}} \right) + 2(0) - 4.17 \right] = 15.8931$$
$$D_{2} = \frac{48.02 * 0.2}{500 * 1.5} \left(\frac{17.6179}{45.522683} \right) = 0.00495585$$

$$(t^* \Delta P')_{\min} = 17.618 + \frac{9.529536 - 17.618[1 + 2*15.893*0.004956]}{1 + 0.004956 \left[\ln\left(\frac{0.2}{(0.2*1x10^{-6})*150*0.5^2}\right) + 2*0 - 0.8801 \right]} = 7.2667$$

$$\%_error = abs\left(\frac{5.6746 - 7.2667}{5.6746}\right) * 100 = 28\%$$

6. CONCLUSIONES

- Se extendió la técnica TDS, para caracterizar yacimientos naturalmente fracturados de doble permeabilidad en pozos verticales de petróleo. Los resultados de la técnica propuesta se verificó satisfactoriamente aplicándola a pruebas sintéticas.
- Se generó correlaciones para el cálculo del coeficiente de flujo interporoso, λ, parámetro de almacenamiento, ω, relación de la capacidad de flujo, κ, y se corrigió la derivada del mínimo, (*t**Δ*P*')_{min}, por efectos de almacenamiento a partir de la correlación generada por Tiab y otros⁷, en sistemas de doble permeabilidad, sin considerar daño, s, mediante la técnica TDS.
- Error relativo porcentual que presentan las correlaciones generadas es menor a 5%, sin embargo, la correlación de corrección del mínimo presenta un error aproximadamente de 28 % para almacenamientos relativamente altos.

7. RECOMENDACIONES

- Extender la técnica TDS en sistema de doble permeabilidad afectados por daño (s) y desarrollar el estudio en método convencional.
- La correlación de corrección de mínimo generada por Tiab y otros⁷ aumenta su porcentaje de error relativo a medida que se aumenta el almacenamiento, por lo tanto se recomienda utilizar para almacenamientos bajos teniendo en cuenta la tabla 10.

8. REFERENCIAS

Arango, M., and Naranjo, A., 2009. "Well Test Analysis in Naturally Fractured And Stress Sensitive Reservoir". <u>http://www.scielo.unal.edu.co/scielo.php?script=sci_arttext&pid=S0012-</u>73532009000400005&lng=es&nrm=&tlng=es

Barenblatt *et al.*, 1960. The Mathematical Model of Non-Equilibrium Effects in Water-Oil Displacement. Paper SPE 75169, 3-4

Bremer et al., 1986. "Vertical Interference Testing Across a Low-Permeability Zone". Paper SPE 71587

Ehlig-Economides, C., and Ayoub, J.A., "Vertical Interference Testing Across a Low-Permeability Zone", paper SPE 13251 presented in Houston, Sept 1984; also SPEFE Oct 1986, pp 497-510.

Engler, T., 1995. "Interpretation of Pressure test in Natrurally Fractured Reservoirs by the Direct Synthesis Technique". PhD. Dissertation. University of Oklahoma, USA.

Engler, T., and Tiab, D., 1995. "Analysis of pressure and pressure derivative without type curve matching, 4. "Naturally fractured reservoirs". presented at the Journal of petroleum science and Engineering 15 (1996) 127-138

Escobar, F.H., 2005. "Análisis Moderno de Pruebas de Presión". Editorial Universidad Surcolombiana. ISBN 958-8154-81-2. Abr. 2005.

Hill, A., and Thomas, G., 1985. A New Approach for Simulating Complex Fractured Reservoirs. Paper SPE 13537, 5-7

Tiab, D., Igbokoyi, A., and Restrepo, D., 2007 "*Fracture Porosity from Pressure Transient Data*". Presented at the International Petroleum Technology Conference held in Dubai, U.A.E., 4-6 December 2007.

Warren, J., and Root, P., 1963. The Behavior of Naturally Fractured Reservoirs. Paper SPE 426, 6-7

2008. "Geometria de los yacimientos Naturalmente Fracturados". Comunidad Petrolera. <u>http://industria-petrolera.lacomunidadpetrolera.com/2008/11/geometria-de-los-yacimientos.html</u>

9. NOMENCLATURA

Α	Coeficiente de solución en el espacio Laplaciano definido en la Ecu. 17
B_o	Factor de volumen de formación del aceite, rb/STB
C_t	Compresibilidad total, 1/psi
С	Factor de almacenamiento, bbl/psi
C_D	Factor de almacenamiento en forma adimencional, referida a la
	producción de la capa
C_{DV}	Factor de almacenamiento en forma adimencional, referida al sistema
	total
h	Espesor de la formación, ft
k	Permeabilidad horizontal, md
k_v	Permeabilidad vertical, md
K_0, K_1	Funciones de Bessel, de segundo tipo
K^0_{l}	Relación de las funciones Bessel, definida en la Ecu. 19
Kte	Constante para determinar λ , definida en la grafico
l	Variable de la transformada de Laplace
Р	Presión, psi
P_w	Presión de fondo de pozo, psi
P_D	presión adimensional
q	Rata de flujo, BPD
R	Radio, ft
<i>r</i> _D	Radio adimensional
r _e	Radio de drenaje, ft
r_w	Radio del pozo, ft
S	Daño (skin factor)
t	Tiempo, hr
t_D	Tiempo adimensional
t_{Dmin}	Tiempo adimensional del punto minimo
<i>t_{min}</i>	Tiempo del punto minimo, hr
t_{DV}	Tiempo adimensional referido al sistema total
$t_D * P_D'$	Derivada de presión adimensional
$t^*\Delta P'$	Derivada de presión, psi
Ζ	Argumento de la función para la Ecu. 19

Griego

ciano

Sufijos

1	Propiedades de la Zona 1 (Fractura)
2	Propiedades de la Zona 2 (Matriz)
D	Adimensional
DV	Adimensional Vertical
DH	Adimensional Horizontal
i	Propiedades de la Zona i
min	Mínimo
R	Radial
W	Pozo

10. ANEXO A

Grafica 8. Determinación de κ , ω y λ .

Grafica 9. Determinación de κ , ω y λ .

Grafica 54. Determinación de κ , ω y λ .

11. ANEXO B

Códigos generados en Microsoft Visual Basic de Excel:

Sub Ordenar_Datos()

'Este código sirve para ordenar los datos simulados en tres columnas, tD* $\lambda/4$, PD y tD*PD', previamente copiados de un bloc de notas.

Range("C4").Select ActiveCell.FormulaR1C1 = "td" Range("C1003").Select Selection.ClearContents Range("C1004:C3000").Select Selection.Cut Range("D5").Select ActiveSheet.Paste p = Cells(1003, 4)Cells(1003, 4).ClearContents Range("D1004:D2001").Select Selection.Cut Range("E5").Select ActiveSheet.Paste Range("G7").Select Cells(3, 3) = "K = "& pEnd Sub

Sub Borrar() 'Este código sirve para borrar los datos del rango establecido. Sheets("Hoja1").Range("B4:D101").ClearContents End Sub