IMPLEMENTACIÓN Y ACTUALIZACIÓN DE INFORMACIÓN DE LA PRODUCCIÓN PETROLERA DE LA SOH-ECOPETROL DEL DEPARTAMENTO DEL HUILA

MONICA ROCIO SUAREZ BEDOYA DIEGO FERNANDO DURAN ROJAS

UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERÍA PROGRAMA DE PETRÓLEOS NEIVA-HUILA 2012

IMPLEMENTACIÓN Y ACTUALIZACIÓN DE INFORMACIÓN DE LA PRODUCCIÓN PETROLERA DE LA SOH-ECOPETROL DEL DEPARTAMENTO DEL HUILA

MONICA ROCIO SUAREZ BEDOYA DIEGO FERNANDO DURAN ROJAS

Trabajo de grado presentado como requisito para optar al Título de: INGENIERO DE PETRÓLEOS

Director

JORGE ORLANDO MAYORGA BAUTISTA

Ingeniero Catastral y Geodesta

Especialista en Sensores Remotos y Sistemas de Información Geográfica

Universidad Surcolombiana

UNIVESIDAD SURCOLOMBIANA FACULTAD DE INGENIERIA PROGRAMA DE PETROLEOS NEIVA-HUILA 2012

Nota de Aceptación:		
Firma del presidente del jurado		
Firma del jurado		
i iiii aasi jalaas		
Firma del jurado		

DEDICATORIAS

A Dios; Por permitirme llegar a este momento tan especial en mi vida. Por los triunfos y los momentos difíciles que me han enseñado a valorarte cada día más.

A mis Padres: Nélida y Luis; Por haberme educado y soportar mis errores. Gracias a sus consejos, por el amor que siempre me han brindado, por cultivar e inculcar ese sabio don de la responsabilidad, por sus esfuerzos y constancia.

¡Gracias por darme la vida! ¡Los amo!

A mis hermanos; A Carlos por ser el ejemplo de un hermano mayor, a Diego por su constancia, a Sandra por su apoyo y a Daniela por ser la princesa de la casa, de los cuales aprendí aciertos y de momentos difíciles, Porque siempre he contado con ellos para todo, gracias a la confianza que siempre nos hemos tenido; por el apoyo y amistad.

¡Gracias a ustedes!

A mis amigos; A la familia Díaz Verbel, que me vieron y ayudaron a crecer en mi carrera profesional, gracias por el apoyo, la confianza brindada y cada una de las sonrisas.

Monica Rocio Suarez Bedoya

Ante todo quiero dedicarle a Dios todo poderosos que me dio la fuerza y la fé para creer y poder.

A mi madre; Judith por su apoyo, esfuerzo entendimiento y sobre todo por su comprensión.

A mis hermanos; Mario y Johana, por su apoyo y colaboración.

A mis amigos; Camilo, Oscar, Cristia, Arley y Jaime. Por siempre estar ahí

DIEGO FERNANDO DURAN ROJAS

AGRADECIMIENTOS

Jorge Orlando Mayorga Bautista, Ingeniero Catastral y Geodesta, profesor titular del programa de Ingeniería de Petróleos de la Universidad Surcolombiana y Director del proyecto, por sus valiosos aportes, su respaldo y colaboración para el desarrollo del mismo.

Carlos Andrés Madrigal Montealegre, Ingeniero de Petróleos, Coordinación de Subsuelo de la Superintendencia de Operaciones de Huila Tolima Ecopetrol S.A por brindarnos la oportunidad de realizar este proyecto.

Camilo Andrés Pinto Losada, Ingeniero de Petróleos, Coordinador Open Wells de Varisur S.A para la Superintendencia de Operaciones Huila Tolima Ecopetrol S.A; por su gran amistad y colaboración.

Wilson Alexander Martínez Ardila, Ingeniero de Petróleos, Departamento de Ingeniería de Subsuelo y Confiabilidad de la Superintendencia de Operaciones Huila Tolima Ecopetrol S.A; por su valiosa colaboración.

Darwin Villadiego Atencio, Ingeniero de Petróleos, grupo de Ingeniería y Confiabilidad de la Superintendencia de Operaciones Huila Tolima Ecopetrol S.A por su valiosa colaboración y comprensión.

RESUMEN

IMPLEMENTACIÓN Y ACTUALIZACIÓN DE INFORMACIÓN DE LA PRODUCCIÓN PETROLERA DE LA SOH-ECOPETROL DEL DEPARTAMENTO DEL HUILA

AUTORES

Monica Rocio Suarez Bedoya; Diego Fernando Duran Rojas

Los sistemas de información geográficas (SIG) representan nuevas formas para realizar estudios sobre la ubicación de Campos Petroleros, Pozos petroleros, Producción de pozos petroleros, entre otros. Los SIG debido a la gran cantidad de herramientas que contiene, permiten manipular, procesar, analizar y relacionar grandes volúmenes de datos dentro de un componente espacial asociado. Así mismo, permite la aplicación de métodos y análisis estadísticos y matemáticos para tener una visión más aproximada a la realidad de las variables a considerar en diversos estudios. Los Campos Petroleros son de gran importancia en cuanto a que representan una fuente de investigación, referente a cómo se puede incrementar la producción de los pozos sin afectar la formación o acabar la vida útil del mismo. Es por ello que se hace necesaria la sistematización de la información acerca de estas áreas con el fin de favorecer medidas de manejo más eficientes. Mediante el uso de un SIG y en particular sistemas de posicionamiento global (GPS), se realizó un estudio para determinar la distribución de los Campos Petroleros y los Pozos que los conforman.

Nuestro trabajo presenta el diseño y la implementación de Objetos Geográficos (OG) que permitan el manejo de datos en un Sistema de Información Geográfica (SIG). Utilizando una Base de Datos Objeto-Relacional (Informix Universal Server IUS), es posible manejar la información de los OG. El modelo describe OG del mundo real, así como conceptos del enfoque orientado a objetos tales como campos petroleros, pozos, producción de pozos petroleros, etc. Un visualizador de objetos geográficos apoya en la administración del almacenamiento y la recuperación de objetos geográficos, permitiendo así el manejo de los datos. De esta manera los objetos geográficos no necesitan ser armados y desarmados para su utilización.

ABSTRACT

IMPLEMENTATION AND UPDATING INFORMATION OIL PRODUCTION OF SOH-ECOPETROL THE DEPARTMENT OF HUILA

AUTHORS

Monica Rocio Suarez Bedoya; Diego Fernando Duran Rojas

The Geographic information systems (GIS) represent new ways to study the location of oil fields, oil wells, oil well production, among others. The GIS because of the many tools it contains, allow you to manipulate, process, analyze and correlate large volumes of data within a spatial component associated. It also allows the application of methods and statistical and mathematical analysis to obtain a more approximate to the reality of the variables considered in several studies. The oil fields are of great importance as they represent a source of research concerning how to increase production from wells without affecting the formation or end the life of the product. That is why it is necessary to systematize information about these areas in order to promote more efficient management measures. Using a GIS and global positioning systems including (GPS), a study was conducted to determine the distribution of oil fields and wells that shape it.

Our paper presents the design and implementation of Geographic Objects (OG) to allow for management of data in a Geographic Information System (GIS). Using a Database Object-Relational (Informix Universal Server IUS), you may manage the persistence of the OG. The GL model describes the real world and concepts of object-oriented approach such as oil fields, wells, production of oil wells, etc. A display of geographic objects based on storage management and retrieval of geographic objects, allowing the management of persistence. Thus geographic objects need not be armed and disarmed for use.

TABLA DE CONTENIDO

INTR	ODUCCIÓN	15
1.	CONCEPTOS BÁSICOS	17
	1.1. SISTEMAS DE INFORMACIÓN GEOGRÁFICA (SIG)	17
	1.2. DEFINICIÓN Y CARACTERÍSTICAS PRINCIPALES DE	UN
	SIG	.18
	1.2.1. Componentes SIG	.23
	1.2.2. Contexto de Proyectos SIG	.24
	1.2.3. Modelización del mundo real en los SIG	24
	1.3. MODELOS DE REPRESENTACIÓN DE LOS DATOS	28
	1.4. ArcGIS 9.3	28
2.	GENERALIDADES	30
2.1.	ACTUALIDAD DE ECOPETROL S.A	30
2.2.	VICEPRESIDENCIA DE PRODUCCIÓN	31
2.2.1.	Gerencia Regional Sur	33
2.2.2.	Superintendencia de Operación Huila Tolima	34
2.3.	CAMPOS PETROLEROS TRABAJADOS	35
2.4.	MÉTODOS DE PRODUCCIÓN DE LOS POZOS PRODUCTORES DE L	Α
SOH	DEL DEPARTAMENTO DEL HUILA	36
2.4.1.	Flujo natural y levantamiento artificial	36
2	CENEDALIDADES DE LINISIG	16

3.1.	MODELOS DE DISEÑO DE UN SIG46
3.1.1.	Modelo conceptual47
3.1.2.	Modelo lógico49
3.1.3.	Modelo físico51
4.	IMPLEMENTACIÓN Y ACTUALIZACIÓN DE LA PRODUCCIÓN
PETR	OLERA DE LA SOH-ECOPETROL DEL
DEPA	RTAMENTO DEL HUILA52
4.1.	RECOPILACIÓN DE LA INFORMACIÓN52
4.1.1.	Revisión Bibliográfica y Cartográfica52
4.1.2.	Información Cartográfica52
4.1.3.	Mapa de Tierras ANH53
4.1.4.	Mapas Geológicos54
4.1.5.	Google Earth Pro55
4.1.6.	Sistema de Referencia Cartográfico56
4.2.	IMPLEMENTACIÓN DE LOS SISTEMAS DEINFORMACIÓN
GEOG	RÁFICOS56
4.2.1.	Entrada de la información56
4.2.2.	Localización de los pozos petroleros58
4.2.2.	1. Diseño58
4.2.2.2	2. Imágenes de los métodos de producción para cada pozo61
4.2.2.3	3. Relación base de datos espacial62
4.2.3.	Orientación base de datos por Municipio63

4.2.3.1. Análisis (Superposición) de mapas geológicos	63
4.2.3.2. Análisis (Superposición) mapa de la ANH	66
4.2.3.3. Análisis (Superposición) de mapas de Google Earth Pro	66
4.2.4. ELABORACIÓN DEL MODELO DIGITAL DEL TERRENO (DTM) EN	
3D	67
4.2.5. ANÁLISIS DE RESULTADOS	68
5. CONCLUSIONES	71
RECOMENDACIONES	72
BIBLIOGRAFÍA	73
ANEXOS A	74
ANEXO B	75

LISTA DE CUADROS

Cuadro 1. Campos petroleros y su ubicación	35
Cuadro 2. Producción de aceite por campo	69

LISTA DE FIGURAS

Figura 1. Datos Geográficos y Atributos	20
Figura 2. Modelo de Objetos Geográficos	21
Figura 3. Aplicaciones de un SIG	22
Figura 4. Componentes de SIG	23
Figura 5. Pasos para la construcción de SIG (Adoptado por Hendriks)	26
Figura 6. Organigrama de Ecopetrol S.A	32
Figura 7. Organigrama de la Vicepresidencia de Producción	33
Figura 8. Organigrama de la Gerencia Regional Sur	34
Figura 9. Organigrama de la Superintendencia de Operaciones Huila Tolima	35
Figura 10. Componentes del sistema mecánico	37
Figura11. Ciclo de bombeo	38
Figura 12. Cabezal de PCP	40
Figura 13. Componentes de PCP	41
Figura 14. Cabezal de BES	43
Figura 15 Componentes del BES	45

LISTA DE IMÁGENES

Imagen 1. Esquema de la modelización de datos en un SIG	47
Imagen 2. Esquema modelo conceptual	48
Imagen 3. Esquema modelo lógico	50
Imagen 4. Esquema modelo físico	51
Imagen 5. Mapa de Tierras de la ANH	54
Imagen 6. Mapa Geológico plancha 323-Neiva	55
Imagen 7. Google Earth Pro campo San Francisco	56
Imagen 8. Municipio de Baraya	57
Imagen 9. Base de datos	59
Imagen 10. Selección del pozo	60
Imagen 11. Resultados gráficos y numéricos	60
Imagen 12a. Enlace de identificación de pozos	61
Imagen 12b. L.A. con Gas Lift	62
Imagen 13. The Geographic Calculator	63

Imagen 14. Add Control de mapas geológicos6	34
Imagen 15. Georeferenciación de mapas geológicos6	5
Imagen 16. Superposición del corte geológico con la ubicación del pozo65	5
Imagen 17. Corte de la ANH con pozos del Huila6	6
Imagen 18. Superposición del corte de la imagen de Google Earth Pro6	7
Imagen 19. Modelamiento 3D para el Municipio de Palermo6	38
Imagen 20. Modelamiento Municipio de Aipe6	39
Imagen 21. Visualización de la información desde Google Earth Pro7	' 0

INTRODUCCIÓN

Los SIG son herramientas que permiten manipular, procesar, analizar y relacionar un gran volumen da datos de naturaleza geográfica, además de métodos estadísticos y matemáticos para tener una mejor visión de cada una de las variables a considerar en determinados estudios. Los sistemas de información se han convertido en herramientas útiles de la ingeniería y de las ciencias básicas. Son tres las características que han propiciado que los sistemas de información geográfica se estén desarrollando en forma considerable y estas características son: el resolver problemas de manera eficiente, rápida y oportuna.

Los SIG son un tipo especializado de sistemas que se distinguen por su capacidad de manejar información espacialmente referenciable y que permiten además su representación gráfica [Velez 96]. Se dice que son herramientas, porque ayudan a la formación de elementos de juicio para la toma de decisiones luego que se han aprovechado sus funciones de captura, almacenamiento, refinamiento, análisis y visualización de la información.

La forma de organizar la información en un SIG espacial es importante. La información puede ser muy variada ya que se tienen en cuenta características del mundo real. Podemos tener información tanto de cuerpos y figuras regulares que son bien representados por la geometría tradicional tanto de información que no podrá ser representada de manera trivial. Esto se debe a que la mayoría de los datos espaciales que representan información real no es regular. El uso de nuevas geometrías permitirá un manejo más adecuado de la información espacial [López 98].

Las bases de datos se utilizan normalmente para guardar una variedad de información dependiendo del dominio de la aplicación elegida. Los datos necesitan a menudo ser periódicamente actualizados en cuanto a la información con la que cuenta (valores), como de los cambios en el dominio de la aplicación. Los mecanismos de almacenamiento de datos actuales en una base de datos utilizan modelos formales que garantizan la consistencia, la seguridad, reducen la redundancia y permiten su uso concurrente. Debido a estas exigencias una base de datos modela información de una manera distinta a su representación real. Tal es el caso del modelo relacional. Como es bien conocido, si los datos que se manejan son complejos y estructurados se necesitan crear mecanismos de armado y desarmado de datos para que aplicaciones de explotación (manejo de la información) y bases de datos puedan interactuar [Cattell 91].

Con la aplicación de los Sistemas de Información Geográfica, se establecen cuales son las áreas donde se encuentran localizados los pozos petroleros que

forman parte de los Campos de la SOH-ECOPETROL del Departamento del Huila. Para ello se llevó a cabo la recolección de datos GPS dados por ECOPETROL, y se comprobó en campo los valores de las coordenadas, estableciendo así las áreas de gran potencial de Hidrocarburos y así mismo, se realizó la descripción de las propiedades del HC, sistema de levantamiento, producción etc., de cada uno de los pozos y su relación con el mapa de tierras de la Agencia Nacional de Hidrocarburos (ANH).

El objetivo general es implementar y actualizar la información de la producción petrolera de la SOH-ECOPETROL del Departamento del Huila mediante sistemas de información geográfica (SIG), que permite visualizar, conocer de forma clara y sencilla la ubicación geográfica y la cantidad de hidrocarburos aportados por los pozos petroleros del Departamento, permitiendo así, obtener información de forma viable, eficaz, confiable y rápida.

1. CONCEPTOS BÁSICOS

En este capítulo se dará una breve descripción de aspecto teóricos fundamentales a tener en cuenta para el desarrollo de los objetivos del proyecto.

1.1. SISTEMAS DE INFORMACIÓN GEOGRÁFICA

La información espacial asociada a bases de datos ha experimentado grandes y rápidos avances, desarrollando también una efectiva captura, análisis, transformación, manejo y representación de estos datos, los cuales pueden ser implementados en diferentes campos. Esto conlleva que los campos de acción de la tecnología de los Sistemas de Información Geográfica (SIG), presente un amplio rango de aplicación.

Es sumamente complejo tratar de dar una definición de SIG, debido a que son muchas las opciones que éstos nos presentan.

Para algunos, los SIG representan la información derivada de una interpretación de datos geográficos la cual es expresada como un sistema con avanzadas capacidades de modelaje espacial.

Antenucci (1992), define al SIG,

"Como un sistema computarizado que almacena y articula atributos no geográficos e información georeferenciada con formas cartográficas para permitir un amplio rango de procesamiento de la información y despliegue de las operaciones, tal como la producción de mapas, análisis y modelaje con fines de estudio y toma de decisiones de problemas ambientales, de localización de hábitat, planificación del uso rural y urbano del espacio, estudios de suelos y aplicaciones militares entre otras".

Una definición más orientada al impacto que ha tenido esta tecnología en el mercado y los negocios y que tiene que ver con el manejo de los recursos naturales en el mundo es la definición de Openshaw, citado por Lollet (1998), donde se dice que un SIG:

"...más allá de sus altas posibilidades de manejo e interpretación de información georeferenciada, está la gran ventaja de su facilidad para adquirirla y venderla a buen precio, por lo que se ha tratado de desarrollar nuevos esquemas basado en costos, aplicabilidad y modelos de información."

1.2. DEFINICIÓN Y CARACTERÍSTICAS PRINCIPALES DE UN SIG¹

Con el propósito de conocer apropiadamente los aspectos relativos a los Sistemas de Información Geográfica (SIG) es necesario señalar básicamente la diferencia de estos con los sistemas de información (SI) convencionales. El SIG es un sistema de información donde el componente espacial asociado a los datos requiere de un tratamiento especial (Lollet, 1997).

Sin embargo al momento de establecer una definición bien adecuada de lo que son los SIG se evidencia un amplio rango del concepto, por lo que se pueden tener diferentes y variadas definiciones de acuerdo a su orientación, a la tarea, objetivos que desempeñe el SIG, entre otros.

Los sistemas de información involucran un conjunto de actividades y operaciones que nos llevan a realizar todo un proceso para la obtención, el almacenamiento y análisis de datos hasta la utilización de la información derivada en algún proceso de planificación que nos permita poder realizar la toma de decisiones en planificación, manejo del uso del suelo, recursos naturales, medio ambiente, transporte, instalaciones urbanas, y otros registros administrativos (Lollet, 1997).

Así, según Burrough (1986) Los Sistemas de Información Geográfica, son:

"Un conjunto de herramientas para recoger, almacenar, buscar, transformar y desplegar datos espaciales del mundo real para unos determinados objetivos". (Maguire, 1991).

Aronoff (1989) los considera como "Un sistema informatizado que ofrece cuatro tipos de posibilidades para manejar datos: 1. Entrada de datos, 2. Manejo de datos (almacenamiento y búsqueda), 3. Manipulación y análisis, 4. Salida de datos".

Para Sicherman un SIG puede ser definido como:

"Un conjunto de funciones automatizadas que proporciona una capacidad avanzada y profesional para recopilar, recuperar, manipular y presentar datos geográficamente localizados". (Maguire, 1991).

Doe (1987), define a los SIG como: "Un sistema de captura, recopilación, verificación, manipulación, análisis y despliegue de datos que están espacialmente georeferenciados." (Maguire, 1991).

Parker (1988) define el SIG como: "Una información automatizada en la cual se almacena, analiza y presentan tanto datos espaciales y no espaciales." (Maguire, 1991).

Phil (1988), por su parte dice que un SIG es:

"Un sistema que contiene datos espacialmente referenciados, los cuales pueden ser analizados y convertidos a una información para propósitos específicos o de aplicación, la característica clave de un SIG es el análisis de los datos para generar una nueva información." (Antenucci, 1992).

Francis, (1988), Conceptualiza al SIG como:

"Es un sistema de manejo de información que puede:

Reunir, almacenar, recuperar información basada en su localización espacial.

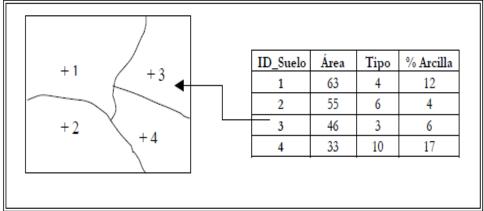
Identificar lugares bajo un enfoque ambiental con criterios específicos.

Explorar las relaciones de un conjunto de datos con su ambiente.

Analizar los datos interrelacionados espacialmente para la toma de decisiones en el área ambiental.

Facilitar la selección y aprobación de los datos para la aplicación específica de modelos analíticos capaces de contribuir en las decisiones sobre impacto ambiental.

Presentar lo seleccionado tanto en ambiente gráfico como numérico antes o después del análisis." (Maguire, 1991).


Y por último se tomará lo descrito por Cowen al referirse a los SIG como:

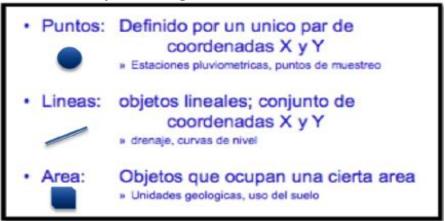
"Sistemas de soporte de decisión que implican la integración de datos espacialmente referenciados en la solución de un problema ambiental" (Maguire, 1991).

Tomando en cuenta las diferentes definiciones que dan algunos de los autores especializados se podría considerar que cualquier otra definición de algún otro autor sería válida y aplicable, siempre y cuando tenga en común que los SIG manipulan información geográficamente referenciada.

De esta manera nuestra definición final establece que un SIG es "un sistema de información computarizado o no, teniendo en cuenta que el manejo de información en una base de datos de computo permite de manera sencilla la utilización de la misma en cualquier área, mientras que el manejo de forma documental resulta obsoleta y compleja al momento de su utilización; donde los datos están geográficamente referenciados" (Figura 1).

Figura 1. Datos Geográficos y Atributos

Fuente: Adaptado de Lollet, 1997.


Un Sistema de Información Geográfica, comprende cuatro (4) elementos básicos: Hardware, Software, los datos y el recurso humano. El hardware incluye todo lo relacionado con las plataformas, es decir, computadoras personales, estaciones de trabajo, unidades centralizadoras de procesamiento, micro y mini computadoras. También se incluyen los dispositivos periféricos, básicamente se refieren a dispositivos de almacenamiento de información, tales como discos duros, unidades de CD ROM, de Zip, etc. Los dispositivos de entrada como son monitores, escáner, mesa digitalizadora; y los de salida, como plotters de plumillas o electrostáticos, impresoras de matriz de punto, inyección de tinta y láser. El software incluye los sistemas de operación, herramientas SIG y manejadores de base de datos.

Por último los datos constituyen un recurso esencial que supone una relación económica elevada frente a los otros elementos. En este sentido, el costo de la captura de los datos puede hasta doblar el costo del hardware y el software (Prieto, 1994). Un Dato es un símbolo que representa a un objeto o hecho del mundo, un símbolo es un signo convencional que tiene una función social, por medio del cual se designa algo. Las propiedades o características de un objeto se denominan atributos, cada atributo tiene asociado uno a más valores y el valor de un atributo recibe el nombre de Dato.²

^{1,2} LEIJA LUNA, Paulina. Sistemas de Información Geográfica para la ayuda de toma de decisiones en políticas sociales. México, D.F., 2010. 136p.Trabajo de grado (Maestra en Ciencias en Computación). Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Computación

La característica principal de los SIG es el manejo de datos complejos basados en datos geométricos (coordenadas e información topológica) y datos de atributos (información nominal) la cual describe las propiedades de los objetos geométricos tales como punto, líneas y polígonos. (Figura 2).

Figura 2: Modelo de Objetos Geográficos

Fuente: LEIJA LUNA, Paulina. Sistemas de Información Geográfica para la ayuda de toma de decisiones en políticas sociales. México, D.F., 2010. 136p.

Las codificaciones de la información en datos apuntan a estructuras y formatos adecuados para el almacenamiento en una base de datos, la cual podrá tener una descripción en un nivel de abstracción más alto con una base de metadatos. Aunque la característica principal de un SIG consiste en procesar información espacial, el primer componente a considerar debe ser un subsistema de entrada y salida de cartografía digital o información georeferenciada. La herramienta de adquisición de datos debe tener la capacidad de almacenar la información espacial - nominal compleja de la realidad en una base de datos; en donde, un compromiso principal es mantener la correctitud en el proceso y cuidar la validez de los datos en estructuras de almacenamiento físicas consistentes.

El núcleo de software SIG es el sistema manejador de base de datos que del inglés ha sido denominado DBMS (Data Base Management System). Dicho sistema debe tener la capacidad para almacenar y gestionar las entidades asociando su representación geométrica y con su representación nominal constituida con atributos. La base para tener una independencia con la plataforma de implementación es el modelo lógico de datos el cual es una interfaz entre el modelo conceptual entidad - relación (entity - relationship) el modelo físico donde se almacena las estructura de datos y el almacenamiento. Los SIG contemplan herramientas de explotación de datos las cuales con lleva un subsistema de postprocesamiento de las consultas y resultados a través de reformateo,

tabulación, graficación y trazos de mapas. Para este último la representación gráfica implica el uso de herramienta de cartografía.³

Comúnmente en un SIG: la consulta, el despliegue de un mapa, el reporte tabular y el gráfico, no es el resultado final. En su amplio abanico de aplicaciones los SIG tienen como un fuerte interés de analizar la información espacial y modelar los procesos dinámicos que generan y conforman la información almacenada en una base de datos. Con frecuencia los usuarios quieren analizar situaciones, hacer inferencias o simular procesar, con el fin de tomar decisiones. (Figura 3).

DIGITALIZACIÓN DE
MAPAS

DIGITALIZACIÓN DE
MAPAS

SIG

DIFERENTES TIPOS DE
VISUALIZACIÓN

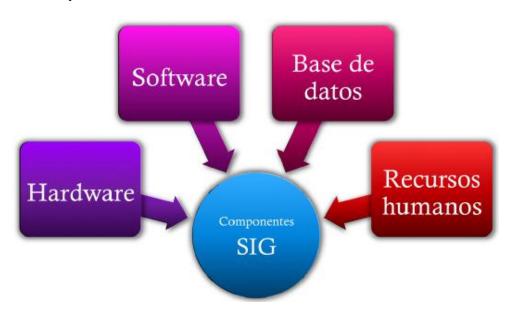
VISUALIZACIÓN

ANÁLISIS DE LOS
DATOS

MAPEOS ESTADISTICO

Figura 3. Aplicaciones de un SIG

Fuente: LEIJA LUNA, Paulina. Sistemas de Información Geográfica para la ayuda de toma de decisiones en políticas sociales. México, D.F., 2010. 136p.


³ LEIJA LUNA, Paulina. Sistemas de Información Geográfica para la ayuda de toma de decisiones en políticas sociales. México, D.F., 2010. 136p.Trabajo de grado (Maestra en Ciencias en Computación). Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Computación

El punto son los métodos de análisis espacial con métodos deterministas o estocásticos, tanto en su modalidad discreta como continúa. De la amplia gama de posibilidades que tienen los SIG en el manejo de información, un requerimiento importante es brindar una interfaz de usuario amigable. Los lenguajes o ambientes visuales para bases de datos ha sido una área relativamente reciente en computación la cual tomo una importancia especial en los SIG por la naturaleza visual - espacial que tiene la información geográfica.⁴

1.2.1. Componentes SIG⁵

Los datos geográficos no son los únicos componentes de un SIG como se puede observarse en la Figura 4.

Figura 4. Componentes de SIG

Fuente: LEIJA LUNA, Paulina. Sistemas de Información Geográfica para la ayuda de toma de decisiones en políticas sociales. México, D.F., 2010. 136p.

 Hardware: Conjunto de equipos empleados en el almacenamiento y procesamiento de los datos contenidos en el sistema.

^{4,5} LEIJA LUNA, Paulina. Sistemas de Información Geográfica para la ayuda de toma de decisiones en políticas sociales. México, D.F., 2010. 136p.Trabajo de grado (Maestra en Ciencias en Computación). Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Computación

- Software: Conjunto de programas que proporcionan las funciones y herramientas necesarias para el almacenamiento, el análisis y el despliegue de información geográfica.
- Datos: Probablemente el componente más importante de un SIG son los datos geográficos y los datos nominales. Los SIG integra datos espaciales con otros recursos de datos que podrán ser almacenados y administrados por un DBMS. El éxito del proyecto no está garantizado si no se tiene asegurada la actualización periódica de los datos. La dificultad en su representación es otro factor a tener en cuenta a la hora de organizar e introducir la información en el sistema.
- Recursos Humanos: Existen dos tipos de usuarios; los especializados y el público en general. Se denomina especializados a aquellos técnicos que trabajan con los sistemas en algunas de sus fases (introducción de datos, corrección, análisis, etc.), y que por ello deben tener una formación especializada; y público en general sería aquel que en algún momento tuviera que requerir información, sea la que fuese, de un SIG concreto. En este caso no se requiere una gran formación, y la adaptación debe estar en el sistema que debe ser "amigable".

1.2.2. Contexto de Proyectos SIG

La importancia de un Sistema de Información Geográfica radica en la capacidad que tienen éstos para construir modelos o representaciones del mundo real a partir de las bases de datos digitales (cartografía). A través de modelos realizados se puede analizar las tendencias y determinar los factores que las influyen así como para evaluar las posibles consecuencias de las decisiones de planificación sobre los recursos existentes en alguna área de interés.

1.2.3. Modelización del mundo real en los SIG⁶

La modelización de los rangos entre los fenómenos del mundo real es la tarea central más difícil de la construcción de un SIG. En general, la ciencia utiliza modelos para la estructura y reducir la abundancia de información sobre el medio ambiente. Stachowiak menciona las siguientes características de un modelo:

- **Visualización**: Los modelos pueden representar objetos, ya sea natural o artificial que pueden ser modelos propios.
- Simplificación: El proceso de construcción de modelos que propone una reducción de la complejidad mediante la identificación de características relevantes e irrelevantes.
- Pragmatismo subjetivo: La reducción y simplificación de la realidad, realza las decisiones subjetivas. Dependiendo de diferentes personas, situaciones y temas de sistemas pueden ser trasladados a diferentes modelos.

Sin embargo, en las ciencias empíricas como la geografía, esta concepción general de un modelo, debe limitarse al hecho de que la calidad del modelo debe ser verificable por los resultados empíricos. Para la aplicación dentro de un SIG debe extenderse a la realidad, este modelo representa una parte del mundo real que puede ser representado por datos. Goodchild por ejemplo, define un modelo de datos como "una representación limitada de la realidad, limitado por la naturaleza finita, limitada por dispositivos de computación". Esta definición se refiere a la realidad, la complejidad del mundo real debe reducirse, de modo que se puede almacenar en un SIG. Una fuente importante de reducción de la complejidad se debe a las limitaciones impuestas por el uso de tecnología de la información. Computadoras y software utilizan reglas formales para procesar los datos de modo que los datos en sí tienen que estar en una forma finita y discreta.

Construcción de un SIG

La reducción de la complejidad del mundo real en la modelización de un SIG puede conducir a resultados diferentes. El proceso de modelización en sí mismo no sólo está relacionado con el mundo real, está limitado por los SIG. Por lo tanto el resultado del proceso de aplicación puede variar considerablemente y se pueden crear demasiados errores. La representación del mundo real pueden pasar por alto fenómenos importantes, los modelos pueden no representar el mundo real de acuerdo a los objetivos de los SIG. Hay varias etapas de planificación, que puede ayudar a prevenir los errores hasta el completo fracaso del proyecto SIG. Figura 5.

⁶ LEIJA LUNA, Paulina. Sistemas de Información Geográfica para la ayuda de toma de decisiones

en políticas sociales. México, D.F., 2010. 136p.Trabajo de grado (Maestra en Ciencias en Computación). Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Computación

Figura 5. Pasos para la construcción de SIG (Adoptado por Hendriks)

Fuente: LEIJA LUNA, Paulina. Sistemas de Información Geográfica para la ayuda de toma de decisiones en políticas sociales. México, D.F., 2010. 136p.

En primer lugar, hay que definir las temáticas generales, e indicar los objetivos. Los problemas de la investigación son el determinar el análisis necesario y las herramientas de presentación. Esto depende e.g. en una estructura de datos tiene que ser elaborado antes que el análisis y la presentación que puede ser aplicado. El segundo paso es la conceptualización y elaboración de modelos del mundo real. Para esta etapa hay que tener mucha experiencia y el conocimiento teórico sobre la naturaleza de los fenómenos del mundo real. La conceptualización depende en considerar una metodología.

La raíz de las decisiones sobre cómo y porque las entidades y los datos del mundo real, deben estar representados en los SIG, son las estructuras de datos que almacena la información concerniente, que debe ser desarrollado. Tenemos que diferenciar entre el almacenamiento de los atributos espacio-temporales en un lado y los datos relacionados con la geometría (datos nominales) en otro lado. La estructura de datos dependerá de la base de datos y la tecnología de los SIG disponible y viceversa. Las decisiones sobre la estructura de datos y la gestión de bases de datos relacionadas con los SIG son más interdependientes con las demandas de análisis y la presentación. Durante la siguiente fase los datos deberán recopilarse y así construir la base de datos. Además, la geometría de los objetos debe ser digitalizada o importados en el SIG. Este es un punto crítico, donde todas las decisiones tomadas antes deberán evaluarse cuidadosamente.

El posterior análisis y elaboración de modelos es la parte más interesante del proceso de construcción. Al punto de que los errores o las malas interpretaciones hechas antes tendría un impacto crucial. Finalmente los resultados deberán ser visualizados y presentados.

Como se Representa la Realidad del Espacio Geográfico en un SIG

Debido a que el espacio geográfico es muy complejo existe una gran dificultad para representarlo tal y como es en realidad, para ello es necesario antes de digitalizarlo o vectorizarlo, simplificar los datos siguiendo algunos niveles básicos de abstracción que permita la representación acertada de los atributos o características del contexto geográfico (Torrealba, 1998).

Para Peuquet, según lo expresado por Maguire y Dangermond (Citado por Lollet, 1998), esos niveles de abstracción son los que representan el fenómeno en un contexto espacial tal como existe y bajo la percepción y propósito del observador, el cual se denomina La Realidad. Una misma realidad puede ser analizada e interpretada según la visión y el enfoque de quien lo hace, pero sea cual sea su interpretación, debe ser ajustada en función de su temática y propósito.

Otro nivel es el referido a la elaboración de un Modelo Conceptual: El cual representa una abstracción de la realidad en donde se identifica de manera simplificada el fenómeno geográfico y en el que se describen sus características e interrelaciones, para que sea captado por un modelo lógico pero sin perder la visión compleja y dinámica del espacio geográfico.

El tercer nivel es la elaboración de un Modelo Lógico: En el cual se traduce el modelo conceptual a un formato más operativo y práctico utilizando diagramas, signos y cuadros comprensibles para el sistema, permitiendo en una última instancia, la organización de los datos en los soportes del hardware (almacenamiento), esto se representa en el Modelo Físico.⁷

1.3. MODELOS DE REPRESENTACIÓN DE LOS DATOS

La información manejada en un SIG está compuesta, básicamente, de dos tipos de elementos:

Componente Geográfico o Espacial, básicamente para localizarlo.

Componente Atributivo, para describirlo.

1.4. ArcGIS 9.3⁸

ArcGIS Desktop es la herramienta primaria usada por los profesionales del GIS para crear, modelar y usar la información geográfica. Está Disponible en tres niveles funcionales ArcView, ArcEditor y ArcInfo. ArcGIS Desktop integra una serie de aplicaciones compresivos: ArcMap, ArcCatalogTM, ArcToolboxTM y ArcGlobeTM. Cada uno de las aplicaciones tiene un sistema rico de herramientas y funciones. ArcGIS Desktop puede también ser ampliado por una gama de extensiones opcionales que agregan especiales capacidades.

ArcGIS 9.3 Desktop añade un marco de Geoprocesamiento comprensivo y el kit de herramientas para crear y ejecutar procedimientos SIG complejos. Otras señales incluyen anotación y textos mejorados e interoperabilidad con bases de datos geográficas. Además, las extensiones.

ArcGIS Amplían sus ofrecimientos con mejoras en la aplicación ArcGlobe 3D. La personalización de ArcReader por medio de ArcGIS Publisher y una aplicación de representación cartográfica

ArcGIS 9.3 es la herramienta más potente del mercado para manejo de sistemas de información geográfica. Con este GIS de ESRI (*Enviromental Systems Research Institute*) nos posibilita la implementación de soluciones, a través de su comprometido desarrollo de las mejores herramientas de Sistemas de Información Geográfica. ArcGIS 9.3 Provee mejoras en sus interfaces, soporte para diseño geográfico cartográfico sofisticado, herramientas avanzadas de modelado para análisis y soporte de CAD.

⁷ LEIJA LUNA, Paulina. Sistemas de Información Geográfica para la ayuda de toma de decisiones en políticas sociales. México, D.F., 2010. 136p.Trabajo de grado (Maestra en Ciencias en Computación). Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional.

Departamento de Computación

ArcGIS 9.3 Constituye una familia escalable de productos cuya unión forma un Sistemas de Información Geográfica Completo.

En este proyecto se empleará el Software SIG ArcGIS 9.3, que comenzó a distribuirse en julio de 2008 y ofrece una línea completa de aplicaciones informáticas que mejoran los desarrollos de los procesos de las organizaciones, así como los beneficios de una comunidad activa y establecida de usuarios. Las nuevas herramientas para copias caché permiten a los usuarios optimizar los recursos de datos, haciendo que las tareas de aplicación funcionen en forma rápida y eficiente.

El software ArcGIS 9.3 permite actualizar la base de datos de la producción de crudo del departamento georeferenciada, a la vez detallar las características del crudo, la empresa encargada, la cantidad de pozos secos y pozos productores, el sistema de levantamiento con el que trabaja cada uno; a su vez, su ubicación geográfica detallada con coordenadas; ésta información se puede visualizar según las necesidades del consultor.

cGIS 9.3 [En línea] Rinconcito Minero Julio 2010

⁸ ArcGIS 9.3. [En línea].Rinconcito Minero. Julio 2010. Disponible en internet: www.rinconcitominero.blogspot.com/2010/07/arcgis-93-dvd.html

2. GENERALIDADES⁹

2.1. ACTUALIDAD DE ECOPETROL S.A

Ecopetrol S.A, es la empresa más grande del país y la principal compañía petrolera en Colombia. Por su tamaño, Ecopetrol S.A., pertenece al grupo de las 39 petroleras más grandes del mundo y es una de las cuatro principales de Latinoamérica.

Tiene la participación mayoritaria de la infraestructura de transporte y refinación del país, cuenta con campos de extracción de hidrocarburos en el centro, sur, oriente y norte de Colombia, dos refinerías, puertos para exportación e importación de combustibles en ambas costas y una red de transporte de 8.124 kilómetros de oleoductos y poliductos a lo largo de toda la geografía nacional, que intercomunican los sistemas de producción con los grandes centros de consumo y los terminales marítimos.

Tiene a su disposición el Instituto Colombiano del Petróleo (ICP), centro de investigación y laboratorio científico, único de su género en el país, donde reposa el acervo geológico de un siglo de historia petrolera de Colombia.

Desde 1997 ha marcado récords al obtener las más altas utilidades de una compañía colombiana en toda la historia. En 2003 se convirtió en una sociedad pública por acciones y emprende una transformación que le garantiza mayor autonomía financiera y competitividad dentro de la nueva organización del sector de hidrocarburos de Colombia, con la posibilidad de establecer alianzas comerciales fuera del país.

En 2007, Ecopetrol consolidó grandes transformaciones. Por un lado renovó su marca y asumió a una iguana verde como su nuevo logo símbolo. Por el otro, desarrolló el proceso de capitalización más grande de Colombia con el que vinculó a cerca de 450 mil colombianos de todos los niveles y regiones del país como accionistas.

30

⁹ OSSA ACERO, Johannes Alfonso. Evaluación técnico económica para la viabilidad de la disposición del agua de vertimiento mediante inyección en el campo Toldado de la coordinación de producción Tolima SOH. Neiva, 2012. 112p.Trabajo de grado (Ingeniería de Petróleos). Universidad Surcolombiana. Facultad de Ingeniería.

Ecopetrol S.A. es una Sociedad de Economía Mixta, de carácter comercial, organizada bajo la forma de sociedad anónima, del orden nacional, vinculada al Ministerio de Minas y Energía, de conformidad con lo establecido en la Ley 1118 de 2006, regida por los Estatutos Sociales que se encuentran contenidos manera integral en la Escritura Pública No. 5314 del 14 de diciembre de 2007, otorgada en la Notaría Segunda del Círculo Notarial de Bogotá D.C.

2.2. VICEPRESIDENCIA DE PRODUCCIÓN

Es la responsable de maximizar el recobro de las reservas de hidrocarburo y optimizar la tasa de producción de los yacimientos, de manera rentable y mediante un desarrollo sostenido.

Realiza la explotación óptima de los campos por medio de los procesos de extracción, recolección, tratamiento, almacenamiento, bombeo o compresión de hidrocarburos.

La Vicepresidencia de Producción está en la constante búsqueda del desarrollo de una operación óptima y eficiente, a través de la incorporación de nuevas tecnologías en todas las áreas de operación, sustentado en su principal activo que es un equipo humano preparado, conocedor de los procesos y motivado para el cumplimiento de los retos de corto y largo plazo.

La Vicepresidencia de Producción cuenta con seis Gerencias, para el manejo de 95 campos activos de operación directa y tiene participación en 171 campos activos con terceros mediante la figura de contratos de asociación, que le permite ser el primer productor de hidrocarburos en el país (Sep. /11). La Gerencia Regional Sur administra los campos ubicados en el sur del país

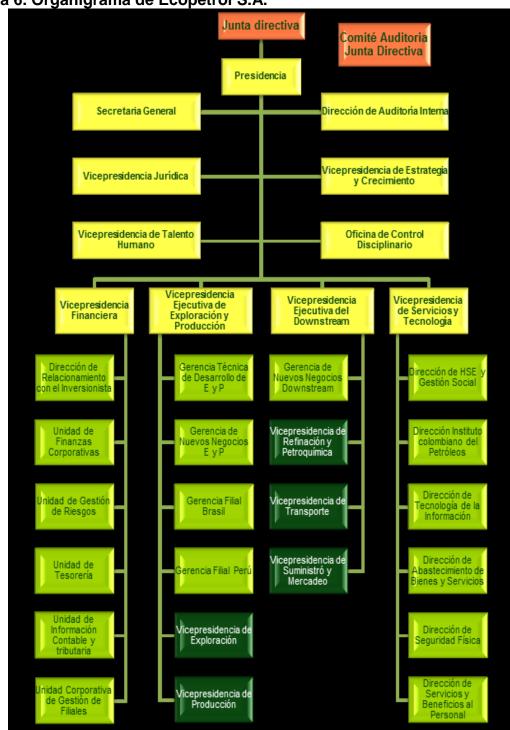


Figura 6. Organigrama de Ecopetrol S.A.

Fuente: "Intranet Ecopetrol S.A"

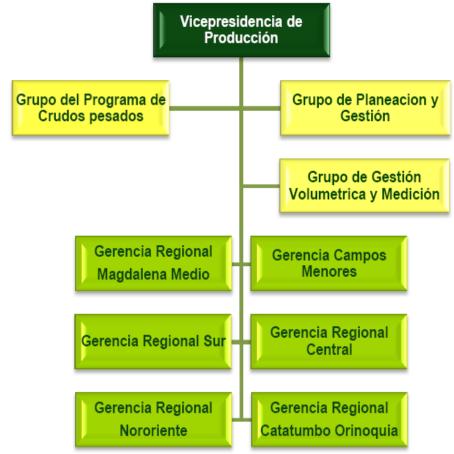


Figura 7. Organigrama de la Vicepresidencia de Producción

Fuente: "Intranet Ecopetrol S.A"

2.2.1. Gerencia Regional Sur.

Fue creada en el año 2004 como parte de las Gerencias Operativas haciendo parte de la Vicepresidencia de Producción. La Gerencia comprende las áreas que en la estructura anterior estaban bajo la responsabilidad de la Gerencia Alto Magdalena, la Gerencia Sur y también en calidad de asociado de los campos que se encuentran bajo la modalidad de Contratos de Asociación en el sur del país.

La Gerencia Regional Sur está conformada por tres Superintendencias, (Ver figura 8). De las cuales dos son operativas: Superintendencia de Operaciones Putumayo y Superintendencia de Operaciones Huila Tolima, la tercera es la Superintendencia de activos en Asociación.

Como soporte y apoyo a las tres Superintendencias y a la Gerencia en temas como gestión financiera, portafolio de inversiones, gastos y seguimiento de la gestión, se encuentra conformado el Departamento de Gestión y crecimiento.

Figura 8. Organigrama de la Gerencia Regional Sur.

Fuente: "Intranet Ecopetrol S.A

2.2.2. Superintendencia de Operación Huila Tolima.

La Gerencia del Alto Magdalena fue creada en noviembre de 1994 con motivo de la reversión a la Nación de la Concesión Neiva 540, por parte de la compañía Hocol, según resolución No. 33 del 28 de marzo de 1994.

En el año 2003, con la restructuración de la Empresa, la Gerencia del Alto Magdalena pasó a ser la Superintendencia de Operaciones Huila Tolima, esta cuenta con tres departamentos, Departamento de Producción, Departamento de Mantenimiento y el Departamento de Ingeniería de Subsuelo y Confiabilidad.

El Departamento de Producción está conformado por las Coordinaciones de Producción Huila, Tello, Baraya, Palermo, Yaguara y Tolima, y por la Coordinación de Operaciones de Subsuelo; encargadas de las operaciones de superficie y subsuelo de los diferentes campos directos de Ecopetrol que están bajo responsabilidad de la Superintendencia de Operaciones Huila Tolima .La sede administrativa se encuentra a 17 Km sobre la vía Neiva - Bogotá, en la Jurisdicción del Municipio de Aipe.



Figura 9. Organigrama de la Superintendencia de Operaciones Huila Tolima.

Fuente: "Intranet Ecopetrol S.A

2.3. CAMPOS PETROLEROS TRABAJADOS

En este proyecto se trabajaron los campos de la SOH ubicados en el departamento del Huila, esos campos son:

Cuadro 1. Campos petroleros y su Ubicación

CAMPOS PETROLEROS	UBICACIÓN
Andalucía	Baraya
Arrayan	Aipe
Brisas	Aipe
Cebú	Neiva
Balcón	Aipe
Dina cretáceos	Aipe

Dina terciario	Aipe
Loma larga	Villa vieja
Palo grande	Neiva
Pijao	Neiva
Rio ceibas	Neiva
San francisco	Neiva
Santa clara	Palermo
Tempranillo	Aipe
Tello	Neiva
Tenay	Aipe
Mangos	Yaguara

Fuente: Autores

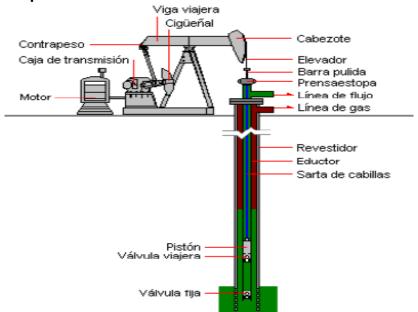
El inventario de los Campos Petroleros con sus pozos y sus características PVT tipo de levantamiento, coordenadas, estructura y formación se encuentran en los anexos.

2.4. MÉTODOS DE PRODUCCIÓN DE LOS POZOS PRODUCTORES DE LA SOH DEL DEPARTAMENTO DEL HUILA

2.4.1 Flujo natural y levantamiento artificial

Los pozos operados por la SOH en su gran mayoría, mas del 95 % están ayudados por un levantamiento Artificial y unos pocos pozos solo producen por Flujo Natural.

Cuando se habla del Flujo Natural se dice que la energía del yacimiento es suficiente para levantar los fluidos desde el fondo de pozo hasta la superficie y completar el proceso de producción.


Cuando el pozo deja de producir por flujo natural, se requiere el uso de una fuente externa de energía para conciliar la oferta con la demanda de energía. La utilización de esta fuente es con el fin de levantar los fluidos desde el fondo del pozo hasta el separador, es lo que se denomina levantamiento artificial. El propósito de los métodos de levantamiento artificial es minimizar los requerimientos de energía en la cara de la formación productora, con el objeto de maximizar el diferencial de presión a través del yacimiento y provocar, de esta manera, la mayor afluencia de fluidos, sin que generen problemas de producción: arenamiento, conificación de agua, etc.

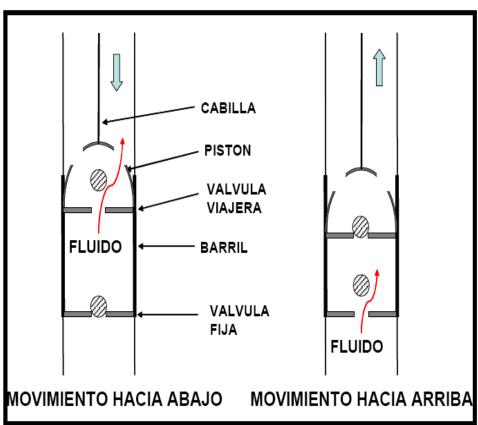
Los tipos de L.A utilizados por la SOH en el departamento del Huila son:

- 1. Bombeo mecánico (BM)
- 2. Bombeo de cavidades progresivas (PCP)
- **3.** Bombeo electrosumergible (BES)

Bombeo mecánico (BM)¹⁰

Figura 10. Componentes del sistema mecánico

Fuente: Curso Tecnología de Producción - Módulo de Operaciones OPICA consultores


El bombeo mecánico es el método más usado en el mundo. Consiste una bomba de subsuelo de acción reciprocante, que es abastecida con energía producida a través de una sarta de varillas. La energía es suministrada por un motor eléctrico o de combustión interna colocada en la superficie. Tiene su mayor aplicación mundial en la producción de crudos pesados y extra pesados.

La función principal de la unidad de bombeo mecánico es proporcionar el movimiento reciprocante apropiado, con el propósito de accionar la sarta de varillas y estas, la bomba de subsuelo. La unidad de bombeo, en su movimiento, tiene dos puntos muy bien definidos: muerto superior y muerto inferior.

Cuando el balancín está en el punto muerto inferior sus válvulas fija y viajera se hallan cerradas. Al comenzar la carrera ascendente, la presión de fondo y el efecto de succión del pistón permite la apertura de la válvula fija; el fluido pasa del pozo hacia el interior de la bomba. Al mismo tiempo, la columna de fluido ejerce una presión sobre la válvula viajera y permanecerá cerrada durante la carrera ascendente.

El fluido continúa llenando la bomba hasta que el pistón llega hasta el punto muerto superior. La válvula fija cierra y comienza la carrera descendente, el pistón se mueve hacia abajo y produce un efecto de compresión. Cuando la presión interna es superior a la que existe sobre la válvula viajera, esta se abre y el fluido es transferido al pistón hasta llegar al punto muerto inferior, donde se repite el ciclo de bombeo.

Figura 11. Ciclo de bombeo

Fuente: Curso Tecnología de Producción - Módulo de Operaciones OPICA consultores

Ventajas¹¹

- El diseño es poco complejo
- El sistema es eficiente, simple y fácil de operar por personal de campo.
- Puede bombear crudos viscosos y a altas temperaturas
- Equipo resistente a la corrosión
- Fácil optimización y ajuste
- Desplazamiento positivo
- Equipo re-usable en otros pozos

Desventajas¹²

- El equipo de superficie es pesado y voluminoso
- Poco resistente a sólidos y arena
- Poco resistente a altas temperaturas
- Equipo de superficie de gran volumen

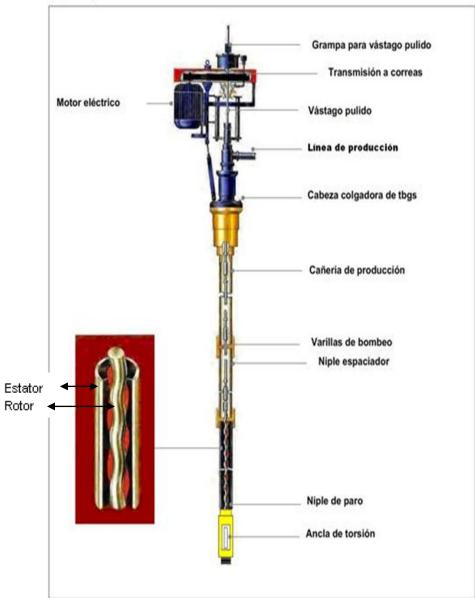
Condiciones de operación¹³

	Rango Típico	Máximo
 Profundidad (pies) 	100 – 11.000	16.000
Volumen (BPD)	5 – 1.500	6.000
 Temperatura (°F) 	100 - 250	550

2. Bombeo de cavidades progresivas (PCP)¹⁴

Figura 12. Cabezal de PCP

Fuente: Autores


El sistema de levantamiento artificial por bombeo de cavidad progresiva es una bomba de desplazamiento rotativo positivo. Esa bomba es accionada desde la superficie por medio de varillas que transmiten la energía a través de un motor eléctrico ubicado en la superficie. Este sistema se adapta en particular a fluidos viscosos, pesados aún si estos transportan partículas sólidas, y/o flujos bifásicos de gas y petróleo.

La bomba consta de dos hélices, una dentro de la otra: el estator con una hélice interna doble y el rotor con una hélice externa simple. Cuando el rotor se inserta dentro del estator, se forman dos cadenas de cavidades progresivas bien delimitadas y aisladas. A medida que el rotor gira, estas cavidades se desplazan a lo largo del eje de la bomba, desde la admisión en el extremo inferior hasta la descarga en el extremo superior, transportando, de este modo el fluido del pozo hasta la tubería de producción.

Los componentes primordiales son el rotor y el estator. El rotor es de una hélice externa simple con una sección de corte transversal redonda, maquinada con precisión en un acero de alta resistencia. Por su parte, el estator es de una hélice interior doble moldeada de un elastómero duro y resistente a la abrasión, unido permanentemente al interior de un tubo de acero de aleación. Cuando gira el rotor dentro del estator, se forman cavidades que avanzan desde el extremo de succión

hasta el de descarga de la bomba, trasportando el material bombeado. El sello continuo entre las hélices del rotor y el estator hace que el fluido se desplace continuamente a una velocidad fija que es proporcional a la velocidad de rotación de la bomba.

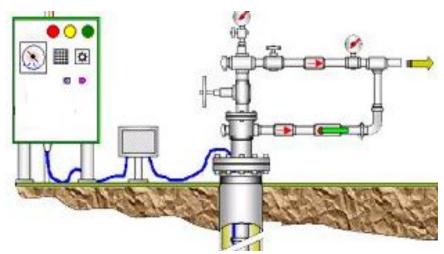
Figura 13. Componentes del PCP

Fuente: Curso Tecnología de Producción - Módulo de Operaciones OPICA consultores

Ventajas¹⁵

- Simple instalación y operación.
- El bajo nivel de ruido y pequeño impacto visual la hace ideal para áreas urbanas.
- El esfuerzo constante en la sarta con movimientos mínimos disminuye el riesgo de fallas por fatiga y la pesca de varillas de bombeo
- La producción de flujo constante hacen más fácil la instrumentación.
- La inversión de capital es del orden del 50% al 25% del de las unidades convencionales de bombeo

Desventajas¹⁶


- Resistencia a la temperatura de hasta 280 °F o 138 °C (máxima de 350 °F o 178 °C)
- Desgaste por contacto entre las varilla y la cañería de producción en pozos direccionales y horizontales
- Requieren la remoción de la tubería de producción para sustituir la bomba (ya sea por falla, por adecuación o por cambio de sistema)
- Alta sensibilidad a los fluidos producidos (elastómeros pueden hincharse o deteriorarse con el contacto de ciertos fluidos por períodos prolongados de tiempo)

Condiciones de operación¹⁷

	Rango Típico	Máximo
 Profundidad (pies) 	2.000 - 4.500	6.000
 Volumen (BPD) 	5 - 2.200	4.500
 Temperatura (°F) 	5 – 150	225

3. Bombeo electro sumergible (BES)¹⁸

Figura 14. Cabezal del BES

Fuente: Curso Tecnología de Producción - Módulo de Operaciones OPICA consultores

La técnica para diseñar las instalaciones de bombeo electrosumergible consiste en: seleccionar una bomba que cumpla los requerimientos de la producción deseada, de asegurar el incremento de presión para levantar los fluidos, desde el pozo hasta la estación, y escoger un motor capaz de mantener la capacidad de levantamiento y la eficiencia del bombeo.

El sistema de Bombeo Electrosumergible (BES) es un método de levantamiento artificial altamente eficiente para la producción de crudos livianos y medianos; sin embargo, es uno de los métodos de extracción de crudo que exige mayor requerimiento de supervisión, análisis y control, a fin de garantizar el adecuado comportamiento del sistema.

El método de levantamiento artificial por Bombeo Electrosumergible (BES) tiene como principio fundamental levantar el fluido del reservatorio hasta la superficie, mediante la rotación centrífuga de la bomba electrosumergible. La potencia requerida por dicha bomba es suministrada por un motor eléctrico que se encuentra ubicado en el fondo del pozo; la corriente eléctrica, necesaria para el funcionamiento de dicho motor, es suministrada desde la superficie, y conducida a través del cable de potencia hasta el motor.

El Sistema BES representa uno de los métodos de levantamiento artificial más automatizables y fácil de mejorar, y está constituido por equipos complejos y de alto costo, por lo que se requiere, para el buen funcionamiento de los mismos, de la aplicación de herramientas efectivas para su supervisión, análisis y control.

En cuanto al costo de instalación, es el más alto, pero el mantenimiento de superficie es mínimo y limitado a los componentes electrónicos de los variadores de velocidad y protecciones eléctricas.

Ventajas¹⁹

- Resistente a altas temperaturas
- Alta eficiencia
- Desplazamiento positivo
- Levanta altos volúmenes de líquido

Desventajas²⁰

- Se afecta en presencia de altos volúmenes de gas
- Eficiencia media alta
- Poco resistente a sólidos y arena


Condiciones de operación²¹

Rango Típico Máximo
• Profundidad (pies) 1.000 – 10.000 15.000
• Volumen (BPD) 200 – 20.000 40.000
• Temperatura (°F) 100 – 275 400

140

^{10,14,18} ARAYA CÁCERES, Andrés Daniel. Análisis técnico-económico para el cambio de levantamiento artificial en cuatro pozos del campo Shushufindi. Quito, 2009. 170p.Trabajo de grado (Ingeniería de Petróleos). Escuela Politécnica Nacional. Facultad de Ingeniería

Figura 15. Componentes del BES

Fuente: Curso Tecnología de Producción - Módulo de Operaciones OPICA

^{11,12,13,15} Curso Tecnología de Operaciones de Producción. Módulo de Operaciones, OPIC Consultores, 2004. 220p.

^{16,17,19,20,21} Ibíp., p. 220.

3. GENERALIDADES DE UN SIG

3.1. Modelos de diseño de un SIG²²

Al iniciar el estudio para diseñar un SIG, debe pensarse que se van a manejar objetos que existen en realidad, los cuales tienen características que los diferencian y guardan ciertas relaciones espaciales que se deben conservar; por lo tanto, no se puede olvidar en un ningún caso que se va a desarrollar en el computador un modelo de objetos y relaciones que se encuentran en el mundo real.

Para garantizar que el esquema anterior se pueda obtener, se construye una serie de modelos que permitan manipular los objetos tal cual como aparecen en la realidad, con esto, se convertirán imágenes de fenómenos reales en señales que se manejan en el computador como datos que harán posible analizar los objetos que ellas representan y extraerles información.

Normalmente se llevan a cabo tres etapas para pasar de la realidad del terreno al nivel de abstracción que se representa en el computador y se maneja en los SIG y que definen la estructura de los datos, la cual dependerán de los procesos y consultas que se efectuaran en la tapa de producción.

Estos modelos son: Modelo conceptual, Modelo Lógico, Modelo Físico.

En el siguiente esquema se muestran las diferentes interacciones que se generan entre cada uno de los tres en SIG.

46

²² Que hace un SIG con la información?, www.unal.edu.co/siamac/publica/SIG1.pdf

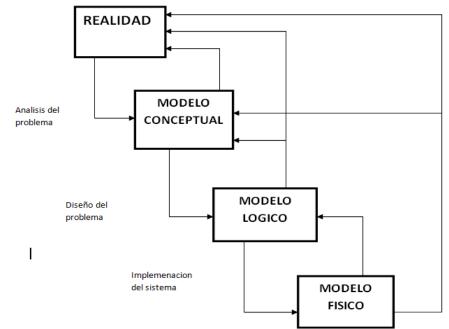


Imagen 1. Esquema de la modelizacion de datos en SIG.

Fuente: ALONSO SARRIA, Jose. Universdad Politécnica de Madrid.

3.1.1. Modelo conceptual

Es la conceptualizacion de la realidad por medio de la definicion de objetos de la superficie de la tierra (entidades) con su relaciones espaciales y caraceristicas (atributos) que se representan en esquema describiendo esos femomenos del mundo real. Para obtener el modelo conceptual, el primer paso es el analisis de la informacion y los datos que se usan y producen en la empresa que desarrolla el SIG; el siguiente paso es la determinacion de las entidades y los artibutos con las relaciones que aquellas guardan, de acuerdo con el flujo de informacion en los diferentes procesos que se llevan a cabo en la empresa.

Existen diversos metodos para desarrollar tanto el modelo conceptual como los demas modelos, por cuanto éste es la base para obtenerlos; entre ellos tenemos:

- Entidad asociacion (EA)
- Modelo Entidad Relacion (MER)

ΜΔΡΔ MUNICIPIO CURVAS DE HIDROGRAFIA MAPA PLANIMETRICO Y POSOZ DE PETROLEO ACENTAMIENTOS HUMANOS POZOS PEROLEROS MAPA ANH Y POZOS PETROLEROS MAPA DE TIERRAS DE LA ANH MAPA ANH- POZOS MAPA PETROLEROS Y MAPA GEOLOGICO GEOLOGICO IMAGEN GOOGLE POZOS PETROLEROS EARH GOOGLE EARH

Imagen 2. Esquema modelo conceptual

Fuente: Autores

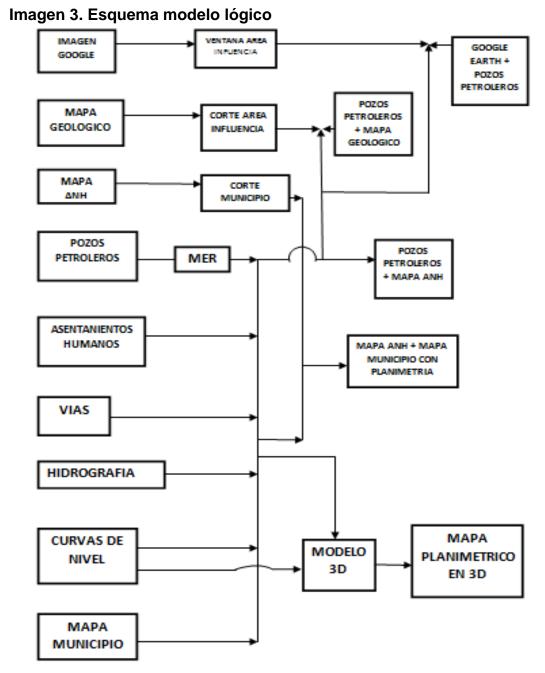
En los SIG, sobre todo si tienen algo de complejidad, se debe pensar siempre en el MER que garantiza la organización de todas las entidades con sus relaciones en un solo esquema de represenacion de las cosas como son en realidad. Con este modelo se obtiene un medio efectivo para mostrar los requerimientos de informacion, organización y documentacion necesarios para desarrollar el SIG y la clase de datos que se estaran manipulando.

En el anerior esquema se indican las relaciones de las diferentes capas (layers) Cartograficas y sus interaciones que permiten hacer el analisis enre los datos (atributos)

3.1.2. Modelo lógico

Se puede definir como el diseño detallado de las bases de datos que contendrán la información alfanumérica y los niveles de información gráfica que se capturan, con los atributos que describen cada entidad, identificadores, conectores tipo de dato (numérico o carácter) y su longitud; además, se define la geometría (punto, línea o área) de cada uno de ellas.

Como se trata de manipular en el sistema los elementos del paisaje, se tienen que codificar para poder almacenarlos en el computador y luego manipularlos en forma digital y además, darles un símbolo para su representación grafica en la pantalla o el papel.


En esta etapa se elaboran las estructuras en que se almacenarán todos los datos, tomando como base el modelo conceptual desarrollado anteriormente. Se trata de hacer una descripción detallada de las entidades, los procesos y análisis que se llevarán a cabo, los productos que se espera obtener y la preparación de los menús de consulta para los usuarios.

En esta parte del diseño del SIG se definen los diferentes tipos de análisis que se estarán llevando a cabo mas adelante y las consultas que se van a realizar comúnmente, esto por cuanto de la estructura de las bases de datos (graficas y alfanuméricas) dependen los resultados obtenidos al final; es por lo anterior, que en esta etapa, se hace un diseño detallado de lo que contendrá el SIG y de la presentación que tendrán los productos normalmente, definiendo los tipos de mapas con sus leyendas, contenido temático y demás, reportes o tablas que se espera satisfagan los principales requerimientos de los usuarios y clientes; con estos se agilizarán los procesos que involucren directamente a los usuarios, ya que la mayoría de sus consultas podrán ser respondidas inmediatamente mientras las no convencionales tomarán un poco mas de tiempo.

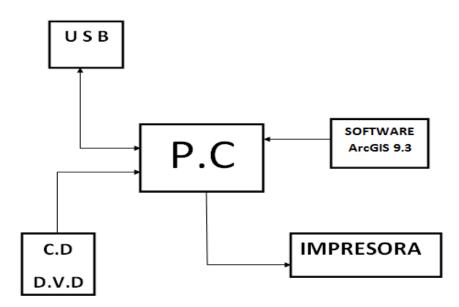
Una vez definido el modelo conceptual y el lógico, se conoce cuales mapas se han de digitalizar y que información alfanumérica debe involucrarse.

Tanto el modelo conceptual como el lógico, son independientes de los programas y equipos que se vayan a utilizar y de su correcta concepción depende el éxito del SIG.

El siguiente es el modelo lógico empleado en el trabajo y que muestra las operaciones realizadas.

3.1.3. Modelo físico

Es la implementación de los anteriores modelos en el programa o software seleccionado y los equipos específicos en que se vaya a trabajar. El modelo físico determina en que forma se debe almacenar los datos, cumpliendo con las restricciones y aprovechando las ventajas del sistema específico a utilizar.


Para la implementación del programa ArcGis 9.3 se utilizó un computador con las siguientes especificaciones:

P.C: Hewlett Packard Compaq.

Procesador: Pentium(R) Dual Core CPU T4200 @ 2.00GHz

Memoria (RAM): 2.00GB

Imagen 4. Esquema modelo físico

4. IMPLEMENTACIÓN Y ACTUALIZACIÓN DE LA PRODUCCIÓN PETROLERA DE LA SOH-ECOPETROL DEL DEPARTAMENTO DEL HUILA

4.1. RECOPILACIÓN DE LA INFORMACIÓN

4.1.1 Revisión de bibliografía y cartografía

Por medio de la empresa ECOPETROL S.A Departamento de la SOH (Superintendecia de Operaciones Huila Tolima), se recopiló, para luego ser procesada, la información necesaria para el desarrollo de este proyecto, ésta se extrajo apartir de: estudios, formas, anexos, reportes e informes, tales como:

- La forma 9 del Ministerio de Minas y Energía Dirección General de Hidrocarburos, subdirección de Hidrocarburos.
- Informe mensual de Producción de Pozos de Petróleo, Condensado y Gas.
- Anexo 3.2 PVT representativo final para cada uno de los campos.
- Estudio PVT para pozos productores.
- Reportes del Software(Open Wells) manejado por Ecopetrol s.a para asegurar la información.

Cada uno con ubicación por coordenadas (E, N) para poder georeferenciarlos, e incluir en la base de datos los métodos de producción, características PVT, formación y estructura.

4.1.2. Información Cartográfica

Se procedió a revisar y evaluar la información obtenida y se complementó con trabajo de campo, el cuál consistió en visitar con un GPS de referencia GPSMAP 62S "con características físicas y Rendimiento, de (Ancho/Alto/Profundidad) 2,4" x 6,3" x 1,4" (6,1 x 16 x 3,6 cm); Tamaño de la pantalla (Ancho/Alto): 1,6" x 2,2" (4,1 x 5,6 cm); 2,6" diagonal (6,6 cm); resolución de pantalla (Ancho/Alto): 160 x 240 píxeles; tipo de pantalla TFT transflectiva de 65.000 colores; peso de 9,2 oz (260,1 g); Receptor de alta sensibilidad; Interfaz del equipo: high-speed USB and NMEA 0183 compatible; Cartografía y Memoria: Mapa base; Posibilidad de agregar mapas; Memoria interna: 1,7 GB; Waypoints: 2; Rutas: 200; Track log: 10.000

puntos, 200 tracks guardados"; algunos pozos que les faltaban sus coordenadas o estaban mal referenciadas y asi corregir dicha información; como es una actualización cartográfica la precisión del GPS en escala 1:25000.

Se seleccionaron los mapas de los Municipios, de influencia de la SOH, involucrados en la produccion de crudo como son:

- Aipe
- Baraya
- Neiva
- Palermo
- Yaguara
- Villavieja

Cada uno de ellos con su respectiva información planimétrica revisada, la cuál contiene: Límites, Curvas de nivel, Hidrografía, Vías y asentamientos humanos; en formato digital .shp (shapefile) de ArcGIS a escala 1:25.000. Como se puede observar en la imagen 5 para el Municipio de Palermo. De igual forma se realizó para cada uno de los otros Municipios.

4.1.3. Mapa de tierras de la ANH

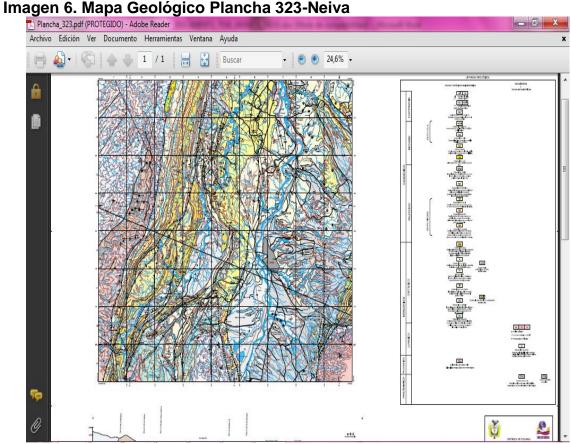

El mapa de tierras fué descargado de la página de la ANH (www. anh.gov.co) de abril 9 de 2012 en formato shapefile, que es compatible con el programa, en el cual se puede observar las áreas que se encuentran en exploración, explotación y las que están disponibles para celebrar contratos en las diferentes cuencas sedimentarias del país (Rondas). Para así de esta forma determinar si las áreas representativas de éste concuerdan con la localización de los pozos y descripción de los mismos.

Imagen 5. Mapa de Tierras de la ANH

Fuente: Autores

4.1.4. Mapas Geológicos

Los mapas geológicos fueron descargados de la página de ingeominas (www.ingeominas.gov.co) de 1998, los cuales fueron: plancha 323, 344, 303, 302 a una escala de 1:100.000 que corresponde a estudios de nivel general, a los cuales se les realizó un corte de la zona requerida (ubicación de los pozos) para comparar la estructura y formación con la suministrada por Ecopetrol S.A.

Fuente: Autor

aoinoi /tatoi

4.1.5. Google Earth Pro

Aprovechando las posibilidades que presenta internet para visualizar de forma clara y real la superficie terrestre mediante imágenes satélite utilizando la opción que nos presenta Google Earth; se identifican las zonas que corresponden a los diferentes campos petroleros en el Departamento del Huila, se procede a definir las ventanas correspondientes en las respectivas imágenes de Google Earth, se georeferencia al sistema de referencia para Colombia Magna-Sirgas con el fin de realizar el anális mediante la superposicion de las imágenes cartográficas.

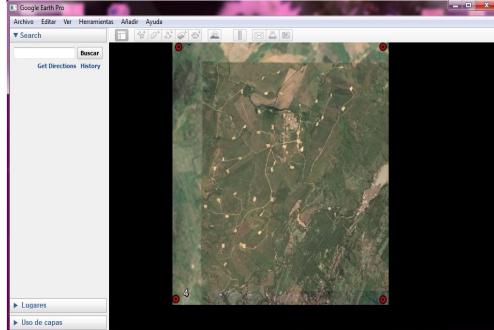


Imagen 7. Google Earth Pro Campo San Francisco

Fuente: Autor

4.1.6. Sistema de referencia cartográfica

El sistema de referencia para Colombia se modificó mediante Resolución 068 de 28 de enero de 2005 por el cual se adopta como único DATUM oficial de Colombia el Marco Geocentrico Nacional de Referencia: MAGNA-SIRGAS y que tiene como superficie de referencia el Elipsiode WGS84. El origen del sistema de coordenadas planas o Gauss es el Observatorio Astronómico Nacional con un valor: E= 1.000.000 m. y N= 1.000.000 m. Por tal motivo toda la cartografia nacional debe estar referida a este sistema.

En este proyecto, toda la cartografia se referenció a lo establecido por el IGAC.

4.2. IMPLEMENTACIÓN DE LOS SISTEMAS DE INFORMACIÓN GEOGRÁFICA

4.2.1. Entrada de la información

Una vez revisada la planimetría de los mapas de los municipios de influencia petrolera de la SOH tales como: curvas de nivel, asentamientos, vias, hidrografía,

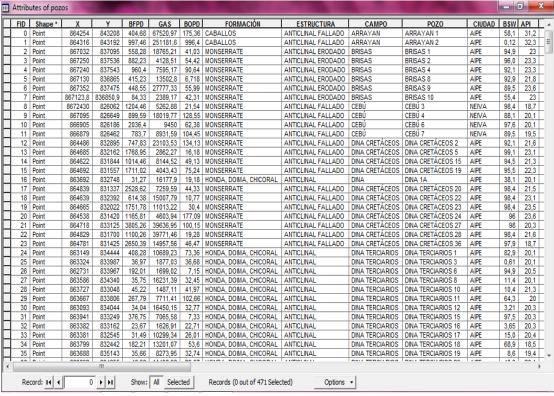
se procede a ingresar al programa de la siguiente forma; vamos a ArcGIS 9.3, se cliquea en ArcMap debido a que este fué el programa escogido para la implementación de la información, y como primer punto se adiciona la cartografía en formato digital (.shp) de cada Municipio correspondiente a información planimetríca, mediante un ícono llamada Add Data, constatatamos que se encuentre georeferenciado (Magna Colombia Bogotá) y con las unidades en metros. Como se puede observar en la imagen 8.

Fuente: Autor

Se puede observar que los objetos lineales se representan con lineas tales como las vias, rios y curvas de nivel, mientras que los objetos que ocupan cierto espacio están denotados con cuadros que simbolizan áreas o polígonos. Esto proporciona un mejor acercamiento en cuanto a la distribución de cada uno de los pozos respecto a las zonas de exploración y producción de cada Municipio como se puede observar en la imagen 17.

4.2.2. Localización de los Pozos Petroleros

Se digitaliza con base a las coordenadas suministradas por Ecopetrol s.a. y las determinadas en campo, la localización de los pozos petroleros utilizando las herramientas de georeferenciación como lo es Go To XY

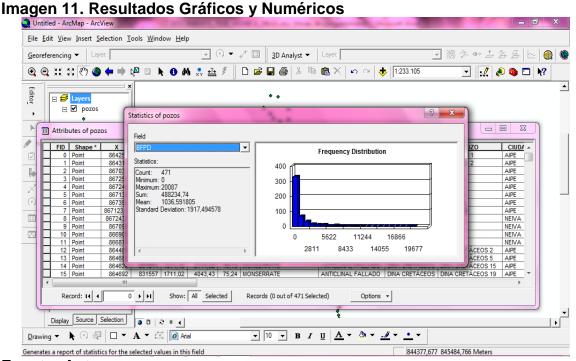

Una vez localizado, se procede a digitalizarlos mediante la herramienta de EDITOR con tipo de layer punto en orden de lista, es decir campo por campo, pozo a pozo.

4.2.2.1. Diseño

Teniendo los pozos digitalizados se procede a cear la base de datos (Tabla de Atributos), dando click derecho sobre el layer pozos y seleccionando la opción Tabla de Atributos, la cual cuenta con una serie de comandos que permiten crear o adicionar campos (columnas). Mediante el comando options, Add Field, se escribe el nombre y el tipo según las características a describir del pozo, éstos campos tendra registrada la información de cada pozo por medio de registros (filas) y los campos (columnas).

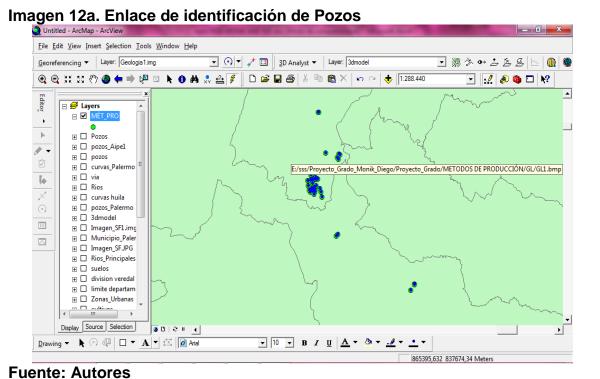
La base de datos contendrá información como FID que significa el número de pozos, Shape* se refiere a la información de tipo vectorial (puntos, líneas y polígonos) que para nuestro caso será punto, coordenadas E y N, producción de Aceite, Gas y Agua, campo, pozo, ciudad, formación, estructura y propiedades PVT. Esta información se puede observar en la imagen 9

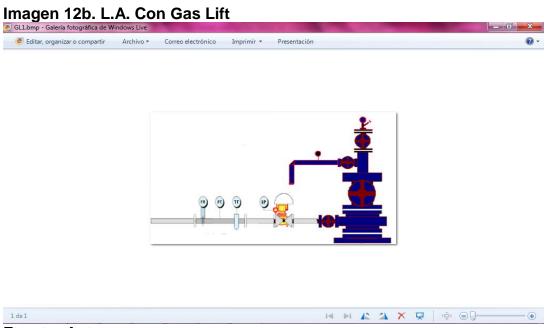
Imagen 9. Base de datos



Fuente: Autor

Ya cargada la información en la base de datos, según necesidades del consultor se pueden visualizar los datos de forma fácil y confiable; dando doble click sobre el pozo a consultar en la tabla de atributos o bien sea seleccionando el ícono Identify (resaltado con un círculo rojo) que aparece en la pantalla principal de ArcMap (imagen 10). La consulta se realiza mediante seleccion que permite determinar la producción o cualquir tipo de propiedad deseada por pozo, dando click derecho en la barra de menú de la base de datos y seleccionando la opción estadísticas se puede realizar la consulta en forma gráfica y numérica. Imagen 11.

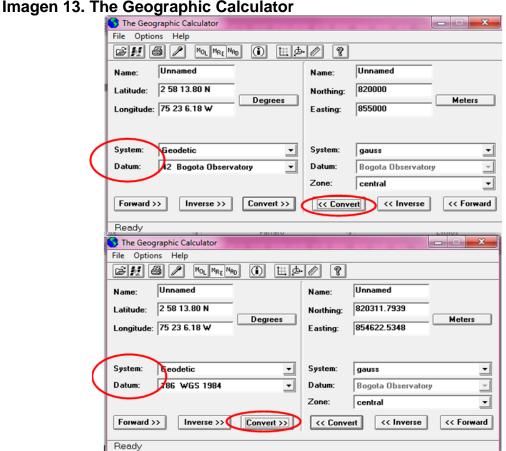



Fuente: Autor

4.2.2.2. Imágenes de los métodos de producción para cada pozo

Se crea una carpeta con cada uno de los sistemas de levantamiento, luego se crea un Shapefile con el nombre MÉT_PROD.shp en el ArcCatalog, el cual luego es importado desde el ArcMap con la opción Add Data para proceder a cargar cada una de las imágenes para cada pozo en la tabla de atributos se ingresa la ruta de cada imagen y de esta forma queda cada pozo con su respectiva imagen y se activa el ícono Hyperlink del menú del ArcMap, dando click derecho sobre MÉT_PROD.shp, se selecciona propiedades y en el Display selecciona Support Hyperlinks using Field, se escoge el nombre del registro y click en aplicar y luego aceptar y con estos pasos queda activado el ícono. Y se procede a ver la imagen 12a y 12b.

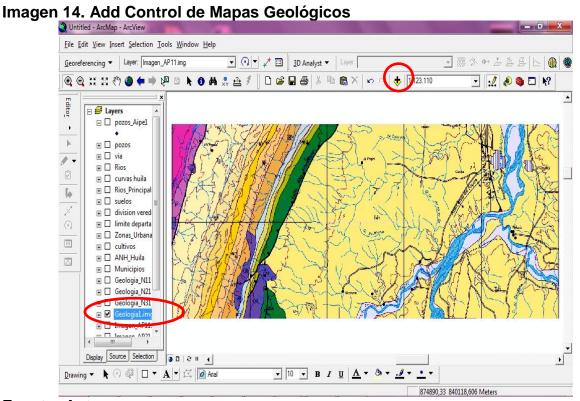
Fuente: Autores

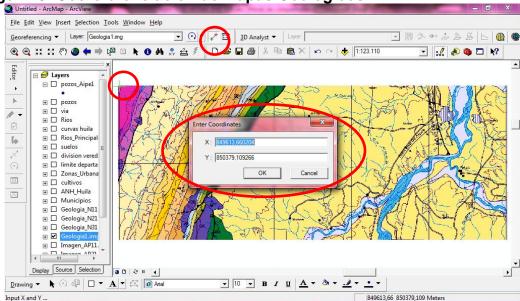

4.2.2.3. Relación de la base de datos espacial

Esta base de datos en forma de atributos permite la consulta de forma fácil, rápida y confiable de la información requerida, debido a que si no se cuenta con el programa se puede descargar de forma gratuita por internet ArcExplorer una herramienta de internet que permite consultar la información, manipularlar en cuanto a colores o adicionar solo lo deseado, pero no modificarla. Debido a esto se puede decir que cualquier empresa puede manejar en línea esta información puesto que desde cualquier computador, tablet o ipod se puede consultar; cabe recalcar que se tendría una persona encargada de recopilar la información y actualizarla en el programa para que ésta sea más confiable y de esta forma ser consultada transmitiendo la información en línea o mediante correo electrónico. Es por esto que se puede tener una mejor visualización y comprensión del área geográfica del lugar, puesto que con la recopilación de la información y la implementación de mapas, nos arroja una estructura mas detallada de la zona de estudio.

4.2.3. Organización de la base de datos por Municipio

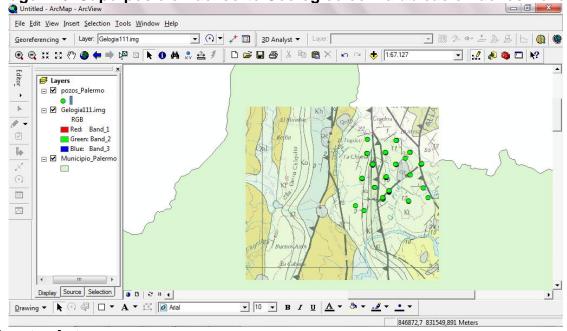
4.2.3.1. Análisis (Superposición) de Mapas Geológicos


Debido a que los mapas del IGAC se encuentran en coordenadas Proyección Transversa de Mercator, Esferoide Internacional 1909, se deben convertir a coordenadas Gauss central, de la siguiente forma; se ingresan las coordenadas E(X) y N (Y) de cada uno de los extremos del corte en la parte derecha del programa, luego se selecciona el sistema que será el Geodetic con Datum Bogotá Observatory y se le da click en convertir, una vez convertidas las coordenas, en la parte izquierda se procede a cambiar su Datum por el WGS1984 sin limpiar las casillas y se le da click en convertir de la parte izquierda para recalcular sus coordenadas en el system Gauss y Datum Central las cuales se calcularon con el programa The Geographic Calculator. Como se observa en la imagen 13.


Se crea una carpeta con cada uno de los cortes, éstos se realizan puesto que no se requiere toda la superficie, sino solo la sección donde se encuentran localizados los pozos para dar una ampliación a la zona de aplicación y se procede a exportarlos desde ArcMap con el ícono de Add Data como se muestra en la imagen 14.

Una vez convertidas las coordenadas se lleva acabo La georeferenciación del mapa mediante el ícono de Add Control Points, dando click izquierdo y derecho en Input X and Y en cada uno de los extremos del mapa e introduciendo las coordenadas calculadas, como se observa en la imagen 15. De igual forma se realiza para cada uno de los mapas geológicos y secciones necesarias.

De esta forma queda referanciados cada uno de los municipios, pozos con su respectiva información planimétrica y mapas geológicos superpuestos. Imagen 16



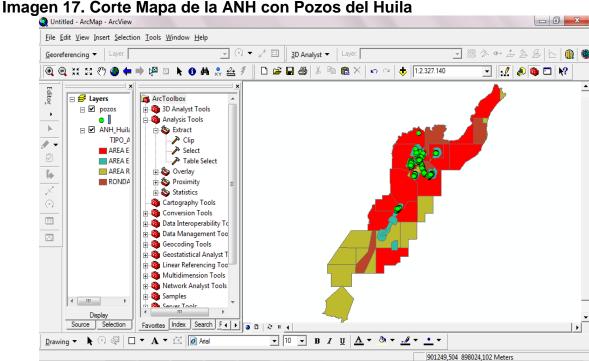
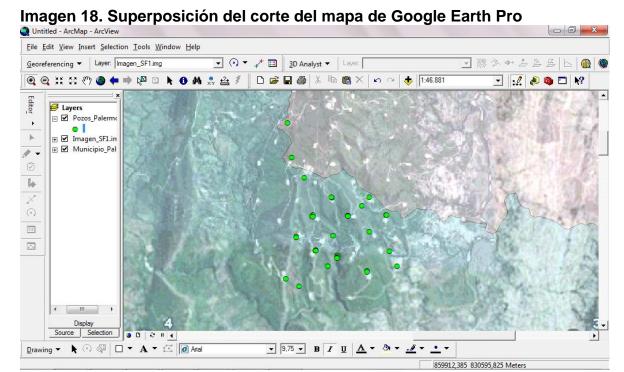

Fuente: Autores

Imagen 16. Superposición del corte Geológico con la ubicación de los Pozos

4.2.3.2. Análisis (Superposición) mapa de la ANH

El mapa de Tierras de la ANH nos permite de forma clara, precisa y concisa observar las diferentes zonas de producción, exploración y ronda a nivel nacional y así compararlos con los pozos georeferenciados de la SOH y determinar si se encuentran bien ubicados respecto a cada zona. Además se puede realizar un corte al departamento del Huila para tener una mejor representación de lo que se quiere mostrar, éste corte se realiza con el ícono de ArcToolbox, se procede a dar click en Análysis Tools, Extract, Clip y de esta forma se realiza el corte. Imagen 17.



Fuente: Autores

4.2.3.3. Análisis (Superposición) de imágenes de Google Earth Pro

Este software nos permite observar de forma más detallada el ambiente de las zonas a trabajar como lo son ubicación de los pozos, vias de acceso, rios, relieve, etc., por medio de ventanas y diferentes herramientas que nos proporciona una ampliación de la zona a trabajar, esto nos permite determinar claramente si la superposición se ha realizado de forma clara junto con la superposición de mapas geológicos, cabe resaltar que el sistema de coordenadas de las imágenes de este

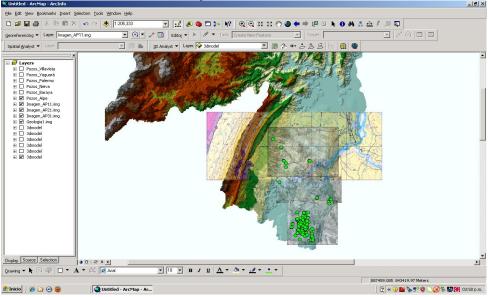
software se encuentran georeferenciadas con Geodetic WGS 1984, por tal motivo se debe realizar la conversión de coordenadas mediante el programa The Geographic Calculator que se muestra en la imagen 13. Una vez se tienen las imágenes se procede a implementarlas en el software como se observa en la imagen 18.

Fuente: Autores

4.2.4. ELABORACIÓN DEL MODELO DIGITAL DEL TERRENO (DTM) EN 3D

El modelamiento 3D permite observar de forma clara el relieve de cada una de las secciones, en este caso el modelamiento se realizó por municipios productores de petróleo. Para realizar el modelo 3D de cada municipio es necesario hacer un corte de las curvas del municipio respecto a las curvas del Departamento utilizando la herramienta de ArcToolbox y procediendo como en el item 4.2.3.2. Luego se procede a hacer una igualación entre la elevación y el layer, mediante curvas de nivel del municipio dando clik derecho sobre curvas del municipio, luego click derecho en elevación y se selecciona la opción Field Calculator y se selecciona la opción elevation = layer, esto se realiza con el fin de que la elevación no sea igual a 0 y se pueda realizar el modelado.

Una vez realizado este procedimiento se procede a dar inicio al modelamiento en 3D, dando click en el ícono 3D Analysis que se encuenra en el menú de ArcMap, Create/Modify TIN, click en Create TIN From Features y automáticamente el programa convierte la información en el modelo 3D. El resultado de este proceso se puede observar en la imagen 19.


Fuente: Autores

4.2.5. ANÁLISIS DE RESULTADOS

Este software nos permite hacer tanto una representación espacial real como una visualización del área geográfica del lugar lo que permite tomar decisiones debido a que nos presenta el ambiente en forma detallada, puesto que al hacer la superposición de cada uno de los mapas o cortes con el modelo 3D y los pozos. se puede llegar a concluir de forma más fácil lo que se pretende representar. La imagen 20, permite ver la superposición de cada uno de los mapas y cortes con los pozos.

Como se cuenta con información a cerca de las características de cada uno de los campos petroleros se puede consultar fácilmente sus características con solo cliquear sobre ellos teniendo el ícono de identificación activado. La imagen 20 representa el resultado del proceso realizado para el Municipio de Aipe.

Fuente: Autores

Además permite determinar la producción de la producción petrolera de la SOH aproximada y de cada uno de los campos en cuanto a BOPD, SCP/STB de gas o BWPD.

Como se observa en la siguiente lista:

Cuadro 2. Producción de Aceite por Campo

CAMPOS PETROLEROS	BOPD
Andalucía	99,87
Arrayan	1171,76
Balcón	1719
Brisas	291,108
Cebú	316,92
Dina	313,13
Dina Cretáceos	703,17
Dina Terciarios	6810,2
Rio Ceibas	894,2
Loma Larga	611,58
Yaguará	1885,65
Palermo	250
Palogrande	1016,36
Pijao	323,63
San Francisco	6025

Santa Clara	1072,7
Tello	4700,52
Tempranillo	1024
Tenay	1129,38

Fuente: Autores

Éste programa permite exportar la información en formato kml por medio de la herramienta XToolPro9.0, que puede ser visualizada con Google Earth Pro, ArcExplorer2; y no presenta ningún problema puesto que la información está referenciada con el Datum oficial de Colombia de referencia Magna Sirgas, en caso de no tener el programa (Ver imagen 21).

Imagen 21. Visualización de la información desde Google Earth Pro - 0 23 Google Earth Pro (versión de prueba) ▼ Search Accede 0 6 N Search Google Búsqueda de parcelas (APN) Buscar eiemplo: pizzería en los alrededores de Obtener instrucciones History Id = 0X = 864033 ▼ Lugares Y = 835551GAS = 2286.6300000000001 Mis lugares 130 a 46⁹³ 40 • 42 Lugares temporales CHICORAL ESTRUCTURA = ANTICLINAL CAMPO = DINA TERCIARIOS 9 137 POZO = DINATERCIARIOS 36 CIUDAD = AIPE 052 0 111 38 119 51 39 BSW = 35.340000000000003 Py_Psia = 1500 82 47 106 3653 0 62 108 28 092 90 24 Ty_°F = 133 Pi Psia = 1550 Pb_Psi = 1616 60 0 48 67 43 f235 ° 43 f235 ° 43 f235 ° 50 87 230 ° 50 87 230 ° 50 87 25 f2 60 Eye 14 V_G_Ty_cP = 0.0159000000000000001 0 ⁹lmage © 2612°GeoEye¹⁴ c 27 33° 9864 6 116 97 97 0 95 Image ∪ S. Geglogical Su^Meyo Sat_Prom_O = 65 Ct_W_Psi_1 = 3.05e-006 Ct_O_Psi_1 = 5.4999999999999999e-9 1 * * -

► Uso de Galería de Earth >>
Fuente: Autores

De esta forma se da por terminada la IMPLEMENTACIÓN Y ACTUALIZACIÓN DE INFORMACIÓN DE LA PRODUCCIÓN PETROLERA DE LA SOH-ECOPETROL DEL DEPARTAMENTO DEL HUILA MEDIANTE SISTEMAS DE INFORMACIÓN GEOGRÁFICA.

3°05'55.03" N 75°18'17.51" O elevación

All of 3,55 km

5. CONCLUSIONES

- Se creó el proyecto de Implementación de la información de la producción de la SOH del Departamento del Huila el cual incluyo información como tipo de levantamiento, coordenadas, algunas propiedades PVT, para conocer la producción manejada por la SOH en el Departamento del Huila, sus campos, la totalidad de pozos y los Municipios productores.
- A pesar de que no fueron suministrados todos lo pozos se puede determinar un producción de aproximada de 30358,178 BOPD con referencia a la producción aproximada reportada por la SOH de 35000 BOPD.
- Se estableció un Inventario a partir de la información recopilada, de cada uno los pozos productores (activos) del departamento del Huila manejada por la SOH Ecopetrol S.A, conociendo así; la producción diaria/aproximada por campos y la total, algunas propiedades PVT de los campos, método de producción, su estructura y la formación productora.
- Se realizo la georeferenciación por coordenadas, mediante el software ArcGIS 9.3 de todos los pozos productores (activos) administrados por la SOH de Ecopetrol S.A al mes de junio.
- El uso de software ArcGIS 9.3 en este proyecto permitió una mejor interpretación de la información de la producción de la SOH y las condiciones ambientales como el entorno geográfico de la zona de trabajo.
- Se logro el modelamiento 3D de cada uno de los Municipios productores a partir de la información planimetría y se constato la localización de los campos y pozos petroleros a partir de imágenes de Google Earth y el mapa geológico de Ingeominas, con el mapa de tierras de la Agencia Nacional de Hidrocarburo (ANH) coincidiendo acertadamente las zonas productoras con los pozos georeferenciados.
- Al estar la información referenciada en un mismo sistema y cumplir con las normas del IGAC se puede tomar como referencia para cualquier otro estudio.

RECOMENDACIONES

- Se recomienda actualizar la información de la producción de los distintos campos productores que revirtieron este año a la SOH.
- Revisar y corregir las coordenadas de algunos pozos productores encontradas en el Software utilizado por Ecopetrol S.A para asegurar la información (Open Wells) ya que algunas están mal, por si se necesitan más adelante.
- Es importante que se realicen análisis PVT a los pozos, debido a que muchos de ellos datan del año 2000. Además otros pozos no presentan información de propiedades PVT por tal motivo aparecen en el programa como cero (0).
- Es necesario completar la información en cuanto al método de producción y la estructura de todos los pozos, debido a que no fue suministrada por que no se encontró en las formas.
- La información suministrada en este trabajo puede servir para crear o reforzar nuevos proyectos.
- Se recomienda utilizar un equipo que tenga como mínimo 1G de RAM de memoria y por lo menos Pentium 4 de 3.8, para poder que funcione el software correctamente, en aquellos casos que no se tenga el ArcGIS 9.3 para poder ver el trabajo, existe en la internet un programa llamado ArcExplorer que nos permitirá divisar pero sin poder hacerle cambios.

BIBLIOGRAFÍA

- AGENCIA NACIONAL DE HIDROCARBUROS, 2012. Mapa de Tierras 9 de abril de 2012. www.anh.gov.co.
- ARAYA CÁCERES, Andrés Daniel. Análisis técnico-económico para el cambio de levantamiento artificial en cuatro pozos del campo Shushufindi. Quito, 2009. 170p.Trabajo de grado (Ingeniería de Petróleos). Escuela Politécnica Nacional. Facultad de Ingeniería
- Curso Tecnología de Operaciones de Producción. Módulo de Operaciones, OPIC Consultores, 2004. 220p.
- INSTITUTO COLOMBIANA DE NORMAS TÉCNICAS. Normas colombianas para la presentación de trabajos de investigación. Segunda actualización. Santafé de Bogotá, D.C.: ICONTEC, 2002. P. 24. NTC 1486.
- INSTITUTO GEOGRÁFICO AGUSTÍN CODAZZI, 1998. Principios Básicos de Cartografía Temática. IGAC, Santa Fe de Bogotá.
- Informes estudios PVT para los diferentes campos. Instituto colombiano del petróleo, Unidad de servicios técnicos y laboratorios. Área de Optimización de la Producción. 2009-2012.
- LEIJA Luna, Paulina. Sistemas de información geográfica para la ayuda de toma de decisiones en políticas sociales. México, D.F.
- MINISTERIO DE MINAS Y ENERGÍA, Dirección General de Hidrocarburos. Subdirección de Hidrocarburos, Informe mensual de Producción de pozos de petróleo, condensado y gas. Gerencia Alto Magdalena-Huila. P. 23. Junio 2012.
- OSSA Acero, Johannes. Evaluación técnico económica para la viabilidad de la disposición del agua de vertimiento mediante inyección en el campo toldado de la coordinación de producción Tolima SOH.
- VERA, J. Rolando. Aplicación de los sistemas de información geográfica y la teledetección, para conocer la distribución del Oso Andino (Tremarctoc ornatus), en el Parque Nacional Terepaima, Estado Lara. Venezuela.

ANEXO A

Tabla de convenciones

CONVENCIONES	
AIPE	Α
NEIVA	NVA
PALERMO	PALE
VILLAVIEJA	VV
BARAYA	BAR
YAGUARÁ	YAG
ARRAYÁN	AR
BRISAS	BR
CEBÚ	СВ
DINA	DN
DINA CRETÁCEOS	DK
DINA TERCIARIOS	DT
PALOGRANDE	PG
PIJAO	PJ
SANTA CLARA	SC
TEMPRANILLO	TM
TENAY	TN
LOMA LARGA	LMLG
TELLO	TL
ANDALUCÍA SUR	ANS
ANDALUCÍA	AND
YAGUARÁ	YG
RIO CEIBAS	RIC
SAN FRANCISCO	SF
BALCÓN	BALC
MANGOS	MN
ESPINO	ESPI
PALERMO	PALE
and the second contract of the second contrac	

Los pozos se reconocen en el programa mediante puntos (Shape*)

ANEXO B

Tabla de atributos

FID	CIU DAD	САМРО	POZO	FORMACIÓN	ESTRUCTURA	MÉT PROD	х	Υ	BOPD	BWPD	GAS
0	Α	AR	AR 1	CABALLOS	ANTICLINAL FALLADO	ESP	864254	843208	175,36	404,68	67520,97
1	Α	AR	AR 2	CABALLOS	ANTICLINAL FALLADO	ESP	864316	843192	996,4	997,46	251181,6
2	Α	BR	BR 1	MONSERRATE	ANTICLINAL ERODADO	BP	867032	837095	41,03	558,28	18765,21
3	Α	BR	BR 2	MONSERRATE	ANTICLINAL ERODADO	ВР	867250	837536	54,42	882,23	4128,51
4	Α	BR	BR 4	MONSERRATE	ANTICLINAL ERODADO	BP	867240	837543	90,64	960,4	7595,17
5	Α	BR	BR 8	MONSERRATE	ANTICLINAL ERODADO	BP	867130	836865	6,718	415,23	13502,8
6	Α	BR	BR 9	MONSERRATE	ANTICLINAL ERODADO	BP	867352	837475	55,99	448,55	27777,33
7	Α	BR	BR 10	MONSERRATE	ANTICLINAL ERODADO	PCP	867123,8	836850,9	42,31	84,33	2389,17
8	NVA	СВ	CB 3	MONSERRATE	ANTICLINAL FALLADO	ESP	8672430	826062	21,54	1204,46	5262,88
9	NVA	СВ	CB 4	MONSERRATE	ANTICLINAL FALLADO	BP	867095	826649	128,55	899,59	18019,77
10	NVA	СВ	CB 6	MONSERRATE	ANTICLINAL FALLADO	ESP	866905	826186	62,38	2036,4	9450
11	NVA	СВ	CB 7	MONSERRATE	ANTICLINAL FALLADO	BP	866879	826462	104,45	783,7	8931,59
12	Α	DK	DK 2	MONSERRATE	ANTICLINAL FALLADO	BP	864486	832895	134,13	747,83	23103,53
13	Α	DK	DK 5	MONSERRATE	ANTICLINAL FALLADO	ESP	864685	832162	16,18	1768,95	2862,27
14	Α	DK	DK 15	MONSERRATE	ANTICLINAL FALLADO	ESP	864622	831844	49,13	1014,46	8144,52
15	Α	DK	DK 19	MONSERRATE	ANTICLINAL FALLADO	ESP	864692	831557	75,24	1711,02	4043,43
16	Α	DN	DN 1A	HONDA, DOIMA, CHICORAL	ANTICLINAL	BP	863692	832748	19,18	31,27	16177,9
17	Α	DK	DK 20	MONSERRATE	ANTICLINAL FALLADO	ESP	864839	831337	44,33	2528,62	7259,59
18	Α	DK	DK 22	MONSERRATE	ANTICLINAL FALLADO	BP	864639	832392	10,77	614,38	15007,79
19	Α	DK	DK 23	MONSERRATE	ANTICLINAL FALLADO	ESP	864665	832022	30,4	1751,78	11013,22
20	Α	DK	DK 24	MONSERRATE	ANTICLINAL FALLADO	ESP	864538	831420	177,09	1165,81	4603,94
21	Α	DK	DK 27	MONSERRATE	ANTICLINAL FALLADO	ESP	864718	833125	100,15	3805,26	39636,95
22	Α	DK	DK 28	MONSERRATE	ANTICLINAL FALLADO	ВР	864829	831700	19,28	1100,26	39771,46

23	Α	DK	DK 36	MONSERRATE	ANTICLINAL FALLADO	ESP	864781	831425	46,47	2650,39	14957,56
24	Α	DT	DT 1	HONDA, DOIMA, CHICORAL	ANTICLINAL	PCP	863149	834444	73,36	408,28	10689,23
25	Α	DT	DT 3	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863324	833987	36,68	36,97	1877,03
26	Α	DT	DT 6	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	862731	833967	7,15	192,01	1699,02
27	Α	DT	DT 8	HONDA, DOIMA, CHICORAL	ANTICLINAL	PCP	863586	834340	32,45	35,75	16231,39
28	Α	DT	DT 10	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863727	833048	41,97	45,22	1487,11
29	Α	DT	DT 11	HONDA, DOIMA, CHICORAL	ANTICLINAL	PCP	863667	833806	102,66	267,79	7711,41
30	Α	DT	DT 12	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863093	834044	32,77	34,04	16450,15
31	Α	DT	DT 15	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863941	833249	7,33	376,75	7065,58
32	Α	DT	DT 16	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863382	833162	22,71	23,67	1626,91
33	Α	DT	DT 17	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863381	832545	26,01	31,49	10299,34
34	Α	DT	DT 18	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863799	832442	53,6	182,21	13201,07
35	Α	DT	DT 19	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863688	835143	32,74	35,66	8273,95
36	Α	DT	DT 20	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863632	834855	29,67	46,38	11436,96
37	Α	DT	DT 21	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863135	832406	32,43	53,62	13348,15
38	Α	DT	DT 25	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863378	834978	23,57	203,22	4310,65
39	Α	DT	DT 26	HONDA, DOIMA, CHICORAL	ANTICLINAL	PCP	863889	832883	26,84	130,28	4336,61
40	Α	DT	DT 27	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863418	833558	24,1	24,31	22085,4
41	Α	DT	DT 28	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863903	834311	13,3	57,34	2951,16
42	Α	DT	DT 31	HONDA, DOIMA, CHICORAL	ANTICLINAL	BP	863625	834046	47,34	70,97	12835,02
43	Α	DT	DT 32	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	864146	834101	27,16	132,34	36397,2
44	Α	DT	DT 33	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863769	835448	25,01	37,36	8001,15
45	Α	DT	DT 35	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863338	834244	27,4	33,58	38664,81
46	Α	DT	DT36	HONDA, DOIMA, CHICORAL	ANTICLINAL	BP	864033	835551	11,78	18,19	2286,63
47	Α	DT	DT 38	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863510	832908	34,82	54,97	38889,39
48	Α	DT	DT 39	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863218	834728	44,99	270,88	9519,26
49	Α	DT	DT 40	HONDA, DOIMA, CHICORAL	ANTICLINAL	PCP	863577	832317	50,5	59,66	26689,87
50	Α	DT	DT 41	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863500	835538	24,65	72,55	2101,4
51	Α	DT	DT 45	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	862805	833201	24,29	172,97	6440,83
52	Α	DT	DT 46	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863230	832827	24,79	62,44	26002,86

53	Α	DT	DT 47	HONDA, DOIMA, CHICORAL	ANTICLINAL	РСР	862624	832440	6,85	19,63	1879,03
54	Α	DT	DT 48	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	862951	832632	51,97	319,86	4576,77
55	Α	DT	DT 50	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863923	834052	23,94	286,84	7435,54
56	Α	DT	DT 51	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863074	834316	51,2	106,45	12694,81
57	Α	DT	DT 52	HONDA, DOIMA, CHICORAL	ANTICLINAL	PCP	863593	833191	80,1	113,06	15810,44
58	Α	DT	DT 54	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863613	832116	35,7	43,03	16849,33
59	Α	DT	DT 55	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863341	834484	44,89	72,57	15182,45
60	Α	DT	DT 56	HONDA, DOIMA, CHICORAL	ANTICLINAL	PCP	862560	832768	42,75	134,29	11802,89
61	Α	DT	DT 57	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	862940	834200	15,12	46,2	19409,87
62	Α	DT	DT 58	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	863780	833668	714	734,3	1487,11
63	Α	DT	DT 59	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	862773	833850	44,19	370,44	2970,1
64	Α	DT	DT 62	HONDA, DOIMA, CHICORAL	ANTICLINAL	ВР	862910	832814	66,18	333,73	25774,46
65	Α	DT	DT 64	HONDA, DOIMA, CHICORAL	ANTICLINAL	BP	863012	834507	279	221,07	2663,34
66	Α	DT	DT 68	HONDA	ANTICLINAL	PCP	863822	833332,3	39,63	767,2	2048,87
67	Α	DT	DT 69	HONDA	ANTICLINAL	PCP	863784,4	834441,9	26,69	33,66	573,782
68	Α	DT	DT 71	HONDA	ANTICLINAL	ВР	863910,2	832153,2	52,47	134,44	19076,08
69	Α	DT	DT 72	DOIMA, CHICORAL	ANTICLINAL	ВР	862699	833020	31,49	36,08	1470,72
70	Α	DT	DT 74	HONDA	ANTICLINAL	PCP	863600,8	832001,1	66,81	96,25	31695,51
71	Α	DT	DT 75	HONDA	ANTICLINAL	PCP	863214,6	832830,5	41,65	45,37	10509,11
72	Α	DT	DT 76	DOIMA, CHICORAL	ANTICLINAL	PCP	860000	840000	29,85	108,8	4391,423
73	NVA	PG	PG 3	MONSERRATE	ANTICLINAL FALLADO	ВР	865972	829006	88,53	336,78	8937,25
74	NVA	PG	PG 5	MONSERRATE	ANTICLINAL FALLADO	ВР	866201	828617	20	38,7	658,1
75	NVA	PG	PG 7	MONSERRATE	ANTICLINAL FALLADO	ВР	866331	828256	20,44	775,61	11730,45
76	NVA	PG	PG 8	MONSERRATE	ANTICLINAL FALLADO	BP	865912	828710	32,39	736,03	7208,37
77	NVA	PG	PG 11	MONSERRATE	ANTICLINAL FALLADO	ESP	866297	828920	1	1624,24	4968,27
78	NVA	PG	PG12	MONSERRATE	ANTICLINAL FALLADO	ВР	866747	828071	138,74	355,03	6882,94
79	NVA	PG	PG 13	MONSERRATE	ANTICLINAL FALLADO	ESP	866607	828281	157,69	1781,27	13872,46
80	NVA	PG	PG 14	MONSERRATE	ANTICLINAL FALLADO	ESP	866460	828593	45,21	1286,81	29807,97
81	NVA	PG	PG 16	MONSERRATE	ANTICLINAL FALLADO	ВР	866855	827812	121,98	680,17	14987,42
82	NVA	PG	PG 19	MONSERRATE	ANTICLINAL FALLADO	ESP	866008	829681	138,07	3139,36	15857,26

83	NVA	PG	PG 22	MONSERRATE	ANTICLINAL FALLADO	ESP	866948	827394	6,69	372,94	7886,81
84	NVA	PG	PG 24	MONSERRATE	ANTICLINAL FALLADO	ВР	866106	828114	134,27	1004,5	14323,48
85	NVA	PG	PG 25	MONSERRATE	ANTICLINAL FALLADO	ВР	866759	827332	15,88	905,67	13306,85
86	NVA	PG	PG 28	MONSERRATE	ANTICLINAL FALLADO	ВР	866065	828730	7,85	298,35	13758,52
87	NVA	PG	PG 30	MONSERRATE	ANTICLINAL FALLADO	ВР	865935	828470	49,89	1134,34	10118,09
88	NVA	PG	PG 40	MONSERRATE	ANTICLINAL FALLADO	ESP	865795	830107	37,73	1382,9	3781,96
89	NVA	PJ	PJ 1	MONSERRATE	MONOCLINAL	ESP	867777,6	823708	33,01	939,26	7049,93
90	NVA	PJ	PJ 3	MONSERRATE	MONOCLINAL	ESP	867764,1	824438,3	53,33	1518,39	11898,59
91	NVA	PJ	PJ 4	MONSERRATE	MONOCLINAL	ESP	867825,5	823341,7	100,89	3822,49	30007,85
92	NVA	PJ	PJ 5	MONSERRATE	MONOCLINAL	ВР	867897,9	824757,5	51,49	79,25	14981,67
93	NVA	PJ	PJ 6	MONSERRATE	MONOCLINAL	ESP	867616,4	824149,8	57,62	2188,75	1499,97
94	NVA	PJ	PJ 9	MONSERRATE	MONOCLINAL	ВР	866946,8	825057,4	27,29	32,31	889,21
95	PALE	SC	SC 1	CABALLOS	ANTICLINAL FALLADO	PCP	858584	819079	38,33	123,67	1149,39
96	PALE	SC	SC 2	CABALLOS	ANTICLINAL FALLADO	PCP	858807	819548	62,46	807,07	1949,81
97	PALE	SC	SC 3	CABALLOS	ANTICLINAL FALLADO	ВР	858529	818712	196,27	1744,6	229499,1
98	PALE	SC	SC 5	CABALLOS	ANTICLINAL FALLADO	ВР	858346	817967	11,88	44,29	1930,32
99	PALE	SC	SC 5S	CABALLOS	ANTICLINAL FALLADO	-	858572,1	816877,9	103,13	491,63	1402,88
100	PALE	SC	SC 6	CABALLOS	ANTICLINAL FALLADO	PCP	858403	819507	8,44	59,1	1977
101	PALE	SC	SC 6S	CABALLOS	ANTICLINAL FALLADO	-	858574,3	816853,8	80,6	146	2057,78
102	PALE	SC	SC 7A	CABALLOS	ANTICLINAL FALLADO	ВР	858795	819924	21,47	119,63	2034,14
103	PALE	SC	SC 8S	CABALLOS	ANTICLINAL FALLADO	ВР	858587,3	816875,3	17,73	53,71	2085,64
104	PALE	SC	SC 9	CABALLOS	ANTICLINAL FALLADO	BP	858943	819845	52,62	186,96	2216,33
105	PALE	SC	SC 9S	CABALLOS	ANTICLINAL FALLADO	PCP	858594,4	816848,4	73,97	1012,34	2680,43
106	PALE	SC	SC 10	CABALLOS	ANTICLINAL FALLADO	ВР	859032	819125	19,97	121,56	2205,31
107	PALE	SC	SC 10S	CABALLOS	ANTICLINAL FALLADO	PCP	858591,4	816833,4	38	366,8	56014,86
108	PALE	SC	SC 11	CABALLOS	ANTICLINAL FALLADO	BP	858684	818284	13,3	115,53	2179,5
109	PALE	SC	SC 11S	CABALLOS	ANTICLINAL FALLADO	PCP	858569,3	816893,3	48,29	326,39	1662,19
110	PALE	SC	SC 12	CABALLOS	ANTICLINAL FALLADO	BP	858531	818721	16,34	17,17	2081,89
111	PALE	SC	SC 13H	CABALLOS SUPERIOR	ANTICLINAL FALLADO	ВР	858346	817967	43,55	305,08	4547,09
112	PALE	SC	SC 14DST	CABALLOS SUPERIOR	ANTICLINAL FALLADO	PCP	858402,9	819510	67,83	370,39	1551,12

113	PALE	SC	SC 15D	CABALLOS	ANTICLINAL FALLADO	PCP	858337,2	817940,8	19,89	37,23	2138,44
114	PALE	SC	SC 16D	CABALLOS	ANTICLINAL FALLADO	ВР	858362	817717	51,73	213,86	0
115	PALE	SC	SC 17	CABALLOS	ANTICLINAL FALLADO	ВР	858691,2	818282,2	61,61	185,65	1832,36
116	PALE	SC	SC 18	CABALLOS	ANTICLINAL FALLADO	ВР	858693,4	818284,6	5,07	57,17	98640,19
117	PALE	SC	SC 2W	CABALLOS	ANTICLINAL FALLADO	PCP	858474,8	819285,4	20,22	73,41	1694,34
118	Α	TM	TM 1	CABALLOS	ANTI. SIMÉT. FALLADO	ESP	865342	837697	3	343,58	266,55
119	Α	TM	TM 2	CABALLOS	ANTI. SIMÉT. FALLADO	NF	865349,1	837639,8	1021	1030,5	1304733
120	Α	TN	TN 2	CABALLOS	MONOCLINAL	ВР	863305,8	832303,5	184,97	197,35	407368,4
121	Α	TN	TN 3	CABALLOS	MONOCLINAL	ESP	862701,4	832934,2	154,95	214,23	246491,4
122	Α	TN	TN 7	CABALLOS	MONOCLINAL	ESP	862901,5	831535,2	282,75	1199,1	672107,7
123	Α	TN	TN 8	CABALLOS	MONOCLINAL	ВР	862602,3	834342,3	32,53	44,32	19371,7
124	Α	TN	TN 12	CABALLOS	MONOCLINAL	ВР	862830,2	833395,1	308,31	502,02	189453,5
125	VV	LMLG	LMLG 1	MONSERRATE	MONOCLINAL ERODADO		867828	840383,7	26,95	121,61	2,71
126	VV	LMLG	LMLG 2	MONSERRATE	MONOCLINAL ERODADO		867847	841136	108,97	163,38	30,28
127	VV	LMLG	LMLG 4	MONSERRATE	MONOCLINAL ERODADO		867878,2	841099,4	24,43	32,13	1,81
128	VV	LMLG	LMLG 7	MONSERRATE	MONOCLINAL ERODADO		86788208	841154,6	451,23	579,44	35
129	NVA	TL	TL 5	MONSERRATE	ANTICLINAL FALLADO		868907	820493	162,42	1637,41	22,31
130	NVA	TL	TL 6	MONSERRATE	ANTICLINAL FALLADO		869741	818617	151,03	308,28	10,18
131	NVA	TL	TL 9	MONSERRATE	ANTICLINAL FALLADO		870146	819469	154,63	5397,76	80,23
132	NVA	TL	TL 10	MONSERRATE	ANTICLINAL FALLADO		868867	819801	103,93	2000,93	6,12
133	NVA	TL	TL 12	MONSERRATE	ANTICLINAL FALLADO		870183	818448	265,52	2773,82	11,52
134	NVA	TL	TL 13	MONSERRATE	ANTICLINAL FALLADO		869916	819195	50,48	2405,76	14,61
135	NVA	TL	TL 15	MONSERRATE	ANTICLINAL FALLADO		870100	819786	248,86	4273,25	41,29
136	NVA	TL	TL 18A	MONSERRATE	ANTICLINAL FALLADO		869309	818796	199,32	542,69	0,1
137	NVA	TL	TL 19	MONSERRATE	ANTICLINAL FALLADO		869371	819500	446,52	986,84	7,23
138	NVA	TL	TL 25	MONSERRATE	ANTICLINAL FALLADO		869358	819191	79,21	277,39	1,35
139	NVA	TL	TL 26	MONSERRATE	ANTICLINAL FALLADO		869101	818739	5,64	13,5	2,09
140	NVA	TL	TL 33	MONSERRATE	ANTICLINAL FALLADO		869113	819180	108,25	610,2	13,67
141	NVA	TL	TL 34	MONSERRATE	ANTICLINAL FALLADO		869227	819901	326,01	897,81	5,24
142	NVA	TL	TL 36	MONSERRATE	ANTICLINAL FALLADO		869201	820308	54,38	2396,7	13,3

143	NVA	TL	TL 42	MONSERRATE	ANTICLINAL FALLADO		869771	818550	240,54	1851,38	14,12
144	NVA	TL	TL 43	MONSERRATE	ANTICLINAL FALLADO		869267	820108	192,21	2509,99	17,3
145	NVA	TL	TL 44	MONSERRATE	ANTICLINAL FALLADO		869459	818898	79,02	267,54	0,06
146	NVA	TL	TL 46	MONSERRATE	ANTICLINAL FALLADO		869048,6	821381,5	195,79	4698,88	29,03
147	NVA	TL	TL 48	MONSERRATE	ANTICLINAL FALLADO		869695	819101	131,83	274,76	11,1
148	NVA	TL	TL 50	MONSERRATE	ANTICLINAL FALLADO		868901	819803	54,17	1741,6	7,75
149	NVA	TL	TL 51	MONSERRATE	ANTICLINAL FALLADO		870085,7	818896,5	174,85	5158,81	65,63
150	NVA	TL	TL 52	MONSERRATE	ANTICLINAL FALLADO		870180	818463	9,82	65,47	0,05
151	NVA	TL	TL 54ST2	MONSERRATE	ANTICLINAL FALLADO		868732,6	820178,1	188,6	3311,7	67,87
152	NVA	TL	TL 55ST	MONSERRATE	ANTICLINAL FALLADO		869351,2	819470,1	5,88	7	0,01
153	NVA	TL	TL 56	MONSERRATE	ANTICLINAL FALLADO		869522	821706	392,99	7088,42	111,98
154	NVA	TL	TL 57	MONSERRATE	ANTICLINAL FALLADO		869507,3	821703,9	570,17	6841,88	79,04
155	NVA	TL	TL 59ST	MONSERRATE	ANTICLINAL FALLADO		870040	820144	36,63	1974,48	0,09
156	NVA	TL	TL 65	MONSERRATE	ANTICLINAL FALLADO		869118	820614	71,82	123,89	0,05
157	BAR	ANS	AND 2	DIOMA	ANTICLINAL FALLADO		883297,3	841609,3	8,68	68,83	0
158	BAR	ANS	AND 10	DIOMA	ANTICLINAL FALLADO		882917,7	841431,9	21,4	28,78	0
159	BAR	ANS	AND 11	DIOMA	ANTICLINAL FALLADO		881838,5	841468,1	28,74	348,64	0
160	BAR	ANS	AND 22	DIOMA	ANTICLINAL FALLADO		883550,8	841962,8	1,96	4,88	0
161	BAR	ANS	AND 25	DIOMA	ANTICLINAL FALLADO		882102,8	841404,8	33,3	372,95	0
162	BAR	ANS	AND 26	DIOMA	ANTICLINAL FALLADO		882935,1	841775,8	1,95	105,95	0
163	BAR	ANS	AND 35	DIOMA	ANTICLINAL FALLADO		883030	841635	3,84	10,14	0
164	YAG	YG	MN 2	CABALLOS	ANTICLINAL ASIMÉTRICO	NF	837895	779807	1,27	106,43	3000
165	YAG	YG	MN 3	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	841045	783506	44,6	858,47	14633,33
166	YAG	YG	MN 7	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	838842	781229	83,83	1318,03	12133,33
167	YAG	YG	MN 12H	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	838753	782361	41,23	606,9	7133,33
168	YAG	YG	MN 13	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	837885	780605	5,67	213,5	8366,67
169	YAG	YG	MN 14	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	838501	780162	22,6	413,13	5200
170	YAG	YG	MN 16	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	839378	781894	11,37	276,5	10000
171	YAG	YG	MN 17	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	839442	782498	95,53	1603,2	26200
172	YAG	YG	MN 20	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	838118	782018	6,03	231,83	24733,33

173	YAG	YG	MN 21	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	840715	782773	125,53	1596,67	29600
174	YAG	YG	MN 24	CABALLOS	ANTICLINAL ASIMÉTRICO	NF	839015	782713	1	117,23	4100
175	YAG	YG	MN 26	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	839880	782550	27,53	994,5	27333,33
176	YAG	YG	MN 27	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	840518	782354	83,53	96,5	22900
177	YAG	YG	MN 56	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	838786	781098	70,97	1067,3	12666,67
178	YAG	YG	MN 59	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	838793	780452	16,53	72,73	39933,33
179	YAG	YG	MN 66	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	840510	782352	101,47	4333,3	15266,67
180	YAG	YG	MN 67	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	839904	782060	75,77	835,87	19500
181	YAG	YG	MN 70	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	839287	781149	26,2	627,87	30233,33
182	YAG	YG	MN 72	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	838111	779507	3,3	91,9	11000
183	YAG	YG	MN 78	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	840717	782765	65,7	123,97	34200
184	YAG	YG	MN 80	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	837547	779570	3,93	72,03	10300
185	YAG	YG	MN 82	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	837689	780141	27,4	461,9	10000
186	YAG	YG	MN 85	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	838360	780470	18,83	263,07	6500
187	YAG	YG	MN 100	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	840525,8	782364,8	82,3	3535,8	17666,67
188	YAG	YG	MN 101H	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	839409	781879	44,4	215,67	11000
189	YAG	YG	MN 102H	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	839691	782099	96,23	1825,13	18500
190	YAG	YG	MN 104	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	838847	782524	66,4	1253,33	9966,67
191	YAG	YG	MN 106	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	838765	780487	3,5	264,67	11766,67
192	YAG	YG	MN 107	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	837864,5	780616,2	135,9	438,13	12333,33
193	YAG	YG	MN 108	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	841027,9	783514,8	78,1	732,13	6866,67
194	YAG	YG	MN 109	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	838522	780162,3	8,4	75,6	8000
195	YAG	YG	MN 110	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	840031,5	782198,7	54,43	1200,2	18000
196	YAG	YG	MN 111	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	839878,8	782059,7	39,13	2116,67	36633,33
197	YAG	YG	MN 112H	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	838772,5	782375	45,47	1703,7	7933,33
198	YAG	YG	MN 113H	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	838487	782345	35,8	399,77	20433,33
199	YAG	YG	MN 114H	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	837870,8	780603,9	43,47	1155,87	14100
200	YAG	YG	MN 115	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	840726,2	782789,5	62,37	249,33	18433,33
201	YAG	YG	MN 116	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	839080,3	781611,3	6,5	326,17	8766,67
202	YAG	YG	MN 117H	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	838471	782345,7	31,9	801,8	5666,67

203	YAG	YG	MN 118H	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	838136	782023,5	25,67	384,7	14000
204	YAG	YG	MN 119H	CABALLOS	ANTICLINAL ASIMÉTRICO	ESP	839083,2	781595,5	38,53	952,13	12800
205	YAG	YG	MN 121	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	839080	781611	1,63	117,13	6266,67
206	YAG	YG	MN 122	CABALLOS	ANTICLINAL ASIMÉTRICO	PCP	838763	782362	25,7	294,3	7733,33
207	NVA	RIC	ESPI 1	HONDA	ESTRUC. ESTRATIGRÁFICO		878707	818556,3	18	18	82387
208	NVA	RIC	RIC 3	HONDA	ANTICLINAL FALLADO	GL	877688,5	819446,4	3	15	4710
209	NVA	RIC	RIC 4	HONDA	ANTICLINAL FALLADO	GL	877594,4	819137,6	84	109	612323
210	NVA	RIC	RIC 6	HONDA	ANTICLINAL FALLADO	GL	878153,6	819943,1	44,7	1,65	425000
211	NVA	RIC	RIC 7	HONDA	ANTICLINAL FALLADO	GL	878154,1	819930,8	1	1,3	322000
212	NVA	RIC	RIC 8A	HONDA	ANTICLINAL FALLADO	PCP	876647	818643	57,6	3,07	756000
213	NVA	RIC	RIC 10	HONDA	ANTICLINAL FALLADO	GL	875879,6	817620,4	14,1	65	85000
214	NVA	RIC	RIC 11	HONDA	ANTICLINAL FALLADO	PCP	877911,4	819359,4	96,8	205	60500
215	NVA	RIC	RIC 12	HONDA	ANTICLINAL FALLADO	PCP	877906,4	819365,5	25,1	65,46	25570
216	NVA	RIC	RIC 13S	HONDA	ANTICLINAL FALLADO	GL	877916	819353	2	0,7	21000
217	NVA	RIC	RIC 15	HONDA	ANTICLINAL FALLADO	NF	877411,6	818507,5	0	285,3	63000
218	NVA	RIC	RIC 16	HONDA	ANTICLINAL FALLADO	PCP	877903,6	819351,8	9,2	141,83	6000
219	NVA	RIC	RIC 17H	HONDA	ANTICLINAL FALLADO	GL	876663,1	817859,7	15,1	2,75	10480
220	NVA	RIC	RIC 19	HONDA	ANTICLINAL FALLADO	PCP	877137,4	819343,2	5,6	0	10000
221	NVA	RIC	RIC 20SSA	HONDA	ANTICLINAL FALLADO	GL	877418,9	818511,6	18	2,76	9000
222	NVA	RIC	RIC 22	HONDA	ANTICLINAL FALLADO	PCP	878157,8	819923,8	0,7	42,66	12680
223	NVA	RIC	RIC 23LBA	HONDA	ANTICLINAL FALLADO	GL	877253,7	819378,2	12	0,57	138000
224	NVA	RIC	RIC 24ST	HONDA	ANTICLINAL FALLADO	PCP	876636,1	818632	13,5	17,2	7600
225	NVA	RIC	RIC 27LBA	HONDA	ANTICLINAL FALLADO	PCP	877415,7	818498,1	17,5	8,3	97700
226	NVA	RIC	RIC 28	HONDA	ANTICLINAL FALLADO	PCP	876310	818168	29,8	113,25	125500
227	NVA	RIC	RIC 30	HONDA	ANTICLINAL FALLADO	PCP	876682,4	817856,1	5,7	0	2800
228	NVA	RIC	RIC 31	HONDA	ANTICLINAL FALLADO	ВР	875773,1	816790,6	1,7	0	23900
229	NVA	RIC	RIC 32	HONDA	ANTICLINAL FALLADO	PCP	877236,1	819388,9	38	9	3846900
230	NVA	RIC	RIC 34	HONDA	ANTICLINAL FALLADO	PCP	876662,4	817851,2	1,1	0	364000
231	NVA	RIC	RIC 35	HONDA	ANTICLINAL FALLADO	PCP	876641,2	818637	37,6	18,34	175800
232	NVA	RIC	RIC 36	HONDA	ANTICLINAL FALLADO	PCP	876229,9	817363,1	9,9	4,9	66000

233	NVA	RIC	RIC 39	HONDA	ANTICLINAL FALLADO	PCP	876663,8	817868,1	32	2,25	30240
234	NVA	RIC	RIC 40	HONDA	ANTICLINAL FALLADO	GL	874622,3	815534,1	21,5	0	101000
235	NVA	RIC	RIC 41	HONDA	ANTICLINAL FALLADO	PCP	876319,9	818158,8	51,4	100,48	11400
236	NVA	RIC	RIC 42	HONDA	ANTICLINAL FALLADO	PCP	876325,8	818164,9	4,5	23,36	2700
237	NVA	RIC	RIC 51	HONDA	ANTICLINAL FALLADO	GL	877455,8	818493,2	7,4	0,32	20680
238	NVA	RIC	RIC 52	HONDA	ANTICLINAL FALLADO	GL	875777,6	816814,2	20	0	18200
239	NVA	RIC	RIC 53	HONDA	ANTICLINAL FALLADO	BP	875764,8	816825,3	0	0	21000
240	NVA	RIC	RIC 54	HONDA	ANTICLINAL FALLADO	PCP	876649,8	817848,6	21,3	0	5880
241	NVA	RIC	RIC 55	HONDA	ANTICLINAL FALLADO	GL	876313,9	818152,4	3,2	0	33800
242	NVA	RIC	RIC 60	HONDA	ANTICLINAL FALLADO	GL	874998,4	816395,9	6,4	0	93000
243	NVA	RIC	RIC 63	HONDA	ANTICLINAL FALLADO	PCP	875896,3	817590,9	2,2	4,51	1050
244	NVA	RIC	RIC 64	HONDA	ANTICLINAL FALLADO	GL	875807	816814	1	0	6890
245	NVA	RIC	RIC 67	HONDA	ANTICLINAL FALLADO	PCP	8773954	8185120	132	132	5120
246	NVA	RIC	RIC 82LBS	HONDA	ANTICLINAL FALLADO	GL	8757840	8168086	16,3	0	24200
247	NVA	RIC	RIC 84	HONDA	ANTICLINAL FALLADO	PCP	8762218	8173606	0,7	14,93	300
248	NVA	RIC	RIC 86	HONDA	ANTICLINAL FALLADO	ESP	8762465	8173683	10	90,75	11420
249	NVA	RIC	RIC 95	HONDA	ANTICLINAL FALLADO	PCP	8766590	8186552	2,6	0	1020
250	NVA	SF	SF 4	CABALLOS		ESP	854101	831993	74	8419,84	88935,48
251	PALE	SF	SF 8	CABALLOS		ВР	854056	828709	44	495,23	15870,97
252	PALE	SF	SF 10	CABALLOS		ВР	855305	827561	13	390	35
253	NVA	SF	SF 11	CABALLOS		ESP	854802	831929	85	2314	19
254	NVA	SF	SF 14	CABALLOS		ESP	853973	831102	62	1895	0
255	NVA	SF	SF 16	CABALLOS		PCP	854754	829478	56	477	0
256	NVA	SF	SF 17	CABALLOS		PCP	854025	829511	18	52	32
257	PALE	SF	SF 18	CABALLOS		ESP	853285	827883	144	4864,71	55806,45
258	PALE	SF	SF 19	CABALLOS		ESP	854856	828724	24	691,9	24838,71
259	NVA	SF	SF 23	TETUAN		PCP	854410	829908	43	940,52	8935,48
260	NVA	SF	SF 24	CABALLOS		PCP	854359	831523	79	708,19	77774,19
261	NVA	SF	SF 28	CABALLOS		PCP	853592	830706	55	665,81	16838,71
262	NVA	SF	SF 33	CABALLOS		ESP	855127	832345	39	6042,97	63096,77

263	NVA	SF	SF 40	CABALLOS	ESP	854222	832434	82	1603,52	45870,97
264	NVA	SF	SF 42	CABALLOS	ESP	854592	832327	154	11107,2	154580,7
265	NVA	SF	SF 43	CABALLOS	ESP	854400	829129	230	10642,8	48064,52
266	PALE	SF	SF 44	CABALLOS	ESP	855244	828343	85	2213,06	14645,16
267	NVA	SF	SF 46	CABALLOS	ESP	855540	830184	26	982,48	20838,71
268	PALE	SF	SF 53	CABALLOS	ESP	853459	828708	101	3658,55	33580,65
269	PALE	SF	SF 59	CABALLOS	ESP	853063	826968	95	4197,03	26290,32
270	PALE	SF	SF 60	CABALLOS	PCP	853636	828326	101	475,32	22032,26
271	PALE	SF	SF 61	CABALLOS	ESP	854800	827130	81	3648,81	25774,19
272	NVA	SF	SF 63	CABALLOS	BP	855607	828761	43	808,32	21677,42
273	PALE	SF	SF 66	CABALLOS	ESP	853357	826792	44	2129,65	17032,26
274	PALE	SF	SF 68	CABALLOS	BP	854194	827464	84	1052,87	10419,35
275	PALE	SF	SF 69	CABALLOS	PCP	853705	827568	124	1612,32	21064,52
276	NVA	SF	SF 70	CABALLOS	PCP	854794	830289	81	1037,87	22774,19
277	NVA	SF	SF 74	CABALLOS	ESP	854656	833224	54	8229,87	49032,26
278	NVA	SF	SF 75	CABALLOS	ESP	855230	831995	89	5231,16	169903,2
279	NVA	SF	SF 78	CABALLOS	ESP	854318	833159	78	9583,61	99677,42
280	PALE	SF	SF 83	CABALLOS	ESP	853700	827577	116	2261,74	40806,45
281	NVA	SF	SF 87	CABALLOS	ESP	854037	829503	255	4859,26	68161,29
282	NVA	SF	SF 90	CABALLOS	ESP	855235	831986	107	5600,81	87967,74
283	NVA	SF	SF 91	CABALLOS	ESP	855222	831577	50	1798,71	42483,87
284	PALE	SF	SF 92	CABALLOS	PCP	854174	827473	50	753,9	16193,55
285	NVA	SF	SF 93	CABALLOS	ESP	853598	831528	88	6841	75741,94
286	NVA	SF	SF 94	CABALLOS	ESP	853959	831109	51	3751,58	29645,16
287	NVA	SF	SF 95	CABALLOS	ESP	855979	829936	178	8998,9	72129,03
288	PALE	SF	SF 96	TETUAN	ESP	853642	828333	98	2580,87	31225,81
289	NVA	SF	SF 97	CABALLOS	ESP	855155	829176	59	1192,74	24612,9
290	NVA	SF	SF 98	CABALLOS	 ESP	855689	829692	141	5932,74	31258,06
291	NVA	SF	SF 99	CABALLOS	 ESP	854736	832770	110	12102,7	245967,7
292	PALE	SF	SF 100	CABALLOS	ESP	855456	827239	42	5049	73000

293	NVA	SF	SF 111	CABALLOS	ESP	854756	832769	73	2460	9000
294	NVA	SF	SF 112	CABALLOS	ESP	854592	832335	49	3349	115000
295	NVA	SF	SF 123	CABALLOS	BP	854707	831141	2	302	2000
296	NVA	SF	SF 124	CABALLOS	ESP	854752	831946	18	906	0
297	PALE	SF	SF 126	CABALLOS	ESP	854185	827471	100	6860	32000
298	PALE	SF	SF 127	CABALLOS	PCP	853187	829587	13	662	35000
299	NVA	SF	SF 128	CABALLOS	PCP	854396	829129	19	115	21000
300	PALE	SF	SF 129	CABALLOS	PCP	854809	827118	39	226	0
301	NVA	SF	SF 130	CABALLOS	ESP	854406	830721	21	291	1000
302	NVA	SF	SF 131	CABALLOS	ESP	854397	830710	57	1950	0
303	NVA	SF	SF 132	CABALLOS	ESP	855621	828764	27	1772	0
304	PALE	SF	SF 134	CABALLOS	ESP	854086	827911	53	3669	35000
305	PALE	SF	SF 137	CABALLOS	ESP	853479	829147	33	3411	49000
306	PALE	SF	SF 138	CABALLOS	ESP	854170	827444	74	1824	71000
307	NVA	SF	SF 139	CABALLOS	ESP	853601	831539	41	2609	14000
308	NVA	SF	SF 140	CABALLOS	BP	854748	829466	83	662	38000
309	PALE	SF	SF 141	CABALLOS	ESP	853292	827867	71	2340	46000
310	PALE	SF	SF 142	CABALLOS	ESP	854409	828344	42	1943	35000
311	NVA	SF	SF 143	CABALLOS	ESP	854006	830319	84	2249	40000
312	PALE	SF	SF 146	CABALLOS	ESP	853974	827242	79	1269	35000
313	NVA	SF	SF 147	CABALLOS	ESP	854411	830734	87	2327	13000
314	PALE	SF	SF 148	CABALLOS	ESP	855236	828355	38	450	0
315	PALE	SF	SF 149	CABALLOS	ESP	854862	827983	62	1810	39000
316	NVA	SF	SF 154	CABALLOS	ESP	853985	830351	66	3060	35000
317	PALE	SF	SF 155	CABALLOS	BP	853109	830329	38	450	0
318	PALE	SF	SF 156	CABALLOS	ESP	854055	828729	68	5134	71000
319	NVA	SF	SF 158	CABALLOS	ESP	856049	829113	39	1208	37000
320	NVA	SF	SF 159	CABALLOS	ESP	855625	828774	24	1442	39000
321	NVA	SF	SF 160	CABALLOS	PCP	855163	829191	19	264	35000
322	PALE	SF	SF 163	CABALLOS	ESP	853702	827586	94	2266	0

323	PALE	SF	SF 164	CABALLOS		ESP	853698	827569	77	2259	76260
324	PALE	SF	SF 165	CABALLOS		PCP	854394	828338	51	912	35000
325	NVA	SF	SF 167	CABALLOS		PCP	853623	831524	24	349	0
326	PALE	SF	SF 169	CABALLOS		BP	854407	828320	19	756	4000
327	NVA	SF	SF 171	CABALLOS		BP	855207	831585	88	3102	73000
328	NVA	SF	SF 173	CABALLOS		BP	854606	832326	15	904	0
329	PALE	SF	SF 174	CABALLOS		ESP	854704	828543	94	3203	71000
330	NVA	SF	SF 175	CABALLOS		ESP	854086	832891	68	5340,58	57290
331	NVA	SF	SF 176	CABALLOS		ESP	854320	833171	19	3096,55	27230
332	NVA	SF	SF 178	CABALLOS		ESP	855155	829199	32	1173,1	34350
333	PALE	SF	SF 182	CABALLOS		ESP	854170	827432	149	4140,48	165420
334	NVA	SF	SF 183	CABALLOS		ESP	854858	830580	23	1577,61	41000
335	NVA	SF	SF 184	CABALLOS		BP	855472	830711	6	22,9	15500
336	NVA	SF	SF 185	CABALLOS		ESP	854701	831137	43	3259,9	37840
337	NVA	SF	SF 186	CABALLOS		ВР	854717	831948	34	922,52	54260
338	NVA	SF	SF 188	CABALLOS		PCP	854711	831110	81	1429,45	8371
339	PALE	SF	SF 205	CABALLOS		ESP	853642	828317	56	1318,55	56680
340	Α	BALC	BALC 8	CABALLOS	ANTICLINAL FALLADO	ESP	860591	843208,4	56	2550,68	42000
341	Α	BALC	BALC 10	TETUAN	ANTICLINAL FALLADO	ESP	860235,5	845159,5	117	1050,16	127290
342	Α	BALC	BALC 17	CABALLOS	ANTICLINAL FALLADO	ESP	860620,9	843182,1	74	739,39	81520
343	Α	BALC	BALC 19	CABALLOS	ANTICLINAL FALLADO	ESP	860870,3	842812,7	318	3730	21900
344	Α	BALC	BALC 23	CABALLOS	ANTICLINAL FALLADO	ESP	860877,2	842263,9	945	990,52	98690
345	Α	BALC	BALC 22ST	CABALLOS	ANTICLINAL FALLADO	ESP	859123	846346,3	209	389,81	203420
346	PALE	PALE	PALE 1ST	CABALLOS		BP	858028	817398	9	6	20000
347	PALE	PALE	PALE 2	CABALLOS		ВР	857780	816731	57	173	77000
348	PALE	PALE	PALE 3H	CABALLOS		PCP	858024	817423	64	13	59000
349	PALE	PALE	PALE 4H	CABALLOS		BP	857781	816720	64	17	62000
350	PALE	PALE	PALE 5	CABALLOS		PCP	858013	817410	14	3	26000
351	PALE	PALE	PALE 6	CABALLOS		BP	857781	816731	22	103	21000
352	PALE	PALE	PALE 7	CABALLOS		PCP	857769	816715	20	25	6000

353	Α	TN	TN 5ST3	CABALLOS	MONOCLINAL	ESP	862788	833376,2	165,87	529,8	130440
354	Α	DT	DT 78	DOIMA CHICORAL	ANTICLINAL	PCP	862587,3	832441,5	25,06	859,02	62140
355	Α	DT	DT 77	DOIMA CHICORAL	ANTICLINAL	PCP	863497,9	835469,3	17,71	60,82	8310
356	Α	DT	DT 81	HONDA, MONSERRATE	ANTICLINAL	PCP	863557,8	834340	66,44	85,86	48640
357	Α	DT	DT 82	HONDA	ANTICLINAL	PCP	863929,9	832202	46,76	27,79	28840
358	Α	DT	DT 79	HONDA	ANTICLINAL	PCP	863359,7	832565,7	72,74	14,06	60550
359	Α	DT	DT 86	HONDA, MONSERRATE	ANTICLINAL	PCP	863561,2	834345,5	124,96	77,74	339660
360	Α	DT	DT 87	DOIMA, CHICORAL	ANTICLINAL	PCP	862762,2	833527,2	32,07	38,22	79750
361	Α	DT	DT 83	HONDA	ANTICLINAL	ВР	863729	833027	113,12	729,64	10340
362	Α	DT	DT 84	HONDA	ANTICLINAL	PCP	863363,5	834482,7	45,24	30,61	66450
363	Α	DT	DT 85	HONDA	ANTICLINAL	PCP	863728	833033	71,41	45,05	69790
364	Α	DT	DT 88	DOIMA, CHICORAL	ANTICLINAL	PCP	863495,7	835477	27,81	62,66	14220
365	Α	DT	DT 89	DOIMA, CHICORAL	ANTICLINAL	PCP	862957,7	834714,8	36,03	109,73	10880
366	Α	DT	DT 92	HONDA	ANTICLINAL	PCP	863935,3	832199,5	42,29	33,73	29540
367	Α	DT	DT 90	DOIMA, CHICORAL	ANTICLINAL	PCP	862581,4	832443,2	9,43	86,15	20670
368	Α	DT	DT 94	HONDA, MOSERRATE	ANTICLINAL	PCP	863292,9	832289	9,04	13,78	21400
369	Α	DT	DT 96	HONDA	ANTICLINAL	PCP	863275,8	832302,8	17,97	88,22	12920
370	Α	DT	DT 98	HONDA, MONSERRATE	ANTICLINAL	PCP	863281,7	832303,2	27,94	26,18	31010
371	Α	DT	DT 99	HONDA	ANTICLINAL	PCP	863357,9	834484,8	72,61	30,39	155360
372	Α	DT	DT 102	HONDA	ANTICLINAL	PCP	863733	833059	47,03	486,93	30530
373	Α	DT	DT 103	DOIMA, CHICORAL	ANTICLINAL	PCP	862951,7	834715,5	38,31	116,69	11,9
374	Α	DT	DT 104	DOIMA, CHICORAL	ANTICLINAL	PCP	862961,2	862961,2	3,39	227,2	3410
375	Α	DT	DT 105	DOIMA, CHICORAL	ANTICLINAL	PCP	862967,8	834707,8	39,33	59,86	22350
376	Α	DT	DT 106	DOIMA, CHICORAL	ANTICLINAL	PCP	862914,3	834212,9	21,81	56,92	35310
377	Α	DT	DT 107	DOIMA, CHICORAL	ANTICLINAL	ВР	862763	833533,1	33,01	50,4	24470
378	Α	DT	DT 109	DOIMA, CHICORAL	ANTICLINAL	PCP	862560,9	832483,6	55,88	415,96	81230
379	Α	DT	DT 110	HONDA, DOIMA, CHICORAL	ANTICLINAL	PCP	862661,5	832946,5	30,67	71,43	2720
380	Α	DT	DT 111	HONDA, DOIMA, CHICORAL	ANTICLINAL	PCP	862667,3	832944,9	34,72	5,76	15330
381	Α	DT	DT 112	HONDA, DOIMA, CHICORAL	ANTICLINAL	PCP	862559,4	832477,8	59,07	542,97	12390
382	Α	DT	DT 113	HONDA	ANTICLINAL	PCP	863339,8	834220,6	138,69	26,81	161620

383	Α	DT	DT 114	HONDA	ANTICLINAL	PCP	863345,3	834223,1	70,27	42,69	22150
384	Α	DT	DT 115	HONDA	ANTICLINAL	PCP	863329,1	834454,5	67,52	53,86	18450
385	Α	DT	DT 116	HONDA	ANTICLINAL	PCP	863127,7	834065,1	90,2	39,24	227870
386	Α	DT	DT 117	HONDA	ANTICLINAL	PCP	863123,3	834061	93,26	23,65	19514
387	Α	DT	DT 118	HONDA	ANTICLINAL	PCP	863925,1	832176,6	71,53	217,89	17560
388	Α	DT	DT 128	MONSERRATE	ANTICLINAL	PCP	863921,7	834322,6	134,02	2,56	179910
389	Α	DT	DT 131	MONSERRATE	ANTICLINAL	PCP	863917,5	834328,8	53,05	43,19	23390
390	Α	DT	DT 132	MONSERRATE	ANTICLINAL	PCP	863911,6	834329,6	267,32	1112,05	7660
391	Α	DT	DT 135	DOIMA CHICORAL	ANTICLINAL	PCP	862552,4	832459,5	33,84	110,73	3960
392	Α	DT	DT 136	DOIMA CHICORAL	ANTICLINAL	PCP	862606,4	834400,5	44,11	172,01	10190
393	Α	DT	DT 137	DOIMA CHICORAL	ANTICLINAL	PCP	862592	834429	97,87	66,23	47460
394	Α	DT	DT 138	DOIMA CHICORAL	ANTICLINAL	PCP	862487,4	834520,2	58,29	95,01	20750
395	Α	DT	DT 139	DOIMA CHICORAL	ANTICLINAL	PCP	862515,9	834596,7	134,22	408,74	37700
396	Α	DN	DN 14	HONDA	ANTICLINAL FALLADO	PCP	865340,3	837660,8	115,6	51,78	26760
397	Α	DN	DN 18	HONDA	ANTICLINAL FALLADO	PCP	865352,3	837676,9	62,73	154,05	5050
398	Α	DN	DN 8	HONDA, DOIMA, CHICORAL	ANTICLINAL	PCP	862244	832112	44,65	94,22	8820
399	Α	DN	DN 2	HONDA, DOIMA, CHICORAL	ANTICLINAL	BP	863652	833402	70,97	265,73	30900
400	Α	DT	DT 149	MONSERRATE	ANTICLINAL	PCP	864049,1	834811,8	30,88	134,94	56860
401	Α	DT	DT 154	DOIMA	ANTICLINAL	PCP	862503,7	835543	125,3	202,44	9580
402	Α	DT	DT 155	DOIMA	ANTICLINAL	PCP	862543,9	835573,1	20,51	2295	10260
403	Α	DT	DT 139	DOIMA, CHICORAL	ANTICLINAL	PCP	862525,9	834586,7	134,22	37,7	408740
404	Α	DT	DT 160	DOIMA, CHICORAL	ANTICLINAL	PCP	861884	833885	49,04	695,66	6150
405	Α	DT	DT 162	DOIMA	ANTICLINAL	PCP	861857	833804,2	118,23	65,04	26800
406	Α	DT	DT 163	DOIMA	ANTICLINAL	PCP	861732,8	833344,5	118,23	65,04	26800
407	Α	DT	DT 164	DOIMA	ANTICLINAL	PCP	861731,2	833410	89,81	131,2	103190
408	Α	DT	DT 166	MONSERRATE	ANTICLINAL	PCP	864045,6	834768,2	751,75	159,83	316,13
409	Α	DT	DT 167	MONSERRATE	ANTICLINAL	PCP	863035	833744,6	45,82	660,07	125,13
410	Α	DT	DT 170	MONSERRATE	ANTICLINAL	PCP	863929	833744,8	43,82	76,7	27160

POZO	BSW	API. 60°	RGP	Py. Psia	Ty. F	Psia. Psia	Pb. Psi	Rs_SCF/STB	V_O_Ty. Cp	V_G_Ty. Cp	V.W_Ty.	Sat.Prom. W
AR 1	58,12	31,2	545,04	4716	234	4720	1821	419	0,943	0,01369	0,623	0
AR 2	0,12	32,3	252,04	4716	234	4720	1821	419	9,4	0,01369	0,623	0
BR 1	94,93	23	402,46	922	135	2000	800	140	11	0,12	0,537	25
BR 2	96,07	23,3	142,28	922	135	2000	800	140	11	0,12	0,537	25
BR 4	92,17	23,3	62,63	922	135	2000	800	140	11	0,12	0,537	25
BR 8	92,97	21,8	187,72	922	135	2000	800	140	11	0,12	0,537	25
BR 9	89,5	23,6	357,47	922	135	2000	800	140	11	0,12	0,537	25
BR 10	55,41	23	106,21	922	135	2000	800	140	11	0,12	0,537	25
CB 3	98,43	18,7	521,7	1469	143	2620	998	114	4,5	0,0102	0,45	26
CB 4	88,11	20,1	105,41	1469	143	2620	998	114	4,5	0,0102	0,45	26
CB 6	97,64	20,1	229,63	1469	143	2620	998	114	4,5	0,0102	0,45	26
CB 7	89,56	19,5	148,32	1469	143	2620	998	114	4,5	0,0102	0,45	26
DK 2	92,18	21,6	476,98	2400	152	2800	886	147	10,8	0,0133	0,45	38
DK 5	99,1	23,1	1030,6	2400	152	2800	886	147	10,8	0,0133	0,45	38
DK 15	94,57	21,3	820,58	2400	152	2800	886	147	10,8	0,0133	0,45	38
DK 19	95,52	22,3	81,6	2400	152	2800	886	147	10,8	0,0133	0,45	38
DN 1A	38,14	20,1	622,85	0	0	0	0	0	0	0	0	0
DK 20	98,46	21,5	244,78	2400	152	2800	886	147	10,8	0,0133	0,45	38
DK 22	98,47	23,1	1513,3	2400	152	2800	886	147	10,8	0,0133	0,45	38
DK 23	98,47	23,5	426,29	2400	152	2800	886	147	10,8	0,0133	0,45	38
DK 24	96	23,6	23,25	2400	152	2800	886	147	10,8	0,0133	0,45	38
DK 27	98	20,3	74,76	2400	152	2800	886	147	10,8	0,0133	0,45	38
DK 28	98,47	21,6	1752,7	2400	152	2800	886	147	10,8	0,0133	0,45	38
DK 36	97,94	18,7	280,1	2400	152	2800	886	147	10,8	0,0133	0,45	38
DT 1	82,96	20,1	158,02	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 3	0,61	20,1	722,31	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 6	94,93	20,5	205,63	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 8	11,46	20,1	369,5	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35

DT 10	10,47	21,3	36,48	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 11	64,34	20	112,76	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 12	3,21	20,3	442,18	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 15	97,55	20,3	305,93	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 16	3,65	20,3	54,44	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 17	15,02	20,4	146,14	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 18	68,97	18,5	249,58	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 19	8,6	19,4	184,27	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 20	40,36	20,1	152,94	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 21	38,36	20,1	556,76	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 25	97,96	19,5	135,32	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 26	80,23	18,5	165,67	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 27	1,93	20,5	620,76	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 28	75,65	19,5	185,07	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 31	30,32	19,5	334,61	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 32	78,69	17,5	1250	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 33	34,48	19,3	233,42	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 35	18,22	19,5	1430	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT36	35,34	19,7	97,46	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 38	38,36	20,3	892,49	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 39	84,09	20,1	394,36	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 40	15,19	20,1	552,39	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 41	67,14	20,2	72,3	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 45	95,24	20,5	272,15	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 46	61,99	20,3	660,18	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 47	72,71	18,4	391,43	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 48	83,52	19,6	138,69	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 50	90,66	17,7	191,11	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 51	55,54	19,8	354,09	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 52	35,35	18,6	77,1	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35

DT 54	18,22	18	524,55	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 55	38,91	20,5	257,78	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 56	81,68	20,1	90,27	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 57	98,33	19,2	188,22	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 58	99,02	20,3	191,4	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 59	86,56	19,8	47,88	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 62	80,24	20,1	224,44	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 64	97,06	20,3	207,87	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 68	94,89	20,3	48,82	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 69	35,33	20,3	1092,3	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 71	56,36	20,3	243,07	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 72	8,12	20,3	75,91	1150	133	1390	1900	486,21	21,4	0,0159	0,517	50
DT 74	30,14	20,3	285,02	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 75	8,11	20,3	345,11	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 76	71,62	20,3	1436,2	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
PG 3	81,12	20,5	90,4	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 5	50,89	20,5	151,9	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 7	96,97	20,5	924,8	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 8	96,12	20,3	337,13	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 11	85,64	20,3	52,36	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG12	76,93	20,7	93,4	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 13	92,19	20,7	99,95	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 14	97,7	21,5	219,04	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 16	81,68	20,5	116,27	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 19	94,72	21,3	59,5	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 22	0	19,2	0	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 24	89,01	20,3	126,87	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 25	98,47	19,1	922,73	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 28	96,6	19,3	1215,1	1469	143	2620	998	114	4,5	0,0102	0,45	26
PG 30	94,78	20,3	167,57	1469	143	2620	998	114	4,5	0,0102	0,45	26

PG 40	98,64	20,4	203,2	1469	143	2620	998	114	4,5	0,0102	0,45	26
PJ 1	95,37	21	292,8	1383	160	2944	1150	145	11	0,0118	0	25
PJ 3	98,11	19,2	445,32	1383	160	2944	1150	145	11	0,0118	0	25
PJ 4	97,5	21,1	200,57	1383	160	2944	1150	145	11	0,0118	0	25
PJ 5	35,77	21,1	256,3	1383	160	2944	1150	145	11	0,0118	0	25
PJ 6	96,44	20,2	99,54	1383	160	2944	1150	145	11	0,0118	0	25
PJ 9	0	19,5	0	1383	160	2944	1150	145	11	0,0118	0	25
SC 1	72,8	19,1	40,38	890	120	1215	1100	138	58	0,12	0	10
SC 2	93,32	19,3	93,24	890	120	1215	1100	138	58	0,12	0	10
SC 3	90,22	19,3	253,21	890	120	1215	1100	138	58	0,12	0	10
SC 5	79,94	18	353,2	890	120	1215	1100	138	58	0,12	0	10
SC 5S	90,65	17,7	106,44	890	120	1215	1100	138	58	0,12	0	10
SC 6	78,93	18,5	2627,4	890	120	1215	1100	138	58	0,12	0	10
SC 6S	44,52	17	18,73	890	120	1215	1100	138	58	0,12	0	10
SC 7A	83,11	17,8	133,58	890	120	1215	1100	138	58	0,12	0	10
SC 8S	75,35	17	114,69	890	120	1215	1100	138	58	0,12	0	10
SC 9	72,34	17,8	32,99	890	120	1215	1100	138	58	0,12	0	10
SC 9S	93,78	17,5	142,93	890	120	1215	1100	138	58	0,12	0	10
SC 10	85,02	18,5	2163,2	890	120	1215	1100	138	58	0,12	0	10
SC 10S	85,22	18,2	615,46	890	120	1215	1100	138	58	0,12	0	10
SC 11	89	18,4	1640,8	890	120	1215	1100	138	58	0,12	0	10
SC 11S	87,68	18,5	315,55	890	120	1215	1100	138	58	0,12	0	10
SC 12	5,18	19	143,37	890	120	1215	1100	138	58	0,12	0	10
SC 13H	87,29	19,5	1193,1	890	120	1215	1100	138	58	0,12	0	10
SC 14DST	85,43	20	32,24	890	120	1215	1100	138	58	0,12	0	10
SC 15D	45,99	19	63,66	890	120	1215	1100	138	58	0,12	0	10
SC 16D	79,98	17,2	232,5	890	120	1215	1100	138	58	0,12	0	10
SC 17	71,79	16,8	263,11	890	120	1215	1100	138	58	0,12	0	10
SC 18	92,59	15,8	33720	890	120	1215	1100	138	58	0,12	0	10
SC 2W	86,03	18,25	337,08	890	120	1215	1100	138	58	0,12	0	10

TM 1	99,14	35,7	119,69	4185	221	5015	3160	0	0,35	0,026	0,383	0
TM 2	0,15	37	1234,4	4185	221	5015	3160	0	0,35	0,026	0,383	0
TN 2	9,89	36,5	2741,8	3054	231	5220	3503	566	0,38	0,02757	0,4	8
TN 3	32,33	36,5	1962,3	3054	231	5220	3503	566	0,38	0,02757	0,4	8
TN 7	79,89	37,5	2645,8	3054	231	5220	3503	566	0,38	0,02757	0,4	8
TN 8	14,93	37,5	290,73	3054	231	5220	3503	566	0,38	0,02757	0,4	8
TN 12	48,68	33,5	1099,4	3054	231	5220	3503	566	0,38	0,02757	0,4	8
LMLG 1	73,16	17	85,99	1500	125	1800	0	0	26,01	0	0	32
LMLG 2	27,84	17,3	54,88	1500	125	1800	0	0	26,01	0	0	32
LMLG 4	19,15	17,1	35,48	1500	125	1800	0	0	26,01	0	0	32
LMLG 7	0,91	0	57,98	1500	125	1800	0	0	26,01	0	0	32
TL 5	90,39	17	189,82	3500	146	3598	842	0	14,2	0	0,4	0
TL 6	56,9	14,7	72,51	3500	146	3598	842	0	14,2	0	0,4	0
TL 9	95,84	14	377,26	3500	146	3598	842	0	14,2	0	0,4	0
TL 10	95	20,1	57,49	3500	146	3598	842	0	14,2	0	0,4	0
TL 12	91,3	18,2	78,46	3500	146	3598	842	0	14,2	0	0,4	0
TL 13	99,15	18,8	400,45	3500	146	3598	842	0	14,2	0	0,4	0
TL 15	93,71	21,9	295,12	3500	146	3598	842	0	14,2	0	0,4	0
TL 18A	58,87	17,6	15,05	3500	146	3598	842	0	14,2	0	0,4	0
TL 19	57,6	13,9	24,55	3500	146	3598	842	0	14,2	0	0,4	0
TL 25	77,78	14	0,97	3500	146	3598	842	0	14,2	0	0,4	0
TL 26	0	20	0	3500	146	3598	842	0	14,2	0	0,4	0
TL 33	80,4	16,3	95,64	3500	146	3598	842	0	14,2	0	0,4	0
TL 34	63,47	17,7	13,14	3500	146	3598	842	0	14,2	0	0,4	0
TL 36	97,42	15,1	214,25	3500	146	3598	842	0	14,2	0	0,4	0
TL 42	90,35	15,9	62,56	3500	146	3598	842	0	14,2	0	0,4	0
TL 43	91,97	18,7	117,99	3500	146	3598	842	0	14,2	0	0,4	0
TL 44	69,17	13,8	0,92	3500	146	3598	842	0	14,2	0	0,4	0
TL 46	93,89	17,3	69,17	3500	146	3598	842	0	14,2	0	0,4	0
TL 48	53,52	15	63,12	3500	146	3598	842	0	14,2	0	0,4	0

TL 50	96,27	15,2	46,03	3500	146	3598	842	0	14,2	0	0,4	0
TL 51	96,68	20,4	379,72	3500	146	3598	842	0	14,2	0	0,4	0
TL 52	90,41	14,6	12	3500	146	3598	842	0	14,2	0	0,4	0
TL 54ST2	91,92	20,4	193,14	3500	146	3598	842	0	14,2	0	0,4	0
TL 55ST	15,65	20,2	58,64	3500	146	3598	842	0	14,2	0	0,4	0
TL 56	93,63	18,1	234,38	3500	146	3598	842	0	14,2	0	0,4	0
TL 57	90,02	18,2	194,07	3500	146	3598	842	0	14,2	0	0,4	0
TL 59ST	97,69	14,4	92,86	3500	146	3598	842	0	14,2	0	0,4	0
TL 65	44,79	16,7	1,42	3500	146	3598	842	0	14,2	0	0,4	0
AND 2	88,8	31,6	0	0	0	800	68	58	4,1	0,0105	0,52	0
AND 10	57,35	31,6	0	0	0	800	68	58	4,1	0,0105	0,52	0
AND 11	92,39	31,7	0	0	0	800	68	58	4,1	0,0105	0,52	0
AND 22	71,37	31,6	0	0	0	800	68	58	4,1	0,0105	0,52	0
AND 25	91,8	31,4	0	0	0	800	68	58	4,1	0,0105	0,52	0
AND 26	98,19	31,3	0	0	0	800	68	58	4,1	0,0105	0,52	0
AND 35	72,52	31,4	0	0	0	800	68	58	4,1	0,0105	0,52	0
MN 2	0	22,3	3333	1252	117	0	828	0	15,95	0,0127	0	0
MN 3	0	22,1	152	1252	117	0	828	0	15,95	0,0127	0	0
MN 7	0	22,1	426	1252	117	0	828	0	15,95	0,0127	0	0
MN 12H	97	22,1	479	1252	117	0	828	0	15,95	0,0127	0	0
MN 13	0	22,1	1842	1252	117	0	828	0	15,95	0,0127	0	0
MN 14	0	22,1	2163	1252	117	0	828	0	15,95	0,0127	0	0
MN 16	0	22,1	553	1252	117	0	828	0	15,95	0,0127	0	0
MN 17	0	22	285	1252	117	0	828	0	15,95	0,0127	0	0
MN 20	0	22,2	1098	1252	117	0	828	0	15,95	0,0127	0	0
MN 21	88,9	22,3	219	1252	117	0	828	0	15,95	0,0127	0	0
MN 24	0	22	3030	1252	117	0	828	0	15,95	0,0127	0	0
MN 26	0	22,1	1667	1252	117	0	828	0	15,95	0,0127	0	0
MN 27	19	22,3	144	1252	117	0	828	0	15,95	0,0127	0	0
MN 56	95,1	22,1	447	1252	117	0	828	0	15,95	0,0127	0	0

MN 59	0	22,1	815	1252	117	0	828	0	15,95	0,0127	0	0
MN 66	0	22	258	1252	117	0	828	0	15,95	0,0127	0	0
MN 67	0	22	129	1252	117	0	828	0	15,95	0,0127	0	0
MN 70	0	22	769	1252	117	0	828	0	15,95	0,0127	0	0
MN 72	0	22,2	1182	1252	117	0	828	0	15,95	0,0127	0	0
MN 78	80,9	22,1	400	1252	117	0	828	0	15,95	0,0127	0	0
MN 80	0	22,1	833	1252	117	0	828	0	15,95	0,0127	0	0
MN 82	0	22,1	296	1252	117	0	828	0	15,95	0,0127	0	0
MN 85	0	22,1	505	1252	117	0	828	0	15,95	0,0127	0	0
MN 100	97,5	22	162	1252	117	0	828	0	15,95	0,0127	0	0
MN 101H	80,9	22,1	304	1252	117	0	828	0	15,95	0,0127	0	0
MN 102H	93,8	22,1	186	1252	117	0	828	0	15,95	0,0127	0	0
MN 104	97,9	22,2	505	1252	117	0	828	0	15,95	0,0127	0	0
MN 106	87,7	22,1	252	1252	117	0	828	0	15,95	0,0127	0	0
MN 107	76,3	22,3	82	1252	117	0	828	0	15,95	0,0127	0	0
MN 108	92,2	22,1	121	1252	117	0	828	0	15,95	0,0127	0	0
MN 109	90	22,1	1579	1252	117	0	828	0	15,95	0,0127	0	0
MN 110	96,3	22,1	201	1252	117	0	828	0	15,95	0,0127	0	0
MN 111	97,3	22,2	299	1252	117	0	828	0	15,95	0,0127	0	0
MN 112H	98,5	22,1	805	1252	117	0	828	0	15,95	0,0127	0	0
MN 113H	92	22,1	566	1252	117	0	828	0	15,95	0,0127	0	0
MN 114H	97,2	22	714	1252	117	0	828	0	15,95	0,0127	0	0
MN 115	82,6	22,1	164	1252	117	0	828	0	15,95	0,0127	0	0
MN 116	96	22,1	679	1252	117	0	828	0	15,95	0,0127	0	0
MN 117H	85	22	572	1252	117	0	828	0	15,95	0,0127	0	0
MN 118H	91,3	22,1	884	1252	117	0	828	0	15,95	0,0127	0	0
MN 119H	96,9	22	715	1252	117	0	828	0	15,95	0,0127	0	0
MN 121	96,6	22,1	1842	1252	117	0	828	0	15,95	0,0127	0	0
MN 122	95,6	22,1	694	1252	117	0	828	0	15,95	0,0127	0	0
ESPI 1	0,5	32,15	0	0	0	0	0	0	0	0	0	0

RIC 3	89,7	18,9	0	1163	119	1330	800	96	47,48	0,0127	0	0
RIC 4	25,2	20	2026,1	1163	129	1330	800	203	5,77	0,0127	0	0
RIC 6	3,6	20,7	9514,9	1163	129	1330	800	203	5,77	0,0127	0	0
RIC 7	56,5	20	3220	1163	129	1330	800	203	5,77	0,0127	0	0
RIC 8A	5,1	21,6	131,2	1163	129	1330	800	203	5,77	0,0127	0	0
RIC 10	82,2	20	602,8	1163	122	1330	800	144	23,2	0,0127	0	0
RIC 11	0	19,3	0	1163	122	1330	800	144	23,2	0,0127	0	0
RIC 12	75,3	21,9	1191,3	1163	122	1330	800	144	23,2	0,0127	0	0
RIC 13S	3,5	10500	0	1163	122	1330	800	144	23,2	0,0127	0	0
RIC 15	100	0	0	1163	122	1330	800	144	23,2	0,0127	0	0
RIC 16	93,9	21,5	650,2	1163	122	1330	800	144	23,2	0,0127	0	0
RIC 17H	15,4	22,5	6955,8	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 19	0	20,8	1771,2	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 20SSA	13,3	21,2	500	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 22	98,3	20,7	17296	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 23LBA	4,5	22,8	11500	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 24ST	56,1	18,5	560	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 27LBA	32,1	22,1	5591,6	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 28	79,1	21,7	140,8	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 30	0	20,9	0	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 31	0	29,4	457,9	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 32	21,2	20,5	9066,5	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 34	0	23,7	1148,3	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 35	32,8	20,8	156,4	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 36	0	27,2	0	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 39	6,6	23,1	945	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 40	0	31,1	4702,8	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 41	66,2	21,9	221,8	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 42	83,9	21,3	600,1	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 51	4,2	23,3	2813,2	1163	138	1330	800	440	1,08	0,0127	0	0

RIC 52	0	31,3	910	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 53	0	29,5	0	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 54	0	22,4	275,9	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 55	0	21,8	1068,5	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 60	0	32,1	14531	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 63	67,1	24,8	475,1	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 64	0	30,4	7252,6	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 67	75,7	21,7	1142,9	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 82LBS	0	30,4	1485,9	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 84	95,6	27,1	448,3	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 86	0	33,2	1138,9	1163	138	1330	800	440	1,08	0,0127	0	0
RIC 95	0	33,2	393,3	1163	138	1330	800	440	1,08	0,0127	0	0
SF 4	99,19	26,6	960	1150	0	1022	950	160	6,84	0,01324	0	0
SF 8	92,18	26,8	802	1150	0	1022	950	160	6,84	0,01324	0	0
SF 10	96,88	26,8	2807	1150	0	1022	950	160	6,84	0,01324	0	0
SF 11	96,46	26,2	222	1150	0	1022	950	160	6,84	0,01324	0	0
SF 14	96,81	26,2	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 16	89,53	27	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 17	74,33	26,6	1763	1150	0	1022	950	160	6,84	0,01324	0	0
SF 18	97,49	26,8	615	1150	0	1022	950	160	6,84	0,01324	0	0
SF 19	96,31	27	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 23	94,51	26,9	814	1150	0	1022	950	160	6,84	0,01324	0	0
SF 24	88,79	26,5	864	1150	0	1022	950	160	6,84	0,01324	0	0
SF 28	94,06	26,4	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 33	99,33	26,6	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 40	95,38	26,5	445	1150	0	1022	950	160	6,84	0,01324	0	0
SF 42	98,54	26,5	458	1150	0	1022	950	160	6,84	0,01324	0	0
SF 43	97,8	27	460	1150	0	1022	950	160	6,84	0,01324	0	0
SF 44	96,46	27	222	1150	0	1022	950	160	6,84	0,01324	0	0
SF 46	96,88	27	1058	1150	0	1022	950	160	6,84	0,01324	0	0

SF 53	84,2	26,6	209	1150	0	1022	950	160	6,84	0,01324	0	0
SF 59	97,73	27	322	1150	0	1022	950	160	6,84	0,01324	0	0
SF 60	84,2	27	209	1150	0	1022	950	160	6,84	0,01324	0	0
SF 61	97,78	26,8	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 63	94,32	26,7	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 66	97,91	26,9	403	1150	0	1022	950	160	6,84	0,01324	0	0
SF 68	90,81	26,8	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 69	92,51	26,7	208	1150	0	1022	950	160	6,84	0,01324	0	0
SF 70	92,05	26,6	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 74	99,32	26,5	921	1150	0	1022	950	160	6,84	0,01324	0	0
SF 75	98,34	26,4	1232	1150	0	1022	950	160	6,84	0,01324	0	0
SF 78	99,15	26,2	1501	1150	0	1022	950	160	6,84	0,01324	0	0
SF 83	94,63	26,6	111	1150	0	1022	950	160	6,84	0,01324	0	0
SF 87	94,94	27	422	1150	0	1022	950	160	6,84	0,01324	0	0
SF 90	98,11	26,3	452	1150	0	1022	950	160	6,84	0,01324	0	0
SF 91	97,57	26,2	452	1150	0	1022	950	160	6,84	0,01324	0	0
SF 92	91,63	26,6	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 93	98,86	26,5	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 94	98,45	26,6	3418	1150	0	1022	950	160	6,84	0,01324	0	0
SF 95	97,9	26,8	431	1150	0	1022	950	160	6,84	0,01324	0	0
SF 96	98,15	26,9	1236	1150	0	1022	950	160	6,84	0,01324	0	0
SF 97	93,99	27	438	1150	0	1022	950	160	6,84	0,01324	0	0
SF 98	97,66	26,8	501	1150	0	1022	950	160	6,84	0,01324	0	0
SF 99	99,07	26,4	363	1150	0	1022	950	160	6,84	0,01324	0	0
SF 100	99,17	26,6	1723	1150	0	1022	950	160	6,84	0,01324	0	0
SF 111	97,14	26,5	130	1150	0	1022	950	160	6,84	0,01324	0	0
SF 112	98,56	26,2	2351	1150	0	1022	950	160	6,84	0,01324	0	0
SF 123	99,31	26,5	1123	1150	0	1022	950	160	6,84	0,01324	0	0
SF 124	98,03	26,5	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 126	98,56	26,9	318	1150	0	1022	950	160	6,84	0,01324	0	0

SF 127	98,14	26,9	2807	1150	0	1022	950	160	6,84	0,01324	0	0
SF 128	85,92	27	1123	1150	0	1022	950	160	6,84	0,01324	0	0
SF 129	85,15	26,6	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 130	93,15	26,3	55	1150	0	1022	950	160	6,84	0,01324	0	0
SF 131	97,18	26,3	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 132	98,47	26,6	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 134	98,56	26,7	661	1150	0	1022	950	160	6,84	0,01324	0	0
SF 137	99,05	26,6	1506	1150	0	1022	950	160	6,84	0,01324	0	0
SF 138	96,12	26,8	960	1150	0	1022	950	160	6,84	0,01324	0	0
SF 139	98,45	26,4	3418	1150	0	1022	950	160	6,84	0,01324	0	0
SF 140	26,7	455	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 141	97,07	26,6	654	1150	0	1022	950	160	6,84	0,01324	0	0
SF 142	97,89	26,6	842	1150	0	1022	950	160	6,84	0,01324	0	0
SF 143	96,39	27	476	1150	0	1022	950	160	6,84	0,01324	0	0
SF 146	94,14	26,8	447	1150	0	1022	950	160	6,84	0,01324	0	0
SF 147	96,38	26,4	148	1150	0	1022	950	160	6,84	0,01324	0	0
SF 148	92,22	26,8	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 149	96,71	26,9	627	1150	0	1022	950	160	6,84	0,01324	0	0
SF 154	97,89	26,7	535	1150	0	1022	950	160	6,84	0,01324	0	0
SF 155	92,22	26,7	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 156	98,7	27	1046	1150	0	1022	950	160	6,84	0,01324	0	0
SF 158	96,87	26,8	936	1150	0	1022	950	160	6,84	0,01324	0	0
SF 159	98,34	26,6	1597	1150	0	1022	950	160	6,84	0,01324	0	0
SF 160	93,26	26,7	1851	1150	0	1022	950	160	6,84	0,01324	0	0
SF 163	96,04	26,9	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 164	96,69	26,9	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 165	94,73	26,9	696	1150	0	1022	950	160	6,84	0,01324	0	0
SF 167	97,29	26,7	106	1150	0	1022	950	160	6,84	0,01324	0	0
SF 169	97,56	26,8	187	1150	0	1022	950	160	6,84	0,01324	0	0
SF 171	97,23	26,5	828	1150	0	1022	950	160	6,84	0,01324	0	0

SF 173	98,4	26,2	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 174	97,14	26,8	750	1150	0	1022	950	160	6,84	0,01324	0	0
SF 175	98,66	26,3	866	1150	0	1022	950	160	6,84	0,01324	0	0
SF 176	99,35	26,4	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 178	97,3	27	1121	1150	0	1022	950	160	6,84	0,01324	0	0
SF 182	95,79	26,7	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 183	98,53	26,8	251	1150	0	1022	950	160	6,84	0,01324	0	0
SF 184	93,98	26,9	5615	1150	0	1022	950	160	6,84	0,01324	0	0
SF 185	98,84	26,2	407	1150	0	1022	950	160	6,84	0,01324	0	0
SF 186	95,09	26,3	144	1150	0	1022	950	160	6,84	0,01324	0	0
SF 188	94,27	26,2	0	1150	0	1022	950	160	6,84	0,01324	0	0
SF 205	95,57	26,6	271	1150	0	1022	950	160	6,84	0,01324	0	0
BALC 8	97,5	32,9	683	4716	234	4720	1821	419	9,4	0,01369	0,623	0
BALC 10	86,9	32,8	1217	4716	234	4720	1821	419	9,4	0,01369	0,623	0
BALC 17	85,1	32,8	405	4716	234	4720	1821	419	9,4	0,01369	0,623	0
BALC 19	92,2	32,8	688	4716	234	4720	1821	419	9,4	0,01369	0,623	0
BALC 23	3,8	32,8	312	4716	234	4720	1821	419	9,4	0,01369	0,623	0
BALC 22ST	41,5	32,8	484	4716	234	4720	1821	419	9,4	0,01369	0,623	0
PALE 1ST	38,1	17,5	2160	890	120	1215	1100	138	58	0,12	0	10
PALE 2	75,3	17,5	1359	890	120	1215	1100	138	58	0,12	0	10
PALE 3H	16,6	17,6	922	890	120	1215	1100	138	58	0,12	0	10
PALE 4H	56	17,6	4562	890	120	1215	1100	138	58	0,12	0	10
PALE 5	12,8	17,2	1222	890	120	1215	1100	138	58	0,12	0	10
PALE 6	84,1	17,5	1082	890	120	1215	1100	138	58	0,12	0	10
PALE 7	94,8	17,5	4699	890	120	1215	1100	138	58	0,12	0	10
TN 5ST3	80,24	36,5	1271,6	3054	231	5220	3503	566	0,38	0,02757	0,4	8
DT 78	97,17	20	2480,1	1500	133	1500	1616	430,32	19,5	0,0159	0,517	35
DT 77	77,44	18	468,88	1500	133	1500	1616	430,32	19,5	0,0159	0,517	35
DT 81	56,37	19,82	326,62	1450	150	1600	1900	524,72	20,5	0,0159	0,517	30
DT 82	37,28	19,3	616,81	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50

DT 79	16,2	19	832,41	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 86	38,35	17,1	2718,2	1450	150	1600	1900	524,72	20,5	0,0159	0,517	30
DT 87	54,37	19,2	2486,5	1500	133	1500	1616	430,32	19,5	0,0159	0,517	35
DT 83	86,58	18,9	91,39	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 84	40,36	19,2	1469	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 85	38,69	18,5	977,3	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 88	69,26	20	511,36	1150	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 89	75,28	20	301,88	1150	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 92	44,37	19,8	698,45	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 90	90,13	20,5	2192,5	1150	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 94	60,38	14,5	2367,7	1450	150	1600	1900	524,72	20,5	0,0159	0,517	30
DT 96	83,03	16,8	718,86	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 98	48,37	17,8	1109,8	1450	150	1600	1900	524,72	20,5	0,0159	0,517	30
DT 99	29,51	18,5	2153,4	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 102	91,19	15	649,1	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 103	75,28	18,8	308,06	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 104	98,53	19	1006,9	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 105	60,35	19,3	568,08	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 106	72,3	18,5	1619,8	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 107	60,43	17,7	741,39	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 109	88,16	19,9	1453,6	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 110	69,96	17,6	88,59	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 111	14,23	19,8	441,56	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 112	90,19	18	209,72	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 113	16,2	16,6	1165,3	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 114	37,79	15	315,25	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 115	44,37	16,3	273,3	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 116	30,32	16,8	2526,2	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 117	20,23	20,1	2092,5	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50
DT 118	75,29	17,5	245,49	1150	130	1390	1900	486,21	21,4	0,0159	0,517	50

DT 128	1,87	17,9	1342,4	1450	150	1600	1900	524,72	20,5	0,0159	0,517	30
DT 131	44,88	17,1	441	1450	150	1600	1900	524,72	20,5	0,0159	0,517	30
DT 132	80,62	18,2	28,67	1450	150	1600	1900	524,72	20,5	0,0159	0,517	30
DT 135	76,59	18,7	117	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 136	79,59	19,3	231,01	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 137	40,36	17,3	484,93	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 138	61,98	18	356,07	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 139	75,28	19,2	280,86	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DN 14	53,11	19,6	231,49	0	0	0	0	0	0	0	0	0
DN 18	71,06	19,1	80,51	0	0	0	0	0	0	0	0	0
DN 8	67,87	22,6	197,45	0	0	0	0	0	0	0	0	0
DN 2	96,61	20,5	366,42	0	0	0	0	0	0	0	0	0
DT 149	43,95	18	330,43	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 154	7,1	18,6	1615,6	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 155	33,33	16,9	1118,7	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 139	75,28	19,2	280,86	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 160	11,14	18,3	458,87	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 162	18,48	19,4	550,1	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 163	18,48	19,4	550,1	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 164	59,36	15,9	1149	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 166	17,53	16,9	420,52	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 167	93,51	18,5	2731,1	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35
DT 170	38,26	16,8	1750,2	1500	133	1550	1616	430,32	19,5	0,0159	0,517	35

POZO	Sat.Prom. O	Ct_W_Psi-1	Ct_O_Psi-1	Ct_G_Psi-1	Bo_O_RBL/STB	Bo_W_RBL/STB	Bo_G_RBL/STB	SG_O	SG_G
AR 1	74,1	0	0,000009	0,8965	1,3967	1,3583	0,00199	0	1,1316
AR 2	74,1	0	0,000009	0,8965	1,3967	1,3583	0,00199	0	1,1316
BR 1	75	0,000003	0,000001	0,000136	1,076	0	0,0007	0,916	0,83
BR 2	75	0,000003	0,000001	0,000136	1,076	0	0,0007	0,916	0,83

BR 4	75	0,000003	0,000001	0,000136	1,076	0	0,0007	0,916	0,83
BR 8	75	0,000003	0,000001	0,000136	1,076	0	0,0007	0,916	0,83
BR 9	75	0,000003	0,000001	0,000136	1,076	0	0,0007	0,916	0,83
BR 10	75	0,000003	0,000001	0,000136	1,076	0	0,0007	0,916	0,83
CB 3	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
CB 4	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
CB 6	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
CB 7	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
DK 2	62	0,000003	0,000006	0,000051	1,076	1,047	4,2256	0,9278	0,819
DK 5	62	0,000003	0,000006	0,000051	1,076	1,047	4,2256	0,9278	0,819
DK 15	62	0,000003	0,000006	0,000051	1,076	1,047	4,2256	0,9278	0,819
DK 19	62	0,000003	0,000006	0,000051	1,076	1,047	4,2256	0,9278	0,819
DN 1A	0	0	0	0	0	0	0	0	0
DK 20	62	0,000003	0,000006	0,000051	1,076	1,047	4,2256	0,9278	0,819
DK 22	62	0,000003	0,000006	0,000051	1,076	1,047	4,2256	0,9278	0,819
DK 23	62	0,000003	0,000006	0,000051	1,076	1,047	4,2256	0,9278	0,819
DK 24	62	0,000003	0,000006	0,000051	1,076	1,047	4,2256	0,9278	0,819
DK 27	62	0,000003	0,000006	0,000051	1,076	1,047	4,2256	0,9278	0,819
DK 28	62	0,000003	0,000006	0,000051	1,076	1,047	4,2256	0,9278	0,819
DK 36	62	0,000003	0,000006	0,000051	1,076	1,047	4,2256	0,9278	0,819
DT 1	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 3	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 6	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 8	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 10	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 11	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 12	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 15	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 16	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 17	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66

DT 18	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 19	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 20	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 21	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 25	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 26	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 27	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 28	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 31	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 32	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 33	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 35	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT36	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 38	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 39	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 40	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 41	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 45	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 46	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 47	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 48	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 50	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 51	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 52	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 54	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 55	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 56	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 57	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 58	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 59	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66

DT 62	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 64	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 68	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 69	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 71	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 72	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 74	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 75	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 76	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
PG 3	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 5	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 7	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 8	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 11	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG12	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 13	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 14	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 16	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 19	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 22	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 24	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 25	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 28	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 30	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PG 40	74	0,000002	0,000008	0,000095	1,11	0	0,008	0,93399	0,869
PJ 1	75	0	0,000008	0,000082	1,09	0	0,01077	0,92787	0,7
PJ 3	75	0	0,000008	0,000082	1,09	0	0,01077	0,92787	0,7
PJ 4	75	0	0,000008	0,000082	1,09	0	0,01077	0,92787	0,7
PJ 5	75	0	0,000008	0,000082	1,09	0	0,01077	0,92787	0,7
PJ 6	75	0	0,000008	0,000082	1,09	0	0,01077	0,92787	0,7

PJ 9	75	0	0,000008	0,000082	1,09	0	0,01077	0,92787	0,7
SC 1	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 2	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 3	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 5	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 5S	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 6	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 6S	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 7A	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 8S	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 9	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 9S	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 10	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 10S	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 11	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 11S	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 12	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 13H	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 14DST	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 15D	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 16D	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 17	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 18	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
SC 2W	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
TM 1	0	0	0	0,000016	1,463	0	0,0098	0	0
TM 2	0	0	0	0,000016	1,463	0	0,0098	0	0
TN 2	92	0,000003	0,000017	0,000026	1,75	0	0,005117	0,84226	0,923
TN 3	92	0,000003	0,000017	0,000026	1,75	0	0,005117	0,84226	0,923
TN 7	92	0,000003	0,000017	0,000026	1,75	0	0,005117	0,84226	0,923
TN 8	92	0,000003	0,000017	0,000026	1,75	0	0,005117	0,84226	0,923

TN 12	92	0,000003	0,000017	0,000026	1,75	0	0,005117	0,84226	0,923
LMLG 1	68	0	0	0	1,1	0	0	0	0,9402
LMLG 2	68	0	0	0	1,1	0	0	0	0,9402
LMLG 4	68	0	0	0	1,1	0	0	0	0,9402
LMLG 7	68	0	0	0	1,1	0	0	0	0,9402
TL 5	0	0,000003	0	0	1,114	0	0	0	0
TL 6	0	0,000003	0	0	1,114	0	0	0	0
TL 9	0	0,000003	0	0	1,114	0	0	0	0
TL 10	0	0,000003	0	0	1,114	0	0	0	0
TL 12	0	0,000003	0	0	1,114	0	0	0	0
TL 13	0	0,000003	0	0	1,114	0	0	0	0
TL 15	0	0,000003	0	0	1,114	0	0	0	0
TL 18A	0	0,000003	0	0	1,114	0	0	0	0
TL 19	0	0,000003	0	0	1,114	0	0	0	0
TL 25	0	0,000003	0	0	1,114	0	0	0	0
TL 26	0	0,000003	0	0	1,114	0	0	0	0
TL 33	0	0,000003	0	0	1,114	0	0	0	0
TL 34	0	0,000003	0	0	1,114	0	0	0	0
TL 36	0	0,000003	0	0	1,114	0	0	0	0
TL 42	0	0,000003	0	0	1,114	0	0	0	0
TL 43	0	0,000003	0	0	1,114	0	0	0	0
TL 44	0	0,000003	0	0	1,114	0	0	0	0
TL 46	0	0,000003	0	0	1,114	0	0	0	0
TL 48	0	0,000003	0	0	1,114	0	0	0	0
TL 50	0	0,000003	0	0	1,114	0	0	0	0
TL 51	0	0,000003	0	0	1,114	0	0	0	0
TL 52	0	0,000003	0	0	1,114	0	0	0	0
TL 54ST2	0	0,000003	0	0	1,114	0	0	0	0
TL 55ST	0	0,000003	0	0	1,114	0	0	0	0
TL 56	0	0,000003	0	0	1,114	0	0	0	0

TL 57	0	0,000003	0	0	1,114	0	0	0	0
TL 59ST	0	0,000003	0	0	1,114	0	0	0	0
TL 65	0	0,000003	0	0	1,114	0	0	0	0
AND 2	0	0,000003	0	0	1,0409	1,012	3,56	0	0
AND 10	0	0,000003	0	0	1,0409	1,012	3,56	0	0
AND 11	0	0,000003	0	0	1,0409	1,012	3,56	0	0
AND 22	0	0,000003	0	0	1,0409	1,012	3,56	0	0
AND 25	0	0,000003	0	0	1,0409	1,012	3,56	0	0
AND 26	0	0,000003	0	0	1,0409	1,012	3,56	0	0
AND 35	0	0,000003	0	0	1,0409	1,012	3,56	0	0
MN 2	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 3	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 7	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 12H	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 13	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 14	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 16	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 17	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 20	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 21	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 24	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 26	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 27	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 56	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 59	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 66	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 67	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 70	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 72	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 78	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645

MN 80	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 82	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 85	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 100	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 101H	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 102H	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 104	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 106	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 107	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 108	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 109	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 110	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 111	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 112H	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 113H	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 114H	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 115	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 116	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 117H	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 118H	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 119H	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 121	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
MN 122	0	0	0,000006	0	1,063	0	0,02205	21,7	0,645
ESPI 1	0	0	0	0	1,05	0	0,01	0,981	0
RIC 3	0	0	0	0	1,056	0	0,013004	0	0
RIC 4	0	0	0	0	1,056	0	0,013004	0	0
RIC 6	0	0	0	0	1,056	0	0,013004	0	0
RIC 7	0	0	0	0	1,056	0	0,013004	0	0
RIC 8A	0	0	0	0	1,056	0	0,013004	0	0
RIC 10	0	0	0	0	1,056	0	0,013004	0	0

RIC 11	0	0	0	0	1,056	0	0,013004	0	0
RIC 12	0	0	0	0	1,056	0	0,013004	0	0
RIC 13S	0	0	0	0	1,056	0	0,013004	0	0
RIC 15	0	0	0	0	1,056	0	0,013004	0	0
RIC 16	0	0	0	0	1,056	0	0,013004	0	0
RIC 17H	0	0	0	0	1,056	0	0,013004	0	0
RIC 19	0	0	0	0	1,056	0	0,013004	0	0
RIC 20SSA	0	0	0	0	1,056	0	0,013004	0	0
RIC 22	0	0	0	0	1,056	0	0,013004	0	0
RIC 23LBA	0	0	0	0	1,056	0	0,013004	0	0
RIC 24ST	0	0	0	0	1,056	0	0,013004	0	0
RIC 27LBA	0	0	0	0	1,056	0	0,013004	0	0
RIC 28	0	0	0	0	1,056	0	0,013004	0	0
RIC 30	0	0	0	0	1,056	0	0,013004	0	0
RIC 31	0	0	0	0	1,056	0	0,013004	0	0
RIC 32	0	0	0	0	1,056	0	0,013004	0	0
RIC 34	0	0	0	0	1,056	0	0,013004	0	0
RIC 35	0	0	0	0	1,056	0	0,013004	0	0
RIC 36	0	0	0	0	1,056	0	0,013004	0	0
RIC 39	0	0	0	0	1,056	0	0,013004	0	0
RIC 40	0	0	0	0	1,056	0	0,013004	0	0
RIC 41	0	0	0	0	1,056	0	0,013004	0	0
RIC 42	0	0	0	0	1,056	0	0,013004	0	0
RIC 51	0	0	0	0	1,056	0	0,013004	0	0
RIC 52	0	0	0	0	1,056	0	0,013004	0	0
RIC 53	0	0	0	0	1,056	0	0,013004	0	0
RIC 54	0	0	0	0	1,056	0	0,013004	0	0
RIC 55	0	0	0	0	1,056	0	0,013004	0	0
RIC 60	0	0	0	0	1,056	0	0,013004	0	0
RIC 63	0	0	0	0	1,056	0	0,013004	0	0

RIC 64	0	0	0	0	1,056	0	0,013004	0	0
RIC 67	0	0	0	0	1,056	0	0,013004	0	0
RIC 82LBS	0	0	0	0	1,056	0	0,013004	0	0
RIC 84	0	0	0	0	1,056	0	0,013004	0	0
RIC 86	0	0	0	0	1,056	0	0,013004	0	0
RIC 95	0	0	0	0	1,056	0	0,013004	0	0
SF 4	0	0	0	0	1,0828	0	2,6	0	0
SF 8	0	0	0	0	1,0828	0	2,6	0	0
SF 10	0	0	0	0	1,0828	0	2,6	0	0
SF 11	0	0	0	0	1,0828	0	2,6	0	0
SF 14	0	0	0	0	1,0828	0	2,6	0	0
SF 16	0	0	0	0	1,0828	0	2,6	0	0
SF 17	0	0	0	0	1,0828	0	2,6	0	0
SF 18	0	0	0	0	1,0828	0	2,6	0	0
SF 19	0	0	0	0	1,0828	0	2,6	0	0
SF 23	0	0	0	0	1,0828	0	2,6	0	0
SF 24	0	0	0	0	1,0828	0	2,6	0	0
SF 28	0	0	0	0	1,0828	0	2,6	0	0
SF 33	0	0	0	0	1,0828	0	2,6	0	0
SF 40	0	0	0	0	1,0828	0	2,6	0	0
SF 42	0	0	0	0	1,0828	0	2,6	0	0
SF 43	0	0	0	0	1,0828	0	2,6	0	0
SF 44	0	0	0	0	1,0828	0	2,6	0	0
SF 46	0	0	0	0	1,0828	0	2,6	0	0
SF 53	0	0	0	0	1,0828	0	2,6	0	0
SF 59	0	0	0	0	1,0828	0	2,6	0	0
SF 60	0	0	0	0	1,0828	0	2,6	0	0
SF 61	0	0	0	0	1,0828	0	2,6	0	0
SF 63	0	0	0	0	1,0828	0	2,6	0	0
SF 66	0	0	0	0	1,0828	0	2,6	0	0

SF 68	0	0	0	0	1,0828	0	2,6	0	0
SF 69	0	0	0	0	1,0828	0	2,6	0	0
SF 70	0	0	0	0	1,0828	0	2,6	0	0
SF 74	0	0	0	0	1,0828	0	2,6	0	0
SF 75	0	0	0	0	1,0828	0	2,6	0	0
SF 78	0	0	0	0	1,0828	0	2,6	0	0
SF 83	0	0	0	0	1,0828	0	2,6	0	0
SF 87	0	0	0	0	1,0828	0	2,6	0	0
SF 90	0	0	0	0	1,0828	0	2,6	0	0
SF 91	0	0	0	0	1,0828	0	2,6	0	0
SF 92	0	0	0	0	1,0828	0	2,6	0	0
SF 93	0	0	0	0	1,0828	0	2,6	0	0
SF 94	0	0	0	0	1,0828	0	2,6	0	0
SF 95	0	0	0	0	1,0828	0	2,6	0	0
SF 96	0	0	0	0	1,0828	0	2,6	0	0
SF 97	0	0	0	0	1,0828	0	2,6	0	0
SF 98	0	0	0	0	1,0828	0	2,6	0	0
SF 99	0	0	0	0	1,0828	0	2,6	0	0
SF 100	0	0	0	0	1,0828	0	2,6	0	0
SF 111	0	0	0	0	1,0828	0	2,6	0	0
SF 112	0	0	0	0	1,0828	0	2,6	0	0
SF 123	0	0	0	0	1,0828	0	2,6	0	0
SF 124	0	0	0	0	1,0828	0	2,6	0	0
SF 126	0	0	0	0	1,0828	0	2,6	0	0
SF 127	0	0	0	0	1,0828	0	2,6	0	0
SF 128	0	0	0	0	1,0828	0	2,6	0	0
SF 129	0	0	0	0	1,0828	0	2,6	0	0
SF 130	0	0	0	0	1,0828	0	2,6	0	0
SF 131	0	0	0	0	1,0828	0	2,6	0	0
SF 132	0	0	0	0	1,0828	0	2,6	0	0

SF 134	0	0	0	0	1,0828	0	2,6	0	0
SF 137	0	0	0	0	1,0828	0	2,6	0	0
SF 138	0	0	0	0	1,0828	0	2,6	0	0
SF 139	0	0	0	0	1,0828	0	2,6	0	0
SF 140	0	0	0	0	1,0828	0	2,6	0	0
SF 141	0	0	0	0	1,0828	0	2,6	0	0
SF 142	0	0	0	0	1,0828	0	2,6	0	0
SF 143	0	0	0	0	1,0828	0	2,6	0	0
SF 146	0	0	0	0	1,0828	0	2,6	0	0
SF 147	0	0	0	0	1,0828	0	2,6	0	0
SF 148	0	0	0	0	1,0828	0	2,6	0	0
SF 149	0	0	0	0	1,0828	0	2,6	0	0
SF 154	0	0	0	0	1,0828	0	2,6	0	0
SF 155	0	0	0	0	1,0828	0	2,6	0	0
SF 156	0	0	0	0	1,0828	0	2,6	0	0
SF 158	0	0	0	0	1,0828	0	2,6	0	0
SF 159	0	0	0	0	1,0828	0	2,6	0	0
SF 160	0	0	0	0	1,0828	0	2,6	0	0
SF 163	0	0	0	0	1,0828	0	2,6	0	0
SF 164	0	0	0	0	1,0828	0	2,6	0	0
SF 165	0	0	0	0	1,0828	0	2,6	0	0
SF 167	0	0	0	0	1,0828	0	2,6	0	0
SF 169	0	0	0	0	1,0828	0	2,6	0	0
SF 171	0	0	0	0	1,0828	0	2,6	0	0
SF 173	0	0	0	0	1,0828	0	2,6	0	0
SF 174	0	0	0	0	1,0828	0	2,6	0	0
SF 175	0	0	0	0	1,0828	0	2,6	0	0
SF 176	0	0	0	0	1,0828	0	2,6	0	0
SF 178	0	0	0	0	1,0828	0	2,6	0	0
SF 182	0	0	0	0	1,0828	0	2,6	0	0

SF 183	0	0	0	0	1,0828	0	2,6	0	0
SF 184	0	0	0	0	1,0828	0	2,6	0	0
SF 185	0	0	0	0	1,0828	0	2,6	0	0
SF 186	0	0	0	0	1,0828	0	2,6	0	0
SF 188	0	0	0	0	1,0828	0	2,6	0	0
SF 205	0	0	0	0	1,0828	0	2,6	0	0
BALC 8	74,1	0	0,000009	0,8965	1,3967	1,3583	0,00199	0	1,1316
BALC 10	74,1	0	0,000009	0,8965	1,3967	1,3583	0,00199	0	1,1316
BALC 17	74,1	0	0,000009	0,8965	1,3967	1,3583	0,00199	0	1,1316
BALC 19	74,1	0	0,000009	0,8965	1,3967	1,3583	0,00199	0	1,1316
BALC 23	74,1	0	0,000009	0,8965	1,3967	1,3583	0,00199	0	1,1316
BALC 22ST	74,1	0	0,000009	0,8965	1,3967	1,3583	0,00199	0	1,1316
PALE 1ST	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
PALE 2	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
PALE 3H	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
PALE 4H	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
PALE 5	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
PALE 6	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
PALE 7	90	0	0,000001	0,000113	1,078	0	0,011	0,96259	0,77
TN 5ST3	92	0,000003	0,000017	0,000026	1,75	0	0,005117	0,84226	0,923
DT 78	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 77	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 81	70	0,000003	0,000006	0,000076	1,2	1,01073	2,25904	0,93399	0,67
DT 82	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 79	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 86	70	0,000003	0,000006	0,000076	1,2	1,01073	2,25904	0,93399	0,67
DT 87	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 83	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 84	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 85	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65

DT 88	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 89	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 92	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 90	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 94	70	0,000003	0,000006	0,000076	1,2	1,01073	2,25904	0,93399	0,67
DT 96	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 98	70	0,000003	0,000006	0,000076	1,2	1,01073	2,25904	0,93399	0,67
DT 99	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 102	50	0,000004	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 103	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 104	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 105	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 106	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 107	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 109	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 110	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 111	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 112	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 113	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 114	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 115	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 116	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 117	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 118	50	0,000003	0,000006	0,000104	1,2	1,01073	2,25904	0,93399	0,65
DT 128	70	0,000003	0,000006	0,000076	1,2	1,01073	2,25904	0,93399	0,67
DT 131	70	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,67
DT 132	70	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,67
DT 135	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 136	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 137	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66

DT 138	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 139	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DN 14	0	0	0	0	0	0	0	0	0
DN 18	0	0	0	0	0	0	0	0	0
DN 8	0	0	0	0	0	0	0	0	0
DN 2	0	0	0	0	0	0	0	0	0
DT 149	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 154	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 155	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 139	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 160	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 162	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 163	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 164	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 166	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 167	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66
DT 170	65	0,000003	0,000006	0,000079	1,2	1,01073	2,25904	0,93399	0,66