ESTUDIO COMPARATIVO DE LA PRODUCTIVAD DE POZOS HORIZONTALES EN YACIMIENTOS DE BLACK OIL PARA ESTADO PSEUDOESTABLE

EDILBERTO ESCALANTE BERMEO GERMÁN ALBERTO BONILLA PÉREZ

UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA DE PETRÓLEOS NEIVA 2009

ESTUDIO COMPARATIVO DE LA PRODUCTIVAD DE POZOS HORIZONTALES EN YACIMIENTOS DE BLACK OIL PARA ESTADO PSEUDOESTABLE

EDILBERTO ESCALANTE BERMEO GERMÁN ALBERTO BONILLA PÉREZ

Trabajo de grado presentado como requisito para optar al título de Ingeniero de Petróleos

Director LUIS FERNANDO BONILLA CAMACHO, MSc Ingeniero de Petróleos

UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA DE PETRÓLEOS NEIVA 2009

Nota de aceptación

Presidente del Jurado

Jurado

Jurado

Neiva, Noviembre de 2009

DEDICATORIA

A Dios por caminar a mi lado y darme la fuerza necesaria para realizar mis metas, a mis padres Ludivia y Luis Enrique por su inmenso amor y apoyo incondicional, a mi hermana María Leyra por su cariño y compañía en todos mis logros, a mis hermanos Luis Einer y Yovar (Q.E.P.D) por su aprecio y confianza, a mi cuñado Víctor Hernán por sus consejos, ayuda y afecto, a mis sobrinos a quienes quiero con el corazón, a toda mi familia y amigos que creyeron en mi y aportaron de una u otra forma a mi formación personal y profesional.

EDILBERTO ESCALANTE BERMEO

A Dios primero que todo, a mis padres Gladys y Germán por estar siempre a mi lado, por su apoyo moral y consejos útiles, a mi hermano Nicolas por su aprecio y cariño y a todos mis amigos con los que pasamos muy buenos momentos y ayudaron en mi desarrollo profesional.

GERMÁN BONILLA PÉREZ

AGRADECIMIENTOS

Los autores expresan sus agradecimientos a:

LUIS FERNANDO BONILLA CAMACHO MsC. en Ingeniería de Petróleos, Jefe del programa de ingeniería de petróleo y director del proyecto; por su ayuda y colaboración durante el desarrollo del mismo.

FREDDY HUMBERTO ESCOBAR MACUALO, Ph.D en Ingeniería de Petróleos, Profesor del Programa de Ingeniería de Petróleos de la Facultad de Ingeniería, y Evaluador de este proyecto; por sus aportes en el desarrollo del mismo.

JAIRO ANTONIO SEPÚLVEDA GAONA, M.Sc. en Ingeniería de Petróleos, Profesor del Programa de Ingeniería de Petróleos de la Facultad de Ingeniería y evaluador de este proyecto; por sus aportes en el desarrollo del mismo.

LUIS ALEJANDRO ROJAS TRUJILLO, ingeniero de petróleos, por su valiosa colaboración en la parte de programación.

CONTENIDO

INTRODUCCION

1. ASPE	CTOS TEÓRICOS	18
11 D (DZOS HORIZONTALES	18
1.1 1	Aplicación de pazze harizenteles	10
1.1.1	Aplicación de pozos horizontales.	10
1.1.2	Limitaciones de los pozos norizontales.	
1.1.3	Area de drenaje del pozo norizontal	
1.1.4	Daño de formación de pozos horizontales.	20
1.1.5	Régimenes de flujo del pozo horizontal	21
1.2 PI PSFUD	RODUCTIVIDAD DE POZOS HORIZONTALES EN ESTADO OFSTABLE.	24
121	Correlación de Mutalik	25
122	Correlación de Babu y Odeb	28
1.2.2		20
1.2.3		ວາ ວວ
1.2.4		
1.2.5	Correlacion de Joshi	34
2. MODE	ELO DE ESTUDIO	37
2.1 DES	CRIPCIÓN DEL CASO BASE	
2.2 DAT	TOS DEL CASO BASE	
2.3. MO DEL CO	DIFICACIÓN DE VARIABLES DEL CASO BASE PARA EL EST MPORTAMIENTO DE LA PRODUCTIVIDAD	UDIO 39
2.3.1	Modificación de las propiedades del yacimiento	
2.3.2	Modificación de los parámetros operacionales	41
3. ANAL	ISIS DE RESULTADOS	43
3.1 MOI	DIFICACIÓN DE LAS PROPIEDADES DEL YACIMIENTO	

3.1.1 Factor volumétrico	43
3.1.2 Viscosidad	45
3.1.3 Permeabilidad promedio	47
3.1.4 Relación de permeabilidad vertical-horizontal	49
3.1.5 Radio del pozo	50
3.1.6 Radio externo de frontera.	52
3.1.7 Espesor de la capa	54
3.2 MODIFICACIÓN DE LOS PARÁMETROS OPERACIONALES	56
3.2.1 Longitud de pozo horizontal para diferentes radios de drene	56
3.2.2 Excentricidad.	62
3.2.3 Ubicación del pozo en la geometría del yacimiento	64
3.3 COMPARACIÓN DE LA CORRELACIÓN DE JOSHI Y EL SIMULADOR CON LA CORRELACIÓN MODIFICADA DE JOSHI	66
3.3.1 Espesor de la capa	67
3.3.2 Radio externo de frontera.	68
3.3.3 Longitud de pozo horizontal para diferentes radios de drene	69
CONCLUSIONES	72
RECOMENDACIONES	73
BIBLIOGRAFIA	74
ANEXOS	75

LISTA DE TABLAS

Tabla 1.1. horizontales rectangulare	Factor de daño según la forma de yacimiento s _{CA,h} en pozos para varias penetraciones y diferentes áreas de drenaje es
Tabla 1.2. productivida	Valores adimensionales de la función F, para el cálculo de la de pozos horizontales
Tabla 1.3.	Factores de forma para plano horizontal
Tabla 2.1.	Datos del caso base
Tabla 2.2.	Rango de propiedades de yacimiento
Tabla 2.3. promedio.	Variación de permeabilidades para el cálculo de permeabilidad 40
Tabla 2.4. permeabilida	Variación de permeabilidades para el cálculo de la relación ad vertical-horizontal40
Tabla 2.5. radio externo	Variación de las dimensiones del yacimiento para el cálculo del o de frontera41
Tabla 2.6.	Variación de la excentricidad del pozo41
Tabla 2.7.	Parámetros operacionales42
Tabla 3.1. volumétrico	Comportamiento de la productividad del pozo variando el factor de crudo43
Tabla 3.2.	Porcentaje de error para el factor volumétrico de crudo43
Tabla 3.3. del crudo.	Comportamiento de la productividad del pozo variando la viscosidad45
Tabla 3.4.	Porcentaje de error para la viscosidad del crudo45
Tabla 3.5. permeabilida	Comportamiento de la productividad del pozo variando la ad promedio47

Tabla 3.6.	Porcentaje de error para la permeabilidad promedio47
Tabla 3.7. permeabilid	Comportamiento de la productividad del pozo variando la relación de ad vertical-horizontal
Tabla 3.8. horizontal.	Porcentaje de error para la relación de permeabilidad vertical-
Tabla 3.9. pozo.	Comportamiento de la productividad del pozo variando el radio del
Tabla 3.10.	Porcentaje de error para el radio del pozo51
Tabla 3.11. externo de l	Comportamiento de la productividad del pozo variando el radio a frontera52
Tabla 3.12.	Porcentaje de error para el radio externo de la frontera52
Tabla 3.13. de la capa.	Comportamiento de la productividad del pozo variando el espesor
Tabla 3.14.	Porcentaje de error para el espesor de la capa54
Tabla 3.15. horizontal p	Comportamiento de la productividad del pozo variando la longitud ara $r_e = 2257$ ft
Tabla 3.16.	Porcentaje de error para la longitud horizontal a $r_e = 2257$ ft56
Tabla 3.17. horizontal p	Comportamiento de la productividad del pozo variando la longitud ara $r_e = 2980$ ft
Tabla 3.18.	Porcentaje de error para la longitud horizontal a r_e = 2980 ft58
Tabla 3.19. horizontal p	Comportamiento de la productividad del pozo variando la longitud ara $r_e = 3950$ ft
Tabla 3.20.	Porcentaje de error para la longitud horizontal a r_e = 3950 ft59
Tabla 3.21. horizontal p	Comportamiento de la productividad del pozo variando la longitud ara $r_e = 5079$ ft60
Tabla 3.22.	Correlaciones que se aplican a los parámetros operacionales62

Tabla 3.23. excentricidad	Comportamiento en el eje vertical	de	la 	productividac	l del	pozo	variando	la .63
Tabla 3.24. del pozo en e	Comportamiento	de la	proc	ductividad del	pozov	variando	o la ubicac	ión .66
Tabla 3.25. de la capa.	Comportamiento	de la	pro	ductividad de	l pozo	variano	do el espe	sor .67
Tabla 3.26. externo de fro	Comportamiento ntera	de la	pro	ductividad del	pozo	variand	o el radio	del .68
Tabla 3.27. horizontal par	Comportamiento a r _e = 2257 ft	de la	pro	ductividad de	l pozo	variano	do la longi	itud .69
Tabla 3.28. horizontal par	Comportamiento a r _e = 2980 ft	de la	pro	ductividad de	l pozo	variano	do la longi	tud .70
Tabla 3.29. horizontal par	Comportamiento a r _e = 3950 ft	de la	pro	ductividad de	l pozo	variano	do la longi	tud .71
Tabla 3.30. horizontal par	Comportamiento a r _e = 5079 ft	de la	pro	ductividad de	l pozo	variano	do la longi	tud .72

LISTA DE FIGURAS

Figura 1.1.	Esquema de un pozo horizontal	18
Figura 1.2.	Área de drenaje de pozos horizontales de 1000 y 2000 ft	20
Figura 1.3.	Flujo radial a tiempos tempranos	22
Figura 1.4.	Flujo hemicilíndrico	22
Figura 1.5.	Flujo lineal	23
Figura 1.6.	Flujo radial a tiempos tardíos	23
Figura 1.7.	Flujo hemiradial	24
Figura 2.1. rectangular de	Esquema de un pozo horizontal localizado en un volume drene	en 37
Figura 3.1.	Excentricidad del pozo horizontal a diferentes Z_w	52
Figura 3.2.	Esquemas de ubicación del pozo horizontal vistas en el simulado	or. 64

LISTA DE GRÁFICOS

Gráfica 1.1. Factor de daño según la forma de yacimiento $s_{CA,h}$ en pozos horizontales para drenaje de área cuadrada (Xe/Ye = 1)27
Gráfica 1.2. Factor de daño según la forma de yacimiento $s_{CA,h}$ en pozos horizontales para drenaje de área cuadrada (Xe/Ye = 2)27
Gráfica 1.3. Factor de daño según la forma de yacimiento $s_{CA,h}$ en pozos horizontales para drenaje de área cuadrada (Xe/Ye = 5)
Gráfica 3.1. Comportamiento de la productividad del pozo variando el factor volumétrico de crudo
Gráfica 3.2. Comportamiento de la productividad del pozo variando la viscosidad del crudo
Gráfica 3.3. Comportamiento de la productividad del pozo variando la permeabilidad promedio48
Gráfica 3.4. Comportamiento de la productividad del pozo variando la relación de permeabilidad vertical-horizontal
Gráfica 3.5. Comportamiento de la productividad del pozo variando el radio del pozo. 51
Gráfica 3.6. Comportamiento de la productividad del pozo variando el radio del externo de frontera
Gráfica 3.7. Comportamiento de la productividad del pozo variando el espesor de la capa. 55
Gráfica 3.8. Comportamiento de la productividad del pozo variando la longitud horizontal para re = 2257 ft
Gráfica 3.9. Comportamiento de la productividad del pozo variando la longitud horizontal para re = 2980 ft

Gráfica 3.10.	Comportamiento de la productividad del pozo variando la longitud
horizontal para	re = 3950 ft60
Gráfica 3.11.	Comportamiento de la productividad del pozo variando la longitud
horizontal para	re = 5079 ft61
Gráfica 3.12. excentricidad e	Comportamiento de la productividad del pozo variando la n el eje vertical63
Gráfica 3.13. de la capa.	Comportamiento de la productividad del pozo variando el espesor
Gráfica 3.14. externo de front	Comportamiento de la productividad del pozo variando el radio del tera68
Gráfica 3.15.	Comportamiento de la productividad del pozo variando la longitud
horizontal para	re = 2257 ft69
Gráfica 3.16.	Comportamiento de la productividad del pozo variando la longitud
horizontal para	re = 2980 ft70
Gráfica 3.17.	Comportamiento de la productividad del pozo variando la longitud
horizontal para	re = 3950 ft71
Gráfica 3.18.	Comportamiento de la productividad del pozo variando la longitud
horizontal para	re = 5079 ft72

LISTA DE ANEXOS

Pág.

Anexo 1 Procedimiento para obtener el índice de productividad numérico.	d en el simulador 77
Anexo 2 Sofware "OILIP" para el cálculo de la productividad en p estado pseudoestable	oozos horizontales 86
Anexo3 Modificación de la ecuación de Joshi	88

RESUMEN

Este trabajo hace referencia al estudio comparativo de la productividad de pozos horizontales en yacimientos de *black oil* para estado pseudoestable, partiendo de la evaluación de las diferentes correlaciones propuestas para el cálculo de la productividad, utilizando el software "OILIP" creado en el presente estudio para una mayor facilidad al momento de calcular índice de productividad y validado con datos realizados en EXCEL de ejercicios desarrollados en los diferentes documentos estudiados para cada correlación. Esta evaluación se realiza tomando como base un modelo de estudio para el cálculo del índice de productividad de las correlaciones y el simulador numérico.

Para el cálculo de la productividad en el simulador numérico se describe un procedimiento comenzando desde la obtención del tiempo de inicio del estado pseudoestable mediante una prueba de declinación de presión (*drawdown*) en el *WELLTEST 200*, siguiendo con la generación de la malla PEBI y su posterior simulación en el *ECLIPSE OFFICE*, finalizando con los resultados de la presión de fondo fluyendo (*Pwf*) necesarios para obtener el índice de productividad.

La comparación y posterior análisis de los resultados generados de las correlaciones y el simulador numérico se mostraron en tablas y gráficas del índice de productividad vs cada una de las variables del modelo de estudio. La correlación que más se ajusta a los resultados arrojados por el simulador es la de *Joshi*, no obstante se realizó un ajuste a dicha correlación la cual presentó un mejor comportamiento comparado con los resultados del simulador.

ABSTRACT

This work refers to the comparative study for horizontal wells performance in reservoirs of black oil for pseudosteady-state, it initiates with evaluation of the different correlations propose for productivity calculation, using the software "OILIP" created in present study to facilitate obtaining the productivity index and validate with data realized in EXCEL, of exercises developed in the different documents studied for each correlation. This evaluation is realized taken like base a study model for the calculation of productivity index for the correlations and numerical simulator.

For the calculation of productivity in the numerical simulator is described a procedure that starts by finding the beginning time of the pseudosteady-state with a decline pressure test (drawdown) realized in the software WELLTEST 200, continuing with generation of PEBI grid, its posterior simulation in ECLIPSE OFFICE and finishing with the results of pressure well flowing (Pwf) necessary to obtain the productivity index PI.

The values obtained by the correlations and the numerical simulator were showed in tables and graphs of productivity index vs each variables of the study model. When was compared the correlations results with those of the numerical simulator, the correlation that more adjusts to the results thrown by numerical simulator is Joshi, nevertheless an adjustment was realized to the above mentioned correlation which its present a better behavior compared with the results of numerical simulator.

INTRODUCCIÓN

El progresivo aumento de la perforación de pozos horizontales ha venido ampliando la necesidad de conocer el comportamiento de la productividad de los pozos horizontales; así como también los factores que influyen en su desarrollo productivo tales como las propiedades y la geometría de pozo en el yacimiento.

Varias investigaciones para el cálculo del índice de productividad se presentaron por diferentes autores a través de los años, estas han sido enfocadas al estudio de las características y condiciones que se presenten en el yacimiento durante la perforación y la producción de los pozos horizontales. Unas de estas características son los límites del yacimiento y la dependencia del tiempo que definen los diferentes cambios de presión que se pueden presentar cuando esta toca la frontera. Estos son el estado estable y el pseudoestable. Tanto para estado estable como para el pseudoestable se desarrollaron correlaciones que permiten calcular la capacidad de producción de un pozo horizontal.

Este trabajo recopila las correlaciones diseñadas por autores muy reconocidos en el ámbito de la investigación referente a la obtención del índice de productividad para pozos horizontales de crudo en estado pseudoestable como lo son: Mutalik et al, Babu & Odeh, Kuchuk et al, Economides et al y Joshi, cada una de estas correlaciones presentan consideraciones en las diferentes variables de dependencia para el cálculo de la productividad generando que cada una difiera de la otra en su desarrollo matemático. Estas son comparadas con una herramienta sofisticada como es el simulador numérico que permite simular el comportamiento del índice de productividad con mayor exactitud teniendo en cuenta los diferentes parámetros que afecta la capacidad de producción de los pozos horizontales.

1. ASPECTOS TEÓRICOS.

1.1 POZOS HORIZONTALES.

Los primeros pozos horizontales fueron perforados en Rusia en la década del '50. En 1995, a raíz de la proliferación de los pozos y del estancamiento del precio del crudo, las empresas petroleras se vieron en la necesidad de extraer más petróleo por pozo. En este sentido los pozos horizontales pueden producir de 3 a 5 veces más que los pozos verticales en la misma área, en casos especiales pueden llegar, como máximo, a producir hasta 20 veces más que los pozos verticales.

La figura 1.1 muestra el esquema de un pozo con un radio r_w el cual va horizontalmente a través del yacimiento con una longitud *L*, el espesor del yacimiento es *h* y está definido por capas impermeables o semi-permeables, el pozo se encuentra localizado a una distancia Z_w desde el fondo del yacimiento hasta la cara del pozo.

Figura 1.1. Esquema de un pozo horizontal.

1.1.1 Aplicación de pozos horizontales.

Los pozos horizontales han sido usados eficientemente para las siguientes aplicaciones:

- En yacimientos naturalmente fracturados, los pozos horizontales son usados para interceptar estas fracturas y drenarlas.
- En yacimientos con problemas de conificación de agua y gas, los pozos horizontales son usados para minimizar estos problemas y mejorar la producción de crudo.
- En producción de gas los pozos horizontales pueden ser usados tanto en yacimientos de baja permeabilidad como alta permeabilidad. En

yacimientos de baja permeabilidad, donde la velocidad del gas cerca a la cara del pozo es alta en pozos verticales, los pozos horizontales pueden ser usados para reducir esa velocidad.

• En aplicaciones de EOR, especialmente en recobro termal, los pozos horizontales se usan debido a que gracias a su longitud provee un área de contacto más amplia y mejora la capacidad de inyección.

1.1.2 Limitaciones de los pozos horizontales.

La mayor desventaja es que solo un estrato productor puede ser perforado por un pozo horizontal. Sin embargo recientemente los pozos horizontales han sido utilizados para drenar múltiples capas utilizando dos métodos: el "escalonado" que es un tipo de pozo donde la porción de longitud horizontal es perforada en más de un estrato productor y la estimulación del pozo horizontal usando fracturas apropiadas, estas fracturas son perpendiculares al pozo y podrían interceptar más de un estrato productor; es importante notar que en algunos casos debido a las fuerzas de las barreras intermedias no es posible conectar zonas a diferentes elevaciones.

Otra desventaja de los pozos horizontales es su costo, típicamente este cuesta cerca de 1.4 a 3 veces más que un pozo vertical, dependiendo del método de perforación y la técnica de completamiento empleada.

1.1.3 Área de drenaje del pozo horizontal.

Según *Joshí*¹, debido a que la longitud del pozo es mayor en un periodo de tiempo dado, bajo condiciones de operación similares un pozo horizontal drena un área de yacimiento mayor que un pozo vertical. Si un pozo vertical drena cierto volumen de yacimiento (o área) en un tiempo dado esta información puede ser usada para calcular el área de drenaje de un pozo horizontal. Un pozo horizontal puede ser visto como un número de pozos verticales perforados uno seguido del otro y completado en una zona productora de espesor limitado. Como muestra la figura 1.2 cada extremo del pozo horizontal puede drenar un área circular o cuadrada con un área de drenaje rectangular en el centro. Este concepto asume que el espesor del yacimiento es considerablemente menor a los lados del área de drenaje. Es posible calcular el área de drenaje de un pozo horizontal asumiendo un área elíptica en el plano horizontal con cada extremo del pozo como foco de la elipse.

¹ JOSHI, S. D. Horizontal Well Technology. Tulsa, OK, U.S.A: Pennwell Books, 1991. p. 7

Figura 1.2. Área de drenaje de pozos horizontales de 1000 y 2000 ft. (tomado de: Joshi, S. D. Horizontal Well Technology, Pag. 62)

1.1.4 Daño de formación de pozos horizontales.

Para un daño de formación dado el tratamiento de estimulación para remover este daño cerca de la cara del pozo tendría menos efecto en la productividad de un pozo horizontal que en la de uno vertical. Además, antes de decidir estimular un pozo horizontal, es importante estimar la pérdida de presión en la zona de daño y compararlo con la caída de presión total del yacimiento hacia la cara del pozo; esta comparación puede ser usada para determinar la necesidad de estimular el pozo horizontal.

La influencia mínima en la productividad causada por el daño cerca de la cara del pozo horizontal en yacimientos de alta permeabilidad también explicaría la razón por la cual muchos proyectos de pozos horizontales han sido exitosos, en estos yacimientos los pozos horizontales fueron perforados y puestos en producción en algunos casos incluso sin acidificación; esos pozos tuvieron un mínimo daño el cual no influía en productividad. En contraste en yacimientos de baja permeabilidad la influencia del el daño en pozos horizontales puede ser severa y antieconómica.

La caída de presión en la región del daño de formación para un pozo horizontal es considerablemente más pequeña que en la de uno vertical. Esto indica que matemáticamente, hay tres componentes del daño de formación, inherentes a las soluciones de Goode y Thambynayagam². Hay un componente mecánico del daño de formación que resulta de la perforación y completamiento del pozo. El segundo componente, se refiere a un pseudo daño, que se relaciona con los efectos de perforación parcial en la dirección vertical, la magnitud de este daño es función directa del espesor del yacimiento y de la localización geométrica del pozo horizontal en el plano vertical, por lo general este pseudo daño no aparece durante el flujo radial de tiempos tempranos. El tercer componente, es también un pseudo daño, causado por efectos de penetración parcial, pero en este caso en la dirección X, es decir en la dirección paralela a la cara del pozo, solo se presenta durante el periodo de flujo lineal a tiempos tardíos.

1.1.5 Regímenes de flujo del pozo horizontal.

Un número de diferentes regímenes de fluio pueden ser encontrados mientras se analizan las respuestas del gradiente de presión en pozos horizontales. Uno o más de esos regímenes de flujo podrían estar ausentes o enmascarados dependiendo de los parámetros del vacimiento. Los parámetros que juegan un papel importante en el comportamiento transitorio de la presión en un pozo horizontal son: la relación de permeabilidad vertical a horizontal, la posición relativa de la cara del pozo en el estrato y la longitud horizontal de la cara del pozo comparada con el espesor de la formación. Esencialmente, han sido identificados cuatro regímenes de flujo principales que son teóricamente posibles de encontrar durante una prueba de declinación o restauración de presión en un pozo horizontal. Cuando se inicia la producción, el gradiente de presión se moverá perpendicular a la cara del pozo como se ilustra en la figura 1.3, entonces se forma el flujo radial vertical. El mismo comportamiento es observado en un pozo vertical produciendo en un ambiente de acción infinita. Este régimen de flujo ha sido reconocido como flujo radial a tiempo temprano y su duración es muy corta en estratos delgados o cuando existe permeabilidad vertical alta.

² Kuchuk, F.J., Goode, P.A., Brice, B.W., Sherrard, D.W., and Thambynayagam, M. (octubre, 1988). Pressure Transient Analysis and Inflow Performance for Horizontal Wells. Paper SPE 18300. SPE 63rd Annual Technical conference and exhibition. Houston, U.S.A.

Figura 1.3. Flujo radial vertical a tiempos tempranos (tomado de: Escobar, F.H. Análisis Moderno de Pruebas de Presión, Pág. 127.)

Cuando el pozo está cercano a una frontera de no flujo y este es afectado por la perturbación de la presión, un flujo hemicilíndrico se forma como lo muestra la figura 1.4. Frecuentemente, la longitud del pozo horizontal es mucho mayor que el espesor del yacimiento, lo cual contribuye a la formación del segundo régimen de flujo principal. Este es conocido como regímen de flujo lineal y se desarrolla cuando la perturbación de la presión alcanza las fronteras superiores e inferiores del yacimiento (ver figura 1.5.). La duración efectiva de este flujo está relacionada con el inicio de los efectos finales. Este regímen de flujo está ausente cuando la longitud horizontal de la cara del pozo es corta comparada con la formación. En cambio, una zona de transición longitudinal se desarrollará antes del siguiente periodo de flujo identificable.

Figura 1.4. Flujo hemicilíndrico (tomado de: Escobar, F.H. Análisis Moderno de Pruebas de Presión, Pág. 128.)

Figura 1.5. Flujo lineal (tomado de: Escobar, F.H. Análisis Moderno de Pruebas de Presión, Pág. 128.)

En ausencia de una fuente de presión constante y no fronteras al flujo horizontal sobre una distancia razonable, el flujo hacia la cara del pozo horizontal se vuelve efectivamente radial después de un largo tiempo, con el plano horizontal actuando algo así como un punto fuente, (ver figura 1.6). Este regímen de flujo, llamado radial a tiempos tardíos, puede no ser observado si otras fronteras externas están afectando el primero o no será observado cuando el yacimiento tiene fronteras de presión constante.

Figura 1.6. Flujo radial a tiempos tardíos (tomado de: Escobar, F.H. Análisis Moderno de Pruebas de Presión, Pág. 128.)

Entre los periodos de flujo radial tempranos y tardíos es posible encontrar un regímen de flujo lineal causado por la influencia del tope y base de las fronteras mientras la longitud horizontal del pozo es importante para el radio de investigación. En otras palabras, en un yacimiento semi-infinito, una vez que las fronteras paralelas han sido alcanzadas, un regímen de flujo lineal se desarrollará. Siguiendo el flujo radial temprano, puede aparecer un periodo intermedio si el pozo se encuentra cercano a una de las fronteras superior o inferior; éste periodo es llamado régimen de flujo hemiradial, (ver figura 1.7). Este regímen de flujo usualmente no se desarrollará si la posición del pozo relativa al espesor de la

formación es uno o cero, indicando que el pozo está muy cercano a cualquiera de las fronteras superior o inferior.

Un régimen que se podría estabilizar cuando un pozo horizontal esta en prueba de declinación de presión, pero este no se considera común, es el estado estable. Este solo se desarrollará cuando exista una fuente de presión constante tal como un acuífero o una capa de gas.

Figura 1.7. Flujo hemiradial (tomado de: Escobar, F.H. Análisis Moderno de Pruebas de Presión, Pág. 129.)

Resumiendo, existen cuatro principales regímenes de flujo distintos que teóricamente pueden desarrollarse cuando un pozo horizontal está siendo probado por declinación o restauración de presión; su identificación es crítica para la apropiada interpretación de una prueba de un pozo horizontal. El flujo elíptico (pendiente 0.36 en la curva de la derivada) puede presentarse en pozos horizontales. En general, en orden cronológico de desarrollo, éstas son:

- Flujo radial a tiempos tempranos
- Flujo lineal a tiempos intermedios
- Flujo radial a tiempos últimos
- Flujo lineal a tiempos últimos (estado pseudoestable)

1.2 PRODUCTIVIDAD DE POZOS HORIZONTALES EN ESTADO PSEUDOESTABLE.

El índice de productividad indica la capacidad que tiene un pozo de aportar fluidos. Esto depende del mecanismo de empuje mediante el cual produce el pozo. Por ejemplo, la presión de flujo vs el caudal es una recta si el mecanismo es de empuje de agua y/o si la presión está por encima de la presión de burbuja (yacimiento subsaturado) o puede ser curva si el yacimiento produce por gas en solución o por debajo del punto de burbuja (yacimiento saturado). El estado pseudoestable empieza cuando la caída de presión creada por la producción del pozo es sentida en la frontera del área de drene del pozo. En otra palabras, cuando una masa de fluido situada en la frontera de drene empieza a moverse debido a la producción del pozo, en ese momento empieza el estado pseudoestable.

Existen algunas correlaciones publicadas para calcular el índice de productividad para pozos horizontales en estado pseudoestable en la literatura, registrando desde correlaciones analíticas sencillas a rigurosas soluciones numéricas. Desde entonces la propuesta de la ley de Darcy en 1856, varias teorías y correlaciones empíricas han sido presentadas para diferentes parámetros del yacimiento.

Estas correlaciones se presentan a continuación:

1.2.1 Correlación de Mutalik et al.

*Mutalik et al.*³ presentaron una técnica para predecir la productividad de pozos horizontales; esta técnica es usada para pozos centrados o descentrados en el plano de área de drenaje. Soluciones analíticas de gradiente de presión fueron usadas para calcular el factor de forma C_A y el correspondiente factor de daño equivalente s_{CA,h}, este análisis de la presión de un pozo horizontal muestra que el pozo horizontal se comporta como una fractura vertical con la altura de la fractura igual al diámetro del pozo. Para el cálculo de la correlación se tiene en cuenta el tiempo del inicio del estado pseudoestable.

$$J_{o} = \frac{0.007078K_{h}h/(\mu_{o}\beta_{o})}{\ln(r_{e}/r_{w}) - A' + s_{CA,h} + s_{m} + s_{f} - c' + D_{q}}$$
(1)

Donde:

 J_o es el índice de productividad (stb/(dia.psi)), K_h es la permeabilidad horizontal (md), h es el espesor de la capa (ft), μ_o es la viscosidad del crudo (cp), β_o es el factor volumétrico del crudo (rb/stb), r_w es el radio del pozo (ft), r_e es el radio externo de frontera (ft), A' es el parámetro de drenaje para área cuadrada (= 0.738), $s_{CA,h}$ es el factor de daño según la forma de yacimiento (adimensional), s_m es el factor de daño mecánico (adimensional), S_f es el factor de daño de

³ Mutalik, P.N., Godbole, S.P., and Joshi, S.D. (octubre, 1988). Effect of Drainage Area Shapes on Horizontal Well Productivity. Paper SPE 18301. SPE 63rd Annual Technical conference and exhibition. Houston, U.S.A.

conductividad infinita para una longitud de fractura completamente penetrada (adimensional), *L* es la longitud del pozo horizontal (ft), *c'* es una constante de conversión de forma (= 1.386), D_q es el coeficiente de turbulencia (1bopd)

$$r_e = \sqrt{A/\pi} \tag{2}$$

$$s_m = s(h/L) * \sqrt{K_h/K_v}$$
⁽³⁾

Donde **s** es el factor de daño y K_v es la permeabilidad vertical.

$$S_f = -\ln\left[\frac{L}{4r_w}\right] \tag{4}$$

Para áreas de drenaje rectangulares $2X_{e'}(2Y_{e})$, *Mutalik et al.* reportó los factores de forma y el correspondiente factor de daño equivalente s_{CA,h} para pozos horizontales localizados en varias posiciones dentro de un volumen de drenaje. El factor de daño s_{CA,h} para pozos centrados dentro del área de drenaje con proporciones de los lados $2X_{e'}(2Y_{e}) = 1,2,5$ son mostradas (ver Tabla 1.1 y Graficas 1.1-1.3).

Tabla 1.1. Factor de daño según la forma de yacimiento $s_{CA,h}$ en pozos horizontales para varias penetraciones y diferentes áreas de drenaje rectangulares. (tomado de: paper SPE 18301)

		L/2X	e					L/2X	e		
LD	0.2	0.4	0.6	0.8	1	LD	0.2	0.4	0.6	0.8	1
$X_e/Y_e = 1$						$X_e/Y_e = 5$					
1	3.772	4.439	4.557	4.819	5.250	1	5.500	5.270	5.110	5.140	5.440
2	2.321	2.732	2.927	3.141	3.354	2	3.960	3.720	3.540	3.650	3.780
3	1.983	2.240	2.437	2.626	2.832	3	3.440	3.190	3.020	3.020	3.250
5	1.724	1.891	1.948	2.125	2.356	5	2.942	2.667	2.554	2.493	2.758
10	1.536	1.644	1.703	1.851	2.061	10	2.629	2.343	2.189	2.155	2.399
20	1.452	1.526	1.598	1.733	1.930	20	2.491	2.196	2.022	2.044	2.236
50	1.420	1.471	1.546	1.672	1.863	50	2.420	2.120	1.934	1.925	2.150
100	1.412	1.458	1.533	1.656	1.845	100	2.408	2.100	1.909	1.903	2.126
		L/2X	е								
LD	0.2	0.4	0.6	0.8	1						
$X_e/Y_e = 2$											
1	4.425	4.578	5.025	5.420	5.860						
2	2.840	3.010	3.130	3.260	3.460						
3	2.380	2.450	2.610	2.730	2.940						
5	1.982	2.020	2.150	2.310	2.545						
10	1.740	1.763	1.850	1.983	2.198						
20	1.635	1.651	1.720	1.839	2.040						
50	1.584	1.596	1.650	1.762	1.959						
100	1.572	1.582	1.632	1.740	1.935						

Gráfica 1.1. Factor de daño según la forma de yacimiento $s_{CA,h}$ en pozos horizontales para área de drenaje cuadrada (Xe/Ye = 1).

Gráfica 1.2. Factor de daño según la forma de yacimiento $s_{CA,h}$ en pozos horizontales para área de drenaje rectangular ($X_e/Y_e = 2$).

Gráfica 1.3. Factor de daño según la forma de yacimiento $s_{CA,h}$ en pozos horizontales para área de drenaje rectangular ($X_e/Y_e = 5$).

1.2.2 Correlación de Babu y Odeh.

En este método, un problema de un pozo horizontal es mirado como un problema similar al de un pozo de penetración parcial. Si el problema del pozo de penetración parcial es visto en dos dimensiones, nos resultará un pozo horizontal. *Babu y Odeh*⁴, derivaron la siguiente ecuación para el cálculo de la productividad en pozos horizontales en estado pseudo estable.

$$J_{o} = \frac{0.007078.(2X_{e})\sqrt{K_{y}K_{v}/(\mu_{o}\beta_{o})}}{\ln(\sqrt{A_{1}}/r_{w}) + \ln C_{H} - 0.75 + S_{R}}$$
(5)

Donde J_o es el índice de productividad (stb/(dia.psi)), K_y es la permeabilidad en la dirección Y (md), K_v es la permeabilidad vertical (md), μ_o es la viscosidad del crudo (cp), β_o es el factor volumétrico del crudo (rb/stb), r_w es el radio del pozo (ft). El valor de S_R representa el daño por penetración parcial del pozo horizontal. $S_R = 0$, cuando $L = 2X_e$. C_H es el factor de forma. A_1 es el área de drenaje del pozo horizontal visto en un plano vertical $(A_1 = 2Y_e h)$ (ft). Los valores de $2X_e$ y $2Y_e$ son las dimensiones del yacimiento (ft). La ecuación 5 no incluye el daño de formación, pero puede ser incluido como un término aditivo en el denominador.

⁴ Babu, D.K. and Odeh, A.S. (Noviembre, 1989). Productivity of a Horizontal Well. Paper SPE 417-421. SPE Reservoir Egineering.

Calculo del C_H

$$LnC_{H} = 6.28 \left(\frac{2Y_{e}}{h}\right) \sqrt{\frac{K_{v}}{K_{y}}} \left[\frac{1}{3} - \left(\frac{Y_{w}}{2Y_{e}}\right)^{2}\right] - \ln\left[\sin\left(180^{0}\frac{Z_{w}}{h}\right)\right] - 0.5 \left[\left(\frac{2Y_{e}}{h}\right) \sqrt{\frac{K_{v}}{K_{y}}}\right] - 1.088$$
(6)

Donde **h** es el espesor de la capa (ft), Z_w es la distancia vertical entre el pozo horizontal y el fondo del límite del yacimiento (ft), Y_w es la distancia del pozo horizontal hasta el límite más cercano del yacimiento en la dirección Y (ft).

Calculo del S_R

Como fue mostrado anteriormente, $S_R = 0$ cuando $L = 2X_e$. Si $L < 2X_e$, entonces el valor del factor daño por penetración parcial S_R depende de las siguientes dos condiciones:

Caso 1: $2Y_e / \sqrt{K_y} \ge 1.5X_e / \sqrt{K_x} >> 0.75h / \sqrt{K_v}$ Caso 2: $2Y_e / \sqrt{K_x} \ge 2.66X_e / \sqrt{K_y} >> 1.33h / \sqrt{K_v}$

Caso 1

$$Aquí S_{R} = PXYZ + PXY'$$
(6)

El componente PXYZ

$$PXYZ = \left[\frac{2X_e}{L} - 1\right] \left[\ln\left(\frac{h}{r_w}\right) + 0.25 \ln\left(\frac{K_y}{K_v}\right) - \ln\left(\sin\frac{180^0 Z_w}{h}\right) - 1.84 \right]$$
(7)

El componente PXY'

$$PXY' = \left(\frac{2(2X_e)^2}{Lh}\sqrt{\frac{K_v}{K_x}}\right) [f(x) + 0.5\{f(y_1) - f(y_2)\}]$$
(8)

Donde *f* representa una función. Los términos en el paréntesis después de *f*, están definidos como:

$$x = \frac{L}{4X_e}, \ y_1 = \frac{4X_e + L}{4X_e}, \ y_2 = \frac{4X_w - L}{4X_e}$$

 X_w es la distancia del punto medio del pozo hasta el límite más cercano del yacimiento en la dirección X (ft), X_e es la longitud media del yacimiento en dirección paralela a la cara del pozo (ft), L es la longitud del pozo horizontal (ft). Adicionalmente, los cálculos de presión son hechos en el punto medio sobre la longitud del pozo horizontal, y la función f(x) es definida como:

$$f(x) = -x \left[0.145 + \ln(x) - 0.137(x)^2 \right]$$
(9)

El cálculo de $f(y_1)$ y $f(y_2)$ dependen de sus argumentos, $[(4X_w + L)/(4X_e)]$ y $[(4X_w - L)/(4X_e)]$ respectivamente. Si el argumento $(y_1oy_2) \le 1$, entonces la ecuación 9 puede ser usada remplazando x con y_1 o y_2 . Por otro lado, si $(y_1oy_2) > 1$ entonces se usa la siguiente ecuación:

$$f(y) = (2-y)[0.145 + \ln(2-y) - 0.137(2-y)^2]$$
(10)

Donde $y = y_1 o y_2$

Caso 2

$$Aquí, S_R = PXYZ + PY + PXY$$
(11)

La definición de los tres componentes en la ecuación 11, está dada por:

El componente PXYZ es calculado por la ecuación 7.

El componente PY será:

$$PY = 6.28 \frac{(2X_e)^2}{2Y_e h} \frac{\sqrt{K_y K_v}}{K_x} \left[\left\{ \frac{1}{3} - \left(\frac{X_w}{2X_e}\right) + \left(\frac{X_w}{2X_e}\right)^2 \right\} + \frac{L}{48X_e} \left(\frac{L}{2X_e} - 3\right) \right]$$
(12)

El componente PXY

$$PXY = \left(\frac{2X_e}{L} - 1\right) \frac{6.28(2Y_e)}{h} \sqrt{\frac{K_v}{K_y}} \left[\frac{1}{3} - \left(\frac{Y_w}{2Y_e}\right) + \left(\frac{Y_w}{2Y_e}\right)^2\right]$$
(13)

La ecuación 13 es una aproximación de la solución rigurosa que es:

$$PXY = \left(\frac{2X_e}{L} - 1\right) \frac{6.28(2Y_e)}{h} \sqrt{\frac{K_v}{K_y}} \left[\frac{1}{3} - \left(\frac{Y_w}{2Y_e}\right) + \left(\frac{Y_w}{2Y_e}\right)^2\right] - \left[\frac{4(2X_e)(2Y_e)}{\pi Lh}\right].$$

$$\sqrt{\frac{K_v}{K_y}} \sum_{1}^{3} \left[\frac{1}{n^2} \cos^2\frac{n\pi Y_w}{2Y_e} \exp\left(-\frac{n\pi L}{4Y_e} \sqrt{\frac{K_y}{K_x}}\right)\right]$$
(14)

A pesar que la ecuación 14 da un resultado más exacto, la ecuación 13 es una aproximación adecuada para muchos campos de aplicación.

1.2.3 Correlación de Kuchuk.

Kuchuk et al⁵. usaron una solución aproximada asumiendo conductividad infinita, donde la presión de fondo de pozo se obtiene como un promedio de las presiones de fondo fluyendo sobre la longitud del pozo. La productividad es expresada mediante la siguiente ecuación:

$$J_{o} = \frac{K_{h}h/(70.6\mu_{o}\beta_{o})}{F + \left(\frac{h}{0.5L}\right)\sqrt{\frac{K_{h}}{K_{v}}}S_{x}}$$
(15)

Donde J_o es el índice de productividad (stb/(dia.psi)), K_h es la permeabilidad horizontal (md), K_v es la permeabilidad vertical (md), μ_o es la viscosidad del crudo (cp), β_o es el factor volumétrico del crudo (rb/stb), h es el espesor de la capa (ft), L es la longitud del pozo horizontal (ft), F es una función adimensional y depende de $Y_w/(2Y_e)$, $X_w/(2X_e)$, $L/(4X_e)$ y $Y_e/X_e \sqrt{K_x/K_h}$.

Los valores típicos para la función *F* están mostrados en la tabla 1.2. El valor de S_x es calculado usando la siguiente ecuación:

$$S_{x} = \ln\left[\left(\frac{\pi r_{w}}{h}\right)\left(1 + \sqrt{\frac{K_{v}}{K_{y}}}\right)\sin\left(\frac{\pi Z_{w}}{h}\right)\right] - \sqrt{\frac{K_{h}}{K_{v}}}\left(\frac{2h}{L}\right)\left[\frac{1}{3} - \left(\frac{Z_{w}}{2Y_{e}}\right) + \left(\frac{Z_{w}}{2Y_{e}}\right)^{2}\right] \quad .$$
(16)

⁵ Kuchuk, F.J., Goode, P.A., Brice, B.W., Sherrard, D.W., and Thambynayagam, M. (octubre, 1988). Pressure Transient Analysis and Inflow Performance for Horizontal Wells. Paper SPE 18300. SPE 63rd Annual Technical conference and exhibition. Houston, U.S.A.

Tabla 1.2.Valores adimensionales de la función F, para el cálculo de la
productividad de pozos horizontales. (tomado de: paper SPE 18300)

Y _w /(2Y,	$Y_w/(2Y_e) = 0.5, X_w/(2X_e) = 0.5$						$Y_w/(2Y_e) = 0.25, X_w/(2X_e) = 0.5$						
$\frac{Xw}{Yw} \sqrt{\frac{Kx}{Ky}}$		I	L/(4X _e)		$\frac{Xw}{Yw} \sqrt{\frac{Kx}{Ky}}$		i	L/(4X _e)			
	0.1	0.2	0.3	0.4	0.5		0.1	0.2	0.3	0.4	0.5		
0.25	3.8	2.11	1.09	0.48	0.26	0.25	4.33	2.48	1.36	0.7	0.46		
0.50	3.25	1.87	1.12	0.69	0.52	0.50	3.89	2.42	1.58	1.1	0.92		
1.00	3.62	2.3	1.6	1.21	1.05	1.00	4.47	3.13	2.41	2	1.83		
2.00	4.66	3.34	2.65	2.25	2.09	2.00	6.23	4.91	4.22	3.83	3.67		
4.00	6.75	5.44	4.74	4.35	4.19	4.00	9.9	8.58	7.88	7.49	7.33		

Y _w /(2Y	_e) = 0.25	$Y_w/(2Y_e) = 0.5, X_w/(2X_e) = 0.25$									
$\frac{Xw}{Yw} \sqrt{\frac{Kx}{Ky}}$		L	/(4X _e)			$\frac{Xw}{Yw} \sqrt{\frac{K}{K}}$	<u>ix</u> y		L/(4X _e)	
•	0.1	0.2	0.3	0.4	0.5		0.1	0.2	0.3	0.4	0.5
0.25	9.08	7.48	6.43	5.65	5.05	0.25	8.44	6.94	5.98	5.26	4.70
0.50	6.97	5.56	4.71	4.12	3.71	0.50	6.21	4.83	4.02	3.47	3.08
1.00	6.91	5.54	4.76	4.24	3.9	1.00	5.86	4.50	3.73	3.23	2.90
2.00	8.38	7.02	6.26	5.76	5.44	2.00	6.73	5.38	4.62	4.12	3.81
4.00	11.97	10.61	9.85	9.36	9.04	4.00	8.82	7.46	6.71	6.21	5.89

1.2.4 Correlación de Economides.

Tras el estudio analítico del comportamiento de los pozos horizontales *Economides et al⁶*. presentó el desarrollo de configuraciones de pozos para corto y largo plazo. Con base en los cálculos del desarrollo de la producción se hacen consideraciones practicas, varias aplicaciones selectivas de completamiento pueden ser evaluadas.

Para el desarrollo a largo plazo es usualmente hecha empleando el índice de productividad en el estado pseudoestable. *Economides et al.* propuso el cálculo de este índice con:

$$J_{o} = \frac{q_{o}}{P_{e} - Pwf} = \frac{\bar{K}X_{e}}{887.22\mu_{o}B_{o}\left[PD + \frac{X_{e}}{2\pi L}S\right]}$$
(17)

⁶ Economides, M.J. and Retnanto, A. (Septiembre, 1998). Inflow Performance Relationships of Horizontal and Multibranched Wells. Paper SPE 49054. SPE Annual Technical Conference and Exhibition Held. New Orleands, U.S.A.

Donde J_o es el índice de productividad (stb/(dia.psi)), X_e es la longitud media del yacimiento en dirección paralela a la cara del pozo (ft), μ_o es la viscosidad del crudo(cp), β_o es el factor volumétrico del crudo (rb/stb), L es la longitud del pozo horizontal, *PD* es la presión adimensional calculada, *K* es la permeabilidad promedia del yacimiento (md) $\overline{K} = \sqrt[3]{K_x \cdot K_y \cdot K_z}$, *S* es la sumatoria de todos los factores de pseudo daño. Los cálculos adimensionales son hechos con base en la longitud del yacimiento X_e .

La solución generalizada de la presión adimensional *PD*, empieza con el comportamiento del gradiente de presión a tiempos tempranos y termina con el estado pseudoestable si alcanza todas las fronteras del área de drenaje. En ese momento la *PD* en tres dimensiones se descompone en una parte de 2D y otra de 1D.

$$PD = \frac{X_e \cdot C_H}{4\pi \cdot h} + \frac{X_e}{2\pi \cdot L} S_x \tag{18}$$

Donde C_H es un factor de forma característico de la configuración del pozo y del yacimiento en el plano horizontal y S_x es el daño a causa de efectos verticales. Los factores de forma C_H para varias configuraciones de pozo son mostrados en la tabla 1.3.

La expresión del daño por efectos verticales es.

$$Sx = \ln\left(\frac{h}{2\pi r_w}\right) - \frac{h}{6L} + S_e \tag{19}$$

Donde **S**_e, describe el efecto de excentricidad en dirección vertical.

$$Se = \frac{h}{L} \left[\frac{2Zw}{h} - \frac{1}{2} \left(\frac{2Zw}{h} \right)^2 - \frac{1}{2} \right] - \ln \left[sen\left(\frac{\pi \cdot Zw}{h} \right) \right]$$
(20)

El cual se desprecia si el pozo está en el punto medio del espesor del yacimiento o muy cerca de él.

	L/X _e	СН		L/X _e	СН
$X_e = 4Y_e$	0.25	3.77		0.25	4.59
	0.5	2.09	2X _e = Y _e	0.5	3.26
	0.75	1		0.75	2.53
	1	0.26		1	2.09
X _e = 2Y _e	0.25	3.19		0.25	6.69
	0.5	1.8	$4X_e = Y_e$	0.5	5.35
	0.75	1.02		0.75	4.63
	1	1.49		1	4.18
X _e = Y _e	0.25	3.55			
	0.5	2.21			
	0.75	1.49			
	1	1.04			

Tabla 1.3.Factores de forma para plano horizontal. (tomado de: paper SPE49054)

1.2.5 Correlación de Joshi.

*Joshi*⁷ observó que un pozo horizontal de longitud *L* drena en forma elipsoidal, mientras que un pozo vertical drena un volumen cilíndrico circular. Ambos pozos drenan una altura *h*, pero sus volúmenes de drene son diferentes. Para calcular matemáticamente la producción de crudo de un pozo horizontal, primero se necesita resolver una ecuación en tres dimensiones 3D. Si se asume presión constante en la frontera y en la cara del pozo, la solución daría a una presión de distribución dentro del yacimiento. Tan pronto la presión es conocida, las ratas de producción de crudo pueden ser calculadas por la ley de *Darcy*.

Para simplificar la solución matemática, el problema de 3D es subdividido en dos de dos dimensiones 2D (ver figura 1.8). Se observa que la subdivisión del problema de drenaje elipsoidal es: (1) flujo de crudo en el pozo horizontal en el plano horizontal y (2) flujo de crudo en el pozo horizontal en el plano vertical

⁷ Joshi, S.D. (junio,1988). Augmentation of Well Productivity With Sland and Horizontal Wells. Paper SPE 15375. Journal of Petroleum Tecnology.

Planos de referencia AA y BB

Figura 1.8. División del problema del pozo horizontal 3D en dos problemas de 2D. (tomado de: paper SPE 15375)

Los resultados fueron:

$$q_{1} = \frac{2\pi K \Delta p / \mu}{\ln\left(\frac{a + \sqrt{a^{2} - \Delta r^{2}}}{\Delta r}\right)} \qquad \text{Drenaje en el plano horizontal.}$$
(21)

Donde $\Delta r = L/2$ y *a* es el eje mayor de la elipse.

$$q_{2} = \frac{2\pi K\Delta p / \mu}{\ln(h/2r_{w})}$$
 Drenaje en el plano vertical. (22)

Para un yacimiento anisotrópico, el modelo de *Joshi* (1988), fue corregido y ajustado por *Economides et al*⁸ (1991), y tiene esta forma:

$$q = \frac{K_h h (P_e - Pwf)}{141.2\beta_o \mu_o \left[\ln \left[\frac{a + \sqrt{a^2 - (L/2)^2}}{L/2} \right] + \left[\frac{I_{ani}h}{L} \right] * \left[\ln \frac{I_{ani}h}{r_w (I_{ani} + 1)} \right] \right]}$$
(23)

Donde la proporción de permeabilidad anisotrópica, *I_{ani}* es definida como:

$$I_{ani} = \sqrt{\frac{K_h}{K_v}}$$
(24)

⁸ Economides, M.J., and Diyashev, I.R. (Septiembre, 2005). The Dimensionless Productivity Index as a General Approach to Well Evaluation. Paper SPE 96644. SPE European Formation Damage Conference. Scheveningen, Netherlands.

Donde K_h y K_v son permeabilidades horizontal y vertical respectivamente (md)

La ecuación 23 es útil por un número de razones, tales como la determinación del incremento de la producción de pozo horizontal y uno vertical y que los resultados de IP están dados en términos análogos a las ecuaciones de los pozos verticales. Una dimensión clave del yacimiento es *a*, la mitad de la longitud de un drenaje elipsoidal en el plano vertical:

$$a = \frac{L}{2} \left[0.5 + \left[0.25 + \left(\frac{r_e}{L/2} \right)^4 \right]^{0.5} \right]^{0.5}$$
(25)

Donde r_e es el radio externo de frontera (ft) y L la longitud del pozo horizontal (ft).

El factor de daño puede ser agregado a la ecuación 23 para contar con el efecto de daño de formación o efectos por completamiento. También puede ser moldeada para estado pseudoestable sustrayendo 0.75 dentro del brazo más largo de denominador. De manera que la ecuación 23 puede ser escrita en forma de índice de productividad para estado pseudoestable así:

$$J_{o} = \frac{K_{h}h}{141.2\beta_{o}\mu_{o}\left[\ln\left[\frac{a+\sqrt{a^{2}-(L/2)^{2}}}{L/2}\right] + \left[\frac{I_{ani}h}{L}\right] * \left[\ln\frac{I_{ani}h}{r_{w}(I_{ani}+1)} - 0.75 + S\right]\right]}$$
(26)

Donde J_o es el índice de productividad (stb/(dia.psi)), K_h es la permeabilidad horizontal (md), h el espesor de la capa (ft), μ_o es la viscosidad del crudo (cp), β_o es el factor volumétrico del crudo (rb/stb), I_{ani} y **a** se calculan con las ecuaciones 24 y 25 respectivamente.
2. MODELO DE ESTUDIO.

2.1 DESCRIPCIÓN DEL CASO BASE.

El caso base que se utilizó en el estudio comparativo fue tomado del documento "A COMPREHENSIVE COMPARATIVE STUDY ON ANALYTICAL PI/IPR CORRELATIONS"⁹ desarrollado por SUK KYOON CHOI, LIANG-BIAO OUYANG Y WANN-SHENG (BILL) HUANG, en donde se realizó un estudio comparativo analítico de algunas correlaciones para el cálculo de productividad de pozos en las diferentes fases, geometría y dependencia del tiempo.

La figura 2.1 muestra un pozo horizontal de longitud *L*, ubicado a una distancia X_w y Y_w dentro del yacimiento con un área rectangular cuyas dimensiones son $2X_e$, $2Y_e$ y de altura *h*, se especifican las direcciones de las permeabilidades con el fin de agregar el concepto de anisotropía; las figuras 1.1 y 2.1 son importantes para entender cada una de las propiedades y variables que hacen parte del modelo de estudio para el cálculo del índice de productividad.

Figura 2.1. Esquema de un pozo horizontal localizado en un volumen rectangular de drene.

⁹ Choi, S.K., Ouyang, L.B. and Huang, W.S. (Septiembre, 2008). A Comprehensive Comparative Study on Analytical PI/IPR Correlations. Paper SPE 116580. SPE Annual Technical Conference and Exhibition Held. Denver, Colorado, U.S.A

2.2 DATOS DEL CASO BASE.

Los datos tomados para el desarrollo del estudio comparativo son mostrados en la tabla 2.1.

Tabla 2.1.Datos del caso base.

Var	iables	Unidad	Descripción
Pe	3500	psi	Presión de frontera
Pr	2500	psi	Presión promedio de yacimiento
Κ	108	md	Permeabilidad promedio
Kv	80	md	Permeabilidad vertical
Kh	125	md	Permeabilidad horizontal
Kx	168	md	Permeabilidad en X
Ky	93	md	Permeabilidad en Y
h	70	ft	Espesor de la capa
r _e	2980	ft	Radio externo de frontera
Xe	2640	ft	Longitud media del yacimiento en dirección paralela a la cara del pozo
Y _e	2640	ft	Longitud media del yacimiento en dirección perpendicular a la cara del pozo
βo	1.1	rb/stb	Factor volumétrico del crudo
μo	1.7	ср	Viscosidad del crudo
ρο	52	lb/ft3	Densidad del crudo
qo	500	stb/d	Caudal del crudo
r _w	0.328	ft	Radio del pozo
L	2000	ft	Longitud del pozo horizontal
Xw	2640	ft	Distancia desde la frontera perpendicular al punto medio de la cara del pozo
Yw	2640	ft	Distancia desde la frontera paralela al centro de la cara del pozo
Zw	35	ft	Distancia desde el tope o base de la capa hasta el centro de la cara del pozo
S	0		Factor de daño
Α'	0.738		Parámetro de drenaje para área cuadrada
C'	1.386		Constante de conversión de forma
Dq	0	1/bopd	Coeficiente de turbulencia

2.3. MODIFICACIÓN DE VARIABLES DEL CASO BASE PARA EL ESTUDIO DEL COMPORTAMIENTO DE LA PRODUCTIVIDAD.

2.3.1 Modificación de las propiedades del yacimiento.

Para las variables que se modificaron en el estudio del comportamiento de la productividad se tuvo en cuenta las propiedades del yacimiento en ciertos rangos de aplicación para la realización de un buen análisis, ver tabla 2.2.

Propiedad		Valor									
Factor volumétrico del crudo (rb/stb)	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8		
Viscosidad del crudo (cp)	0.5	1	1.7	2	3	5	8	10	12		
Permeabilidad promedio (md)	10.5	42	73	94	108	120	151	182	202		
Relación de permeabilidad vertical y horizontal (Kv/Kx)	0.25	0.5	1	2	4						
Radio del pozo (ft)	0.1	0.2	0.3	0.328	0.4	0.5	0.6	0.7	0.8	0.9	1
Radio externo de frontera (ft)	1693	2257	2822	2980	3386	3950	4515	5079			
Espesor de la capa (ft)	25	50	70	100	150	200	250	300	350	400	

Tabla 2.2.Rango de propiedades de yacimiento.

Para variar algunas propiedades es necesario tener en cuenta cambios en otras, estos se muestran a continuación:

• Permeabilidad promedio:

Como se vio antes, la $K_{promedio}$ se calcula con $K = \sqrt[3]{K_x \cdot K_y \cdot K_z}$ donde $K_z = K_v$, los cambios en estas variables se muestran en la tabla 2.3.

K _{promedio} (md)	K _v (md)	K _x (md)	K _y (md)	K _h (md)
10.5	8	16	9	12
42	32	64	36	48
73	56	112	62	84
94	72	144	80	107
108	80	168	93	125
120	92	184	102	137
151	116	232	129	173
182	140	280	155	209
202	156	312	173	233

Tabla 2.3.Variación de permeabilidades para el cálculo de permeabilidadpromedio.

Relación de permeabilidad vertical y horizontal

Como el objetivo es analizar la relación entre permeabilidad horizontal y vertical, K_x y K_y deben ser iguales ya que $K_h = \sqrt[2]{K_x \cdot K_y}$, los cambios en estas variables se muestran en la tabla 2.4.

Tabla 2.4.	Variación	de	permeabilidades	para	el	cálculo	de	la	relación
permeabilid	ad vertical	-hor	izontal.						

K _v /K _x	K _v (md)	K _x (md)	K _y (md)	K _h (md)
0.25	43	171	171	171
0.5	68	136	136	136
1	108	108	108	108
2	171	86	86	86
4	272	68	68	68

• Radio externo de frontera

El radio externo de frontera es afectado directamente por el tamaño del yacimiento por este motivo también se deben cambiar X_e , Y_e como también X_w y Y_w , ya que el pozo debe estar centrado, los cambios en estas variables se muestran en la tabla 2.5.

r _e (ft)	X _e (ft)	Y _e (ft)	X _w (ft)	Y _w (ft)
1693	1500	1500	1500	1500
2257	2000	2000	2000	2000
2822	2500	2500	2500	2500
2980	2640	2640	2640	2640
3386	3000	3000	3000	3000
3950	3500	3500	3500	3500
4515	4000	4000	4000	4000
5079	4500	4500	4500	4500

 Tabla 2.5.
 Variación de las dimensiones del yacimiento para el cálculo del radio externo de frontera.

• Espesor de la capa

Al modificar el espesor de la capa se debe cambiar la ubicación del pozo en dirección vertical Z_w para asegurarse que se encuentre centrado, este cambio se muestra en la tabla 2.6.

Tabla 2.6.Variación de la excentricidad del pozo.

h (ft)	Z _w (ft)
25	12.5
50	25
70	35
100	50
150	75
200	100
250	125
300	150
350	175
400	200

2.3.2 Modificación de los parámetros operacionales

Al igual que las propiedades del yacimiento se modificaron los parámetros operacionales con el fin de obtener buenos resultados para el análisis ver tabla 2.7

Tabla 2.7.Parámetros operacionales.

Parámetro						Valo	r				
Longitud del											
pozo	300	600	900	1200	1500	1800	2000	2100	2400	2700	3000
horizontal (ft)											
Excentricidad	17 5	35	52 5	61 3							
Z _w (ft)	17.5	55	52.5	01.0							
Ubicación de	pozo	en el	yacim	iento							
Centrado											
Descentrado	a la iz	quiero	la								
Descentrado a la derecha											
Descentrado en esquina inferior izquierda											
Descentrado	en eso	quina	superi	or dere	echa						

Como la longitud del pozo horizontal es uno de los parámetros operacionales más importantes, se realizó un estudio de la variación de *L* para cuatro diferentes radios externos de frontera.

Para la excentricidad se tomaron los datos estándar del modelo, teniendo en cuenta el espesor h = 70 ft.

Cada una de estas variables fué modificada tanto en las diferentes correlaciones utilizando el software "0ILIP" creado por los autores para el cálculo de la productividad (ver anexo 2); como también en el simulador numérico siguiendo el procedimiento descrito en el anexo 1.

3. ANALISIS DE RESULTADOS.

Los resultados obtenidos de las correlaciones y la simulación numérica son tabulados y graficados según el orden definido en el capítulo 2.

3.1 MODIFICACIÓN DE LAS PROPIEDADES DEL YACIMIENTO.

3.1.1 Factor volumétrico.

 Tabla 3.1.
 Comportamiento de la productividad del pozo variando el factor volumétrico de crudo.

β _o	IP [bbl/(psi*dia)]						
(rb/stb)	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides	
1	14.37	28.44	20.88	23.45	18.58	35.97	
1.1	13.06	25.85	18.98	21.32	16.89	32.70	
1.2	11.97	23.69	17.40	19.54	15.48	29.98	
1.3	11.05	21.87	16.06	18.04	14.29	27.67	
1.4	10.26	20.31	14.92	16.75	13.27	25.69	
1.5	9.58	18.96	13.92	15.64	12.39	23.98	
1.6	8.98	17.77	13.05	14.66	11.61	22.48	
1.7	8.45	16.73	12.28	13.79	10.93	21.16	
1.8	7.98	15.79	11.60	13.03	10.32	19.98	

 Tabla 3.2.
 Porcentaje de error para el factor volumétrico de crudo.

βο	Porcentaje de error para β_o									
(rb/stb)	Mutalik	Babu	kuchuk	Joshi	Economides					
1	97.94	45.32	63.21	29.32	150.35					
1.1	97.90	45.31	63.22	29.31	150.34					
1.2	97.86	45.33	63.20	29.29	150.40					
1.3	97.92	45.34	63.26	29.32	150.41					
1.4	97.90	45.38	63.21	29.30	150.32					
1.5	97.91	45.30	63.26	29.33	150.31					
1.6	97.88	45.32	63.25	29.29	150.33					
1.7	97.99	45.33	63.20	29.35	150.41					
1.8	97.87	45.36	63.28	29.32	150.38					

Gráfica 3.1. Comportamiento de la productividad del pozo variando el factor volumétrico de crudo.

Se observa que el comportamiento del *IP* variando β_o conserva una tendencia de disminución en la misma proporción para todas las correlaciones, entre mayor sea el β_o menor será el *IP* debido a que es menos el porcentaje de crudo que se produce en consecuencia de la expansión del líquido o la liberación de gas en solución, la correlación propuesta por *Joshi* es el que más se aproxima al simulador con un porcentaje de error promedio del 29% seguido de *Babu y Odeh* con 45%, *Kuchuk* con 63%, *Mutalik* con 97% y por ultimo *Economides* con 150%.

3.1.2 Viscosidad.

	IP [bbl/(psi*dia)]										
µ₀ (cp)	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides					
0.5	41.67	87.89	64.55	72.49	57.43	111.19					
1	20.37	43.95	32.27	36.25	28.72	55.59					
1.7	13.06	25.85	18.98	21.32	16.89	32.70					
2	10.71	21.97	16.14	18.12	14.36	27.79					
3	7.03	14.65	10.79	12.08	9.57	18.53					
5	4.25	8.79	6.45	7.25	5.74	11.12					
8	2.75	5.49	4.03	4.53	3.59	6.95					
10	2.23	4.39	3.23	3.62	2.87	5.56					
12	1.87	3.66	2.69	3.02	2.39	4.63					

Tabla 3.3. Comportamiento de la productividad del pozo variando la viscosidad del crudo.

 Tabla 3.4.
 Porcentaje de error para la viscosidad del crudo.

u. (cp)	Porcentaje de error para μ₀									
μ ₀ (ch)	Mutalik	Babu	kuchuk	Joshi	Economides					
0.5	110.92	54.91	73.96	37.82	166.83					
1	115.74	58.40	77.94	40.98	172.87					
1.7	97.92	45.32	63.23	29.32	150.36					
2	105.15	50.71	69.20	34.09	159.50					
3	108.45	53.53	71.88	36.17	163.66					
5	106.77	51.73	70.55	35.03	161.59					
8	99.56	46.49	64.67	30.50	152.64					
10	96.60	44.65	62.11	28.53	148.99					
12	95.62	43.77	61.41	27.74	147.46					

Gráfica 3.2. Comportamiento de la productividad del pozo variando la viscosidad del crudo.

Se observa que el comportamiento del *IP* variando viscosidad es inversamente proporcional, conserva una tendencia de disminución en la misma proporción para todas las correlaciones, entre mayor sea la viscosidad menor será el *IP* debido a la disminución de la fluidez del crudo, como también menor es el error a medida que la viscosidad incrementa, para valores grandes de viscosidad los resultados se acercan al del simulador, el orden de proximidad al simulador son respectivamente: *Joshi, Babu y Odeh, Kuchuk, Mutalik y Economides.*

3.1.3 Permeabilidad promedio

K (md)	IP [bbl/(psi*dia)]								
r (ma)	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides			
10.5	1.38	2.50	1.83	2.06	1.62	3.18			
42	5.17	10.00	7.33	8.23	6.50	12.73			
73	8.75	17.51	12.69	14.41	11.37	22.16			
94	11.38	22.13	16.36	18.30	14.49	28.52			
108	13.06	25.85	18.98	21.32	16.89	32.70			
120	15.20	28.33	20.84	23.43	18.56	36.42			
151	18.77	35.78	26.37	29.59	23.43	45.97			
182	22.41	43.22	31.73	35.74	28.31	55.39			
202	25.22	48.57	35.40	39.85	31.56	61.76			

Tabla 3.5.Comportamiento de la productividad del pozo variando lapermeabilidad promedio.

Tabla 3.6.	Porcentaje de error	para la permeabilida	d promedio.
------------	---------------------	----------------------	-------------

K (md)	Porcentaje de error para K _{promedio}							
r (iliu)	Mutalik	Babu	kuchuk	Joshi	Economides			
10.5	81.16	32.61	49.28	17.39	130.43			
42	93.42	41.78	59.19	25.73	146.23			
73	100.11	45.03	64.69	29.94	153.26			
94	94.46	43.76	60.81	27.33	150.62			
108	97.33	44.89	62.75	28.93	149.62			
120	86.38	37.11	54.14	22.11	139.61			
151	90.62	40.49	57.65	24.83	144.91			
182	92.86	41.59	59.48	26.33	147.17			
202	92.59	40.36	58.01	25.14	144.89			

Gráfica 3.3. Comportamiento de la productividad del pozo variando la permeabilidad promedio.

Se observa que el comportamiento del *IP* variando $K_{promedio}$ conserva una tendencia de aumento en diferentes proporciones para todas las correlaciones, entre mayor sea el la $K_{promedio}$ mayor será el *IP* debido a la mejora de la movilidad del crudo la que causa el incremento en la productividad, pero también mayor será el porcentaje de error, el cual crece linealmente, el orden de proximidad al simulador son respectivamente: *Joshi, Babu y Odeh, Kuchuk, Mutalik y Economides*.

3.1.4 Relación de permeabilidad vertical-horizontal

Tabla 3.7. Comportamiento de la productividad del pozo variando la relación de permeabilidad vertical-horizontal.

K /K	IP [bbl/(psi*dia)]								
N _V /N _X	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides			
0.25	16.45	31.66	27.39	30.39	21.80	32.77			
0.5	13.25	27.86	22.99	25.61	18.14	32.77			
1	11.09	23.05	18.98	21.23	14.89	32.77			
2	9.48	18.29	15.53	17.43	12.14	32.77			
4	8.37	15.52	12.52	14.09	9.76	32.77			

Tabla 3.8.	Porcentaje de	error	para	la relaci	ón de	permeabilidad	vertical-
horizontal.		-					

K./K.	Porcentaje de error para K _v /K _x						
TYPIC	Mutalik	Babu	kuchuk	Joshi	Economides		
0.25	92.46	66.50	84.74	32.52	99.21		
0.50	110.26	73.51	93.28	36.91	147.32		
1.00	107.84	71.15	91.43	34.27	195.49		
2.00	92.93	63.82	83.86	28.06	245.68		
4.00	85.42	49.58	68.34	16.61	291.52		

Se observa que el comportamiento de la permeabilidad vertical es menos significativo para el cálculo del índice de productividad que la permeabilidad horizontal, esto se debe a que la incidencia de la longitud del pozo es mucho mayor que el espesor de la formación por lo tanto a medida que aumenta la relación K_v/K_x el índice de productividad disminuye, *Economides* no muestra cambio debido que en su correlación solo considera la permeabilidad promedio, el orden de proximidad al simulador son respectivamente: *Joshi, Babu y Odeh, Kuchuk, Mutalik y Economides*.

Gráfica 3.4. Comportamiento de la productividad del pozo variando la relación de permeabilidad vertical-horizontal.

3.1.5 Radio del pozo

Tabla 3.9.Comportamiento de la productividad del pozo variando el radio
del pozo.

r (f+)			P [bbl/(psi*dia)]		
	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides
0.1	12.70	25.85	18.35	20.63	16.46	31.22
0.2	12.91	25.85	18.71	21.03	16.71	32.07
0.3	13.03	25.85	18.93	21.27	16.86	32.59
0.328	13.06	25.85	18.98	21.32	16.89	32.70
0.4	13.12	25.85	19.09	21.44	16.97	32.96
0.5	13.20	25.85	19.22	21.58	17.05	33.26
0.6	13.25	25.85	19.32	21.69	17.12	33.51
0.7	13.30	25.85	19.41	21.79	17.18	33.73
0.8	13.35	25.85	19.49	21.87	17.24	33.91
0.9	13.39	25.85	19.56	21.94	17.28	34.08
1	13.42	25.85	19.62	22.01	17.32	34.23

r (ft)	Porcentaje de error para r _w							
r _w (it)	Mutalik	Babu	kuchuk	Joshi	Economides			
0.1	103.58	44.51	62.47	29.63	145.87			
0.2	100.26	44.95	62.92	29.45	148.45			
0.3	98.33	45.24	63.19	29.35	150.04			
0.328	97.90	45.31	63.22	29.31	150.34			
0.4	96.97	45.46	63.36	29.31	151.14			
0.5	95.91	45.66	63.55	29.22	152.07			
0.6	95.04	45.77	63.65	29.17	152.83			
0.7	94.32	45.91	63.80	29.14	153.55			
0.8	93.68	46.03	63.86	29.17	154.06			
0.9	93.11	46.12	63.90	29.09	154.59			
1	92.61	46.19	64.00	29.05	155.05			

Tabla 3.10. Porcentaje de error para el radio del pozo.

Gráfica 3.5. Comportamiento de la productividad del pozo variando el radio del pozo.

Se observa que el comportamiento del *IP* variando r_w conserva una tendencia de aumento pero en una mínima proporción debido a la capacidad para recibir fluidos, el orden de proximidad al simulador son respectivamente: *Joshi* con un porcentaje de error del 29%, *Babu y Odeh* con 45%, *Kuchuk* con 63%, *Mutalik* con 96% y *Economides* con 145%, se debe aclarar que el efecto de r_w en la correlación de *Mutalik* es muy pequeño porque se encuentra presente en la el denominador de la división de un logaritmo natural por lo tanto los resultados de *IP* para *Mutalik* son casi iguales, los cambios son notados en milésimas.

3.1.6 Radio externo de frontera.

 Tabla 3.11.
 Comportamiento de la productividad del pozo variando el radio externo de la frontera.

r (f4)		IP [bbl/(psi*dia)]								
r _e (IL)	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides				
1693	16.74	39.63	27.36	30.71	23.68					
2257	14.98	31.44	22.46	25.22	19.67	44.39				
2822	13.50	26.78	19.59	22.25	17.37	34.67				
2980	13.06	25.85	18.98	21.32	16.89	32.70				
3386	11.87	24.02	17.69	18.89	15.86	28.85				
3950	10.86	22.03	16.32	17.59	14.77	25.27				
4515	9.99	20.36	15.28	16.45	13.94	23.25				
5079	9.19	19.21	14.46	15.90	13.28	21.01				

 Tabla 3.12.
 Porcentaje de error para el radio externo de la frontera.

r. (ft)	Porcentaje de error para r _e							
	Mutalik	Babu	Kuchuk	Joshi	Economides			
1693	136.74	63.44	83.45	41.46				
2257	109.88	49.93	68.36	31.31	196.33			
2822	98.37	45.11	64.81	28.67	156.81			
2980	97.93	45.33	63.25	29.33	150.38			
3386	102.36	49.03	59.14	33.61	143.05			
3950	102.85	50.28	61.97	36.00	132.69			
4515	103.80	52.95	64.66	39.54	132.73			
5079	109.03	57.34	73.01	44.50	128.62			

Gráfica 3.6. Comportamiento de la productividad del pozo variando el radio del externo de frontera.

Se observa que el comportamiento del *IP* variando r_e conserva una tendencia de disminución en diferentes proporciones para todas las correlaciones, entre mayor sea el re menor será el *IP* debido al aumento del área a drenar teniendo una longitud de pozo constante, el porcentaje de error varía dependiendo de la relación de L/r_e , a medida que el *re* se acerca al valor de *L* el porcentaje de error disminuye por la reducción del efecto de penetración parcial, por el contrario si r_e se aleja el error aumenta, el orden de proximidad al simulador son respectivamente: *Joshi, Babu* y *Odeh, Kuchuk, Mutalik* y *Economides.*

3.1.7 Espesor de la capa.

b (ft)			P [bbl/(psi*dia)]		
n (iii)	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides
25	4.99	10.19	7.35	8.24	6.46	13.05
50	9.64	19.37	14.07	15.80	12.45	24.58
70	13.06	25.85	18.98	21.32	16.89	32.70
100	17.78	34.01	25.60	28.78	22.98	43.23
150	24.60	46.66	34.89	39.26	31.78	57.15
200	30.29	55.63	42.39	47.75	39.12	67.66
250	35.06	64.25	48.48	54.66	45.29	75.70
300	39.08	69.88	53.47	60.32	50.48	81.95
350	42.50	74.56	57.59	64.99	54.89	86.88
400	45.43	80.49	61.02	68.89	58.67	90.81

Tabla 3.13. Comportamiento de la productividad del pozo variando el espesor de la capa.

 Tabla 3.14.
 Porcentaje de error para el espesor de la capa.

b (ft)	Porcentaje de error para h							
11 (11)	Mutalik	Babu	Kuchuk	Joshi	Economides			
50	100.93	45.95	63.90	29.15	154.98			
70	97.93	45.33	63.25	29.33	150.38			
100	91.28	43.98	61.87	29.25	143.14			
150	89.67	41.83	59.59	29.19	132.32			
200	83.66	39.95	57.64	29.15	123.37			
250	83.26	38.28	55.90	29.18	115.92			
300	78.81	36.82	54.35	29.17	109.70			
350	75.44	35.51	52.92	29.15	104.42			
400	77.17	34.32	51.64	29.14	99.89			

Gráfica 3.7. Comportamiento de la productividad del pozo variando el espesor de la capa.

Se observa que el comportamiento del *IP* variando *h* conserva una tendencia de aumento en curva en diferentes proporciones para todas las correlaciones, entre mayor sea el la *h* mayor será el *IP* debido al incremento del área de drenaje en dirección vertical, la que causa el mejoramiento de la productividad, para espesores grandes la *Kv* juega un papel importante en el incremento del *IP*, a medida que crece *h* el porcentaje de error de los datos de las correlaciones comparados con el simulador disminuye, el orden de proximidad al simulador son respectivamente: *Joshi, Babu y Odeh, Kuchuk, Mutalik y Economides*.

3.2 MODIFICACIÓN DE LOS PARÁMETROS OPERACIONALES

3.2.1 Longitud de pozo horizontal para diferentes radios de drene.

Tabla 3.15. Comportamiento de la productividad del pozo variando la longitud horizontal para $r_e = 2257$ ft.

1 (f4)		IP [bbl/(psi*dia)]						
L (II)	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides		
300	5.80		7.31		7.24			
600	7.60		10.57		10.05	14.25		
900	8.83	17.32	13.26	14.54	12.28	19.06		
1200	9.74	20.39	15.77	17.21	14.33	24.46		
1500	10.37	24.15	18.25	20.62	16.32	31.41		
1800	11.27	29.08	20.75	23.06	18.31	39.12		
2000	11.84	31.74	22.46	25.22	19.67	44.39		
2100	12.12	33.29	23.32	26.06	20.36			
2400	12.94	38.46	25.98	29.78	22.48			
2700	13.74	42.82	28.74	32.56	24.69			
3000	14.51	46.78	31.60	34.84	27.04			

Tabla 3.16.	Porcentaje de error	para la longitud	horizontal a r _e =	2257 ft.
-------------	---------------------	------------------	-------------------------------	----------

I (f+)		Porcenta	aje de error	r para r _e :	= 2257
L (II)	Mutalik	Babu	Kuchuk	Joshi	Economides
300		26.03		24.83	
600		39.08		32.24	87.50
900	96.15	50.17	64.67	39.07	115.86
1200	109.34	61.91	76.69	47.13	151.13
1500	132.88	75.99	98.84	57.38	202.89
1800	158.03	84.12	104.61	62.47	247.12
2000	168.07	89.70	113.01	66.13	274.92
2100	174.67	92.41	115.02	67.99	
2400	197.22	100.77	130.14	73.72	
2700	211.64	109.17	136.97	79.69	
3000	222.40	117.78	140.11	86.35	

Gráfica 3.8. Comportamiento de la productividad del pozo variando la longitud horizontal para $r_e = 2257$ ft.

Tabla 3.17. Comportamiento de la productividad del pozo variando la longitud horizontal para r_e = 2980 ft.

1 (ft)	IP [bbl/(psi*dia)]							
L (II)	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides		
300	5.55		6.79		6.82			
600	7.47		9.62		9.26			
900	8.91	15.19	11.86	14.13	11.14	16.31		
1200	10.15	17.98	13.87	15.13	12.79	20.10		
1500	11.29	20.85	15.81	17.10	14.36	24.28		
1800	12.36	24.06	17.71	19.47	15.88	29.05		
2000	13.06	25.85	18.98	21.32	16.89	32.89		
2100	13.41	26.87	19.62	22.37	17.40	34.70		
2400	14.42	30.14	21.56	24.41	18.93	41.59		
2700	15.42	33.76	23.55	26.03	20.49			
3000	16.42	37.82	25.58	28.66	22.11			

I (ft)		Porcen	taje de erro	r para r _e	= 2980
E (11)	Mutalik	Babu	Kuchuk	Joshi	Economides
300		22.36		22.90	
600		28.73		23.91	
900	70.48	33.11	58.58	25.03	83.05
1200	77.14	36.65	49.07	26.01	98.03
1500	84.72	40.07	51.50	27.22	115.11
1800	94.58	43.23	57.46	28.43	134.94
2000	97.90	45.31	63.22	29.31	151.80
2100	100.44	46.36	66.87	29.80	158.85
2400	108.97	49.48	69.25	31.25	188.36
2700	118.87	52.68	68.76	32.84	
3000	130.38	55.82	74.58	34.68	

Tabla 3.18. Porcentaje de error para la longitud horizontal a r_e = 2980 ft.

Gráfica 3.9. Comportamiento de la productividad del pozo variando la longitud horizontal para r_e = 2980 ft.

Tabla 3.19. Comportamiento de la productividad del pozo variando la longitud horizontal para r_e = 3950 ft.

1 (f4)			P [bbl/(psi*dia)]		
L (II)	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides
300	5.03		6.31		6.45	
600	6.42		8.79		8.59	
900	7.46		10.67		10.17	14.22
1200	8.32	15.74	12.33	14.69	11.54	17.02
1500	9.07	18.19	13.87	15.50	12.79	19.92
1800	9.45	20.46	15.35	16.85	13.99	23.03
2000	9.86	22.03	16.32	17.59	14.77	25.28
2100	10.06	22.62	16.81	18.29	15.16	26.44
2400	10.64	24.89	18.26	19.99	16.31	30.26
2700	10.74	27.30	19.72	21.90	17.46	34.62
3000	11.24	29.90	21.19	23.65	18.62	39.68

Tabla 3.20. Porcentaje de error para la longitud horizontal a r_e = 3950 ft.

l (ft)	Porcentaje de error para r _e = 3950							
E (11)	Mutalik	Babu	Kuchuk	Joshi	Economides			
300		25.45		28.23				
600		36.92		33.80				
900		43.03		36.33				
1200	89.18	48.20	76.56	38.70	104.57			
1500	100.55	52.92	70.89	41.01	119.63			
1800	116.51	62.43	78.31	48.04	143.70			
2000	123.43	65.52	78.40	49.80	156.39			
2100	124.85	67.10	81.81	50.70	162.82			
2400	133.93	71.62	87.88	53.29	184.40			
2700	154.19	83.61	103.91	62.57	222.35			
3000	166.01	88.52	110.41	65.66	253.02			

Gráfica 3.10. Comportamiento de la productividad del pozo variando la longitud horizontal para r_e = 3950 ft.

Tabla 3.21. Comportamiento de la productividad del pozo variando la longitud horizontal para $r_e = 5079$ ft.

1 (f4)			P [bbl/(psi*dia)]		
L (II)	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides
300	4.85		5.91		6.15	
600	6.27		8.13		8.06	
900	7.26		9.78		9.44	
1200	8.07		11.18		10.61	14.98
1500	8.78		12.47		11.66	17.18
1800	9.43	18.10	13.68	15.29	12.65	19.44
2000	9.84	18.56	14.46	15.40	13.28	21.01
2100	10.04	19.76	14.85	15.96	13.59	21.82
2400	10.62	21.34	16.00	17.24	14.51	24.35
2700	11.17	23.25	17.14	18.64	15.42	27.10
3000	11.71	25.11	18.28	20.32	16.32	30.10

Gráfica 3.11. Comportamiento de la productividad del pozo variando la longitud horizontal para $r_e = 5079$ ft.

Se observa que el comportamiento del *IP* variando *L* conserva una tendencia de aumento en diferentes proporciones para todas las correlaciones, entre más grande sea el *L* mayor será el *IP* esto debido al incremento del rango a drenar pero también mayor será el error con respecto al simulador para un r_e constante porque se aleja de la tendencia de los datos del simulador.

Debido a que se acerca a un comportamiento de penetración completa aumentando el rango de drenaje y a su vez minimizando el impacto del efecto de daño por penetración parcial, el porcentaje de error de los resultados de las diferentes correlaciones comparadas con el simulador varían dependiendo de la relación de L/r_e , a medida que el r_e se acerca al valor de *L* el porcentaje de error disminuye y si r_e se aleja el error aumenta, el orden de proximidad al simulador son respectivamente: *Joshi, Babu* y *Odeh, Kuchuk, Mutalik* y *Economides*.

Se debe aclarar que las correlaciones de *Kuchuk* y *Mutalik* son indeterminadas para valores de L/r_e menores a 0.35, *Economides* L/r_e menores a 0.25 y también mayores a 0.45, debido a que se encuentran por fuera del rango de las tablas y graficas propuestas por estos autores para el cálculo de *IP*.

Tabla 3.22. Correlaciones que se aplican a los parámetros operacionales.

Parámetro	Correlación							
operacional	Mutalik	Babu	Kuchuk	Joshi	Economides			
Ubicación del pozo en el yacimiento	Х	0	0	Х	Х			
Excentricidad Z_w (ft)	х	0	0	Х	0			

3.2.2 Excentricidad.

 $Z_w = 17.5 \text{ ft}$

Tabla 3.23. Comportamiento de la productividad del pozo variando la excentricidad en el eje vertical.

7 (f+)	IP [bbl/(psi*dia)]							
Z _w (11)	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides		
8.75	12.77	25.85	18.46	20.75	16.89	31.49		
17.5	12.96	25.85	18.79	21.11	16.89	32.26		
35	13.06	25.85	18.98	21.32	16.89	32.70		
52.5	12.96	25.85	18.79	21.11	16.89	32.26		
61.3	12.77	25.85	18.46	20.75	16.89	31.49		

Se observa el mayor valor de *IP* cuando el pozo se en cuenta completamente en el centro del espesor de la capa productora, a medida que se aleja del centro, ya sea hacia el tope o la base, el *IP* tiende a disminuir en la misma proporción independiente de la dirección; al realizar los cálculos de las correlaciones variando Z_w las correlaciones de *Joshi* y *Mutalik* no mostraron cambio alguno, el orden de proximidad al simulador son respectivamente: *Babu* y *Odeh, Kuchuk* y *Economides*.

3.2.3 Ubicación del pozo en la geometría del yacimiento

Figura 3.2. Esquemas de ubicación del pozo horizontal vistas en el simulador.

Centrado

Descentrado a la derecha

Continuación figura 3.2. PEBI3_E100 Areal View

Descentrado a la izquierda

Descentrado en esquina superior derecha

Descentrado en esquina inferior izquierda

Ubicación		IF	P [bbl/(p	osi*dia)]		
Obicación	Simulador	Mutalik	Babu	Kuchuk	Joshi	Economides
Centrado	13.06	25.85	18.98	21.32	16.89	32.7
Descentrado a la						
izquierda	11.73	25.85	15.85	17.18	16.89	32.7
Descentrado a la						
derecha	11.73	25.85	15.85	17.18	16.89	32.7
Des. esquina inferior						
izquierda	8.94	25.85	9.96	11.35	16.89	32.7
Des. esquina						
superior derecha	8.94	25.85	9.96	11.35	16.89	32.7

 Tabla 3.24.
 Comportamiento de la productividad del pozo variando la ubicación del pozo en el yacimiento.

Se observa el mayor valor de *IP* cuando el pozo se encuentra completamente en el centro del yacimiento pero a medida que se aleja del centro, ya sea hacia la parte izquierda, esquina inferior izquierda, derecha, esquina superior derecha el *IP* tiende a disminuir en la misma proporción independiente de la dirección; al realizar los cálculos de las correlaciones variando las correlaciones de *Joshi* y *Mutalik* no mostraron cambio alguno, el orden de proximidad al simulador son respectivamente: *Babu* y *Odeh*, *Kuchuk* y *Economides*.

3.3 COMPARACIÓN DE LA CORRELACIÓN DE JOSHI Y EL SIMULADOR CON LA CORRELACIÓN MODIFICADA DE JOSHI.

Los resultados obtenidos por la correlación de *Joshi* y el simulador son comparados con una nueva correlación desarrollada a partir de un ajuste que se le realizó a la propuesta por *Joshi* ver anexo 3. Este ajuste se hizo debido a que los resultados del índice de productividad de *Joshi* fueron los más cercanos a los arrojados por el simulador, por tal motivo se tomo la correlación de *Joshi* para dicho cambio.

Los resultados del índice de productividad generados por la correlación modificada de *Joshi* presentaron un mejor acercamiento a los resultados presentados por el simulador numérico para todos los casos estudiados, con un porcentaje de error que varía de 1 a 10%, mucho menor al de la correlación original de *Joshi* (15-30%). Los resultados de las variables que más tienen influencia sobre el *IP*, son mostradas a continuación:

3.3.1 Espesor de la capa.

	IP [bbl/(ps	i*dia)]	Porce	ntaje de error
h (ft)	Simulador	Joshi	Joshi Modificado	Joshi	Joshi Modificado
25.00	4.99	6.46	4.65	29.46	6.81
50.00	9.64	12.45	8.98	29.15	6.85
70.00	13.06	16.89	12.22	29.33	6.43
100.00	17.78	22.98	16.67	29.25	6.24
150.00	24.60	31.78	23.17	29.19	5.81
200.00	30.29	39.12	28.65	29.15	5.41
250.00	35.06	45.29	33.29	29.18	5.05
300.00	39.08	50.48	37.25	29.17	4.68
350.00	42.50	54.89	40.64	29.15	4.38
400.00	45.430	58.67	43.56	29.14	4.12

Tabla 3.25. Comportamiento de la productividad del pozo variando el espesor de la capa.

Gráfica 3.13. Comportamiento de la productividad del pozo variando el espesor de la capa.

3.3.2 Radio externo de frontera.

r _e (ft)	IP [bbl/(psi*dia)]			Porcentaje de error	
	Simulador	Joshi	Joshi Modificado	Joshi	Joshi Modificado
1693	16.740	23.68	16.76	41.46	0.12
2257	14.980	19.67	14.09	31.31	5.94
2822	13.500	17.37	12.54	28.67	7.11
2980	13.060	16.89	12.22	29.33	6.43
3386	11.870	15.86	11.51	33.61	3.03
3950	10.860	14.77	10.76	36.00	0.92
4515	9.990	13.94	10.19	39.54	2.00
5079	9.190	13.28	9.73	44.50	5.88

Tabla 3.26. Comportamiento de la productividad del pozo variando el radio del externo de frontera.

3.3.3 Longitud de pozo horizontal para diferentes radios de drene.

L (ft)	IP [bbl/(psi*dia)]			Porcentaje de error	
	Simulador	Joshi	Joshi Modificado	Joshi	Joshi Modificado
300	5.800	7.24	5.43	24.83	6.38
600	7.600	10.05	7.46	32.24	1.84
900	8.830	12.28	9.04	39.07	2.38
1200	9.740	14.33	10.46	47.13	7.39
1500	10.370	16.32	11.83	57.38	14.08
1800	11.270	18.31	13.18	62.47	16.95
2000	11.840	19.67	14.09	66.13	19.00
2100	12.120	20.36	14.55	67.99	20.05
2400	12.940	22.48	15.96	73.72	23.34
2700	13.740	24.69	17.42	79.69	26.78
3000	14.510	27.04	18.96	86.35	30.67

Tabla 3.27. Comportamiento de la productividad del pozo variando la longitud horizontal para r_e = 2257 ft.

Gráfica 3.15. Comportamiento de la productividad del pozo variando la longitud horizontal para $r_e = 2257$ ft.

Tabla 3.28. Comportamiento de la productividad del pozo variando la longitud horizontal para r_e = 2980 ft.

L (ft)	IP [bbl/(psi*dia)]			Porcentaje de error	
	Simulador	Joshi	Joshi Modificado	Joshi	Joshi Modificado
300	5.549	6.82	5.13	22.90	7.56
600	7.473	9.26	6.9	23.91	7.67
900	8.910	11.14	8.23	25.03	7.63
1200	10.150	12.79	9.39	26.01	7.49
1500	11.287	14.36	10.48	27.22	7.15
1800	12.365	15.88	11.53	28.43	6.75
2000	13.062	16.89	12.21	29.31	6.52
2100	13.406	17.4	12.56	29.80	6.31
2400	14.423	18.93	13.59	31.25	5.77
2700	15.425	20.49	14.64	32.84	5.09
3000	16.416	22.11	15.71	34.68	4.30

Gráfica 3.16. Comportamiento de la productividad del pozo variando la longitud horizontal para $r_e = 2980$ ft.

Tabla 3.29. Comportamiento de la productividad del pozo variando la longitud horizontal para r_e = 3950 ft.

L (ft)	IP [bbl/(psi*dia)]			Porcentaje de error	
	Simulador	Joshi	Joshi Modificado	Joshi	Joshi Modificado
300	5.030	6.45	4.86	28.23	3.38
600	6.420	8.59	6.41	33.80	0.16
900	7.460	10.17	7.55	36.33	1.21
1200	8.320	11.54	8.51	38.70	2.28
1500	9.070	12.79	9.39	41.01	3.53
1800	9.450	13.99	10.23	48.04	8.25
2000	9.860	14.77	10.76	49.80	9.13
2100	10.060	15.16	11.03	50.70	9.64
2400	10.640	16.31	11.82	53.29	11.09
2700	10.74	17.46	12.6	62.57	17.32
3000	11.24	18.62	13.38	65.66	19.04

Gráfica 3.17. Comportamiento de la productividad del pozo variando la longitud horizontal para $r_e = 3950$ ft.

Tabla 3.30. Comportamiento de la productividad del pozo variando la longitud horizontal para $r_e = 5079$ ft.

L (ft)	IP [bbl/(psi*dia)]			Porcentaje de error	
	Simulador	Joshi	Joshi Modificado	Joshi	Joshi Modificado
300	4.850	6.15	4.64	26.80	4.33
600	6.270	8.06	6.03	28.55	3.83
900	7.260	9.44	7.03	30.03	3.17
1200	8.071	10.61	7.86	31.46	2.61
1500	8.780	11.66	8.6	32.80	2.05
1800	9.430	12.65	9.29	34.15	1.48
2000	9.840	13.28	9.73	34.96	1.12
2100	10.040	13.59	9.95	35.36	0.90
2400	10.620	14.51	10.59	36.63	0.28
2700	11.17	15.42	11.21	38.05	0.36
3000	11.71	16.32	11.82	39.37	0.94

Gráfica 3.18. Comportamiento de la productividad del pozo variando la longitud horizontal para $r_e = 5079$ ft.

CONCLUSIONES

- Se compararon las diferentes correlaciones para el cálculo del índice de productividad en pozos horizontales para estado pseudoestable, con el simulador numérico.
- Los resultados de cada correlación presentaron grandes variaciones con respecto al simulador.
- Se presentaron tablas y graficas del comportamiento del índice de productividad vs las diferentes variables involucradas para cada correlación y el simulador numérico.
- Entre las correlaciones comparadas, la propuesta por *Joshi* es la que más se acerca al comportamiento mostrado por el simulador numérico.
- Se determinaron los límites de aplicación de las correlaciones utilizadas para el cálculo de la productividad.
- Se creó un software llamado "OILIP" para el cálculo y modificación de las variables influyentes en el índice de productividad para cada una de las correcciones.
- Se desarrollo una correlación nueva ajustando la presentada por *Joshi*, obteniendo resultados más cercanos al comportamiento expuesto por el simulador numérico.

RECOMENDACIONES

- Realizar una comparación entre los resultados del simulador numérico con datos reales de campo.
- Profundizar en estudios comparativos con simuladores numéricos para pozos horizontales en estado estable y pseudoestable para casos de flujo bifásico y multifásico.
- En el momento de ingresar los datos al simulador tener en cuenta que los resultados obtenidos para visualizar el desarrollo del estado pseudoestable depende del tiempo de duración de la prueba y el tamaño del yacimiento.
- Verificar que el tiempo tomado sea el que corresponde al inicio del estado pseudoestable el cual puede observarse de la prueba generada en el *WELLTEST 200;* este tiempo nos permite calcular la presión de fondo fluyendo (*pwf*) y el cálculo del índice de productividad que se desea.
- Implementar más software de simulación de yacimientos en la sala CPIP, para complementar los estudios.

BIBLIOGRAFIA

Babu, D.K. and Odeh, A.S. (Noviembre, 1989). Productivity of a Horizontal Well. Paper SPE 417-421. SPE Reservoir Egineering.

Choi, S.K., Ouyang, L.B. and Huang, W.S. (Septiembre, 2008). A Comprehensive Comparative Study on Analytical PI/IPR Correlations. Paper SPE 116580. SPE Annual Technical Conference and Exhibition Held. Denver, Colorado, U.S.A

Economides, M.J. and Retnanto, A. (Septiembre, 1998). Inflow Performance Relationships of Horizontal and Multibranched Wells. Paper SPE 49054. SPE Annual Technical Conference and Exhibition Held. New Orleands, U.S.A.

Economides, M.J., and Diyashev, I.R. (Septiembre, 2005). The Dimensionless Productivity Index as a General Approach to Well Evaluation. Paper SPE 96644. SPE European Formation Damage Conference. Scheveningen, Netherlands.

ESCOBAR, F.H. Análisis moderno de pruebas de presión. 1 ed. Neiva, Huila, Colombia: Universidad Surcolombiana, 2006.

Joshi, S.D. (junio,1988). Augmentation of Well Productivity With Sland and Horizontal Wells. Paper SPE 15375. Journal of Petroleum Tecnology.

JOSHI, S. D. Horizontal Well Technology. Tulsa, OK, U.S.A: Pennwell Books, 1991.

Kuchuk, F.J., Goode, P.A., Brice, B.W., Sherrard, D.W., and Thambynayagam, M. (Octubre, 1988). Pressure Transient Analysis and Inflow Performance for Horizontal Wells. Paper SPE 18300. SPE 63rd Annual Technical conference and exhibition. Houston, U.S.A.

Mutalik, P.N., Godbole, S.P., and Joshi, S.D. (Octubre, 1988). Effect of Drainage Area Shapes on Horizontal Well Productivity. Paper SPE 18301. SPE 63rd Annual Technical conference and exhibition. Houston, U.S.A.

SCHLUMBERGER, ECLIPSE Techincal Description 2006.1. 2009.

SCHLUMBERGER, ECLIPSE Reference Manual 2006.1. 2009.

ANEXOS

ANEXO 1

PROCEDIMIENTO PARA OBTENER EL ÍNDICE DE PRODUCTVIDAD EN EL SIMULADOR NUMÉRICO.

Para la obtención del índice de productividad en el simulador numérico se procede de la siguiente manera:

A. CÁLCULO DEL TIEMPO DE INICIO DEL ESTADO PSEUDOESTABLE MEDIANTE UNA PRUEBA DE DECLINACIÓN DE PRESIÓN (DRAWDOWN).

Para la prueba de *drawdown* las curvas de presión son generadas en el software *Welltest 200* tomando los datos de la tabla 4, al ingresar al software *Welltest 200* los pasos a seguir son:

- Crear un proyecto para pozos horizontales con crudo muerto en la opción *Default File,* seleccionar *horzoil, Create New Project* darle un nombre al proyecto y pasar a la siguiente ventana (*Next*).
- 2. Señalar la opción "*Oil (>Pb, Rs const)*" luego ingresar los datos respectivos para generar la prueba y pasar a la siguiente ventana (*Next*).
- 3. Escoger la opción *Keyboard*, dar clic en *Load Rate* para ingresar los datos de caudal y tiempo de la prueba, darle OK.
- 4. Luego de ingresar los datos de tiempo y caudal de la prueba dar clic en **Set** *Flow Periods* y escoger *Initialize from rata data* dar clic en OK.
- 5. Hacer clic derecho sobre el grafico de caudal vs tiempo y seleccionar *Analize Period.*
- 6. Hacer clic derecho sobre *Analytical* (ubicado en el lado izquierdo de la pantalla) y escoger *Analytic Model*.
- 7. En Analytical Model ver que la opción Predict este seleccionada, señalar la pestaña Model Setup y seleccionar Perp Faults en Reservoir Shape, señalar la pestaña Geometry y digitar el tamaño de cada una de las fronteras en el recuadro Areal View, señalar las pestaña Reservoir y Well e ingresar los datos respectivos, ver figura 1.

Figura 1. Recuadro de modelo analítico en el Welltest 200.

En *Analytical Model* se pueden variar estos parámetros según la prueba lo considere.

8. Dar clic en *Generate* para que se muestre las curvas de presión y la derivada vs tiempo y luego cerrar la ventana, ver figura 2.

Figura 2. Curvas de presión y la derivada vs tiempo para una prueba de drawdown.

9. En el gráfico de la derivada observe el final de la curva el cual corresponde al inicio de una línea recta cuya pendiente es uno, lo que indica el estado pseudoestable; tome el valor del tiempo correspondiente al inicio de esta recta.

B. GENERACION DE LA MALLA PEBI Y OBTENCIÓN DE LA PRESIÓN DE POZO FLUYENDO (Pwf).

Para generar la malla PEBI y obtener la presión de pozo fluyendo (Pwf) se utiliza el software *Eclipse Office*, una vez iniciado el programa los pasos a seguir son:

- 1. Ir a *File* seleccionar *New Project* para crear un nuevo proyecto, darle nombre y abrir.
- 2. Dar clic en *Data* y se abre la ventana modulo administrador "*Data Manager Module*", ver figura 3.

ile View Section Help Sections Case Definition Grid PVT SCAL Initialization Regions Schedule Summary Multiple Sensitivities Optimize	Data Manager Module - ECLIPSE Office	
tions Case Definition Grid PVT SCAL Initialization Regions Schedule Summary Multiple Sensitivities Optimize	View Section Help	
Case Definition	ections	
Grid PVT SCAL Initialization Regions Schedule Summary Multiple Sensitivities Optimize	Case Definition	
PVT SCAL Initialization Regions Schedule Summary Multiple Sensitivities Optimize	Grid	
SCAL Initialization Regions Schedule Summary Multiple Sensitivities Optimize	PVT	
Initialization Regions Schedule Summary Multiple Sensitivities Optimize	SCAL (
Regions Schedule Summary Multiple Sensitivities Optimize		
Regions Schedule Summary Multiple Sensitivities Optimize	Initialization	
Schedule Summary Multiple Sensitivities Optimize	Regions	
Summary Multiple Sensitivities Optimize	Schedule	
Multiple Sensitivities Optimize	Summary	
Optimize	Multiple Sensitivities	
	Optimize	

Figura 3. Modulo administrador del Eclipse Office.

En Case Definition seleccionar Black Oil en la opción de simulador, en la pestaña General colocar los datos del comienzo de la simulación "Simulation Start Date" y en la pestaña PVT seleccionar Oil en propiedades "Oil-Gas-Water Properties" dar clic en Apply y luego OK.

- 4. En *Grid, Grid Section* ir a *Subsection*, constructor de mallas "*Unstructure Gridder*" donde se construirá la malla PEBI.
 - 4.1. En "Unstructure Gridder" ir a Create, Main Volume, Rectangule y dibujar en la grafica, enseguida aparecerá en el recuadro izquierdo Reservoir Data una ramificación que sale de Reservoir que es Main Volume.
 - 4.2. Hacer doble clic en *Main Volume* y se genera una ventana de nombre *Edit Primary Volume Data* donde se especifica los datos del volumen del yacimiento; después de digitar dar *Apply* y OK.
 - 4.3. En **Unstructure Gridder, Settings,** seleccionar **Cross Section** y especificar los valores para la línea transversal al yacimiento, clic en **Apply** y OK, ver figura 4.

Figura 4. Modulo de construcción de mallas en el Eclipse Office.

- 4.4. Nuevamente en "*Unstructure Gridder*" ir a *Create*, clic en *Const. Props.* aparece una ventana de nombre *Edit Property Data* donde se ingresan los datos de propiedades del yacimiento, dar clic en *Apply* y OK.
- 4.5. En "Unstructure *Gridder*" ir a *Create*, clic en *Hori. Well* y dibujar en la grafica, inmediatamente aparecerá en el recuadro izquierdo *Reservoir Data* una ramificación de nombre *WELL 1*, dar doble clic para editar los datos del pozo; luego de editar los datos en *Edit Well Data* ir a al botón de *Grid Control* donde se puede modificar los parámetros de la malla con respecto al pozo, ver figura 5. Luego dar OK para salir de *Grid Control y Apply* y OK para salir de *Edit Well Data*.

Figura 5. Cuadros para editar los datos del pozo y la malla en Eclipse Office.

Edit Well Data			83				
Well Name	WELL1			•			
Horizontal well							
X (ft)	Y(ft)	Depth (ft)	+	WELL1 Grid Controls		· · ·	
3640	2640	7035	_	WELLI GILI CONTIONS			
3640	4640	7035		Grid style			
			1	• Specify spacing	Bulk spacing		
				Extent of cartesian grid	226.2069	ft	-
•		Þ		Distance to first point	0.656	ft	-
Effective Wellbore	Volume 0	ft^3	-	Transverse cells	8		
Reference depth	0	ft		Cell growth rate	2.256772		
Grid Controls	Perforations	Reset Depths		Longitudinal cells	8		
			Y dimensions of grid controls have been scaled				
ок	Apply Can	cel Help	1	ок	Cancel	Help	

- 4.6.Con los datos ingresados y creados todo lo concerniente al yacimiento y ubicación del pozo, ir a *Unstructure Gridder, Grid* y dar clic en *Generate Grid* para generar la malla PEBI.
- 4.7.Luego de generar la malla, en *Unstructure Gridder, Grid* dar clic en *Generate Properties* para generar las propiedades; el grafico mostrará la malla con sus propiedades ya generadas, ver figura 6.

Figura 6. Yacimiento con pozo horizontal, propiedades y malla PEBI generada en *Eclipse Office.*

- 4.8. Ir a *File, Save* y cerrar *Unstructure Gridder*.
- 4.9. En *Grid Section* ir a *Gridview* y dar clic en *Run Simulation*. Luego de correr la simulación abrir nuevamente *Gridview* y dar clic en *3D* para ver la malla en las tres dimensiones, ver figura 7, cerrar *Grid Section*.

Figura 7. Vista en 3D del yacimiento con pozo horizontal en el Eclipse Office.

- 5. Abrir *PVT* ir a *Section*, *Keywords*, aparecerá una ventana de nombre *PVT Keywords*.
 - 5.1.En PVT Keywords, Edit, clic en Insert Keyword, insertar "Dead Oil PVT Properties (No Dissolved Gas)", ingresar valores y clic en Apply; también insertar Fluid Densities At Surface Conditions, digitar los valores y clic en Apply.
 - 5.2. En **PVT Keywords, Edit**, clic en **Explore Keywords** y buscar **Rock Properties** dar clic en **Apply** y aparecerá una ventana para que ingrese los datos de las propiedades de las rocas, dar clic en **Apply**.
 - 5.3. cerrar **PVT Keywords** y en **PVT Section** dar clic en **Apply**, ir a **File**, **Save** y cerrar.
- Abrir SCAL, ir a Section dar clic en Correlations y en Keyword Families seleccionar "SWOF, SGOF, SLGOF" dar clic en Apply y cerrar; en SCAL Section ir a File, Save y cerrar.

- 7. Abrir *Initialization*, *Edit*, clic en *Insert Keyword* para insertar *Equilibration Data Specification*, ingresar valores y darle *Apply*.
 - 7.1.En Initialization Section, Edit, dar clic en Explore Keyword y buscar Restart File Output Control dar clic y seleccionar Last Report, FIP Report y clic en Apply.
 - 7.2. Ir a File, Save y cerrar Initialization Section.
- 8. Abrir **Schedule** aparecerán los datos cargados generados por **Unstructure** *Gridder*.
 - 8.1.En Schedule Section, Event, clic en new y aparecerá una ventana con Event Types y Events, buscar en Event Types "Well Control And Limits", y en Events "Production Well Control" dar clic en Apply luego ingrese los datos necesarios y Apply nuevamente.
 - 8.2. En **Schedule Section**, **Time**, **Insert** ingresar los datos de tiempo de duración de la simulación y clic en OK.
 - 8.3. Ir a *File, Save* para guardar y luego cerrar el *Schedule Section*.
- 9. Abrir **Summary Section**, en **Keywords** seleccionar de la pestaña General "**ALL**" y dar clic en **Add to List**.
 - 9.1. De la pestaña Well, en Phases seleccionar Others en Types seleccionar Pressure, en la lista que aparece seleccionar WBHP y WELL1 luego clic en Add to List.
 - 9.2. Ir a *File, Save* para guardar y luego cerrar *Summary Section*.
- 10. Cerrar el modulo administrador "Data Manager Module".
- 11. Dar clic en *Run* y se abre el *Run Manager Module*, escoger el icono de color verde que dice "*Go*" para que se inicie la corrida de la simulación.
- 12. Luego de terminada la simulación cierre el **Run Manager Module** y abra **Report, File, Open Current Case, SUMMARY**, seleccione **Read All Summary Vectors y Read All Reports** luego dar clic en **Load**.
- 12.1. Del Report Generator Module, en la parte de Selected Vector señalar WBHP:WELL1 y dar doble clic; luego dar clic en Generate Report la cual activa la opción Output (localizada en la parte superior de la ventana).
- 12.2. Dar clic en *Output* y se generan los datos de Pwf (BHP) y tiempo, si se desea observar la grafica se da clic en *Plot* para generarla, ver figura 8.

Figura 8. Comportamiento de la Pwf contra el tiempo para el caso estudiado en *Eclipse Office.*

- 13.Los datos generados en el *report generator module* son exportados a un archivo .txt mediante la opción *utility, calculator*
- 13.1.Primero se debe crear el archivo .txt en el disco C, para este caso se llamara "C:/vectores.txt".
- 13.2. Ahora si se abre la calculadora en *utility, calculator*, este abre la ventana *program*, en el menú *calculator* están las opciones para ver los vectores y ver los *keyword* de programación.
- 13.3.Digite:vwritecol("C:\vectores.txt", TIME_PEBI3_E100_1, WBHP_WELL1_PEBI3_E100_1), luego clic en calculator, run program.
- *13.4.* Ya se tiene los datos en el archivo .txt lo que nos permite llevarlos a *Excel* para realizar cálculos y hacer graficas.
- 14. Ya corrida totalmente la simulación se puede observar nuevamente el grafico en 3D con los pasos citados anteriormente (paso 4.9), ver figura 9.

Figura 9. Vista en 3D del yacimiento con pozo horizontal con los resultados de la corrida total en el *Eclipse Office.*

C. CALCULO DEL INDICE DE PRODUCTIVIDAD.

Con el tiempo de inicio del estado pseudoestable y su correspondiente presión de pozo fluyendo (pwf), se calcula el índice de productividad con la siguiente ecuación:

$$J_o = \frac{q_o}{Pe - Pwf}$$

ANEXO 2

SOFWARE "OILIP" PARA EL CALCULO DE LA PRODUCTIVIDAD EN POZOS HORIZONTALES ESTADO SPSEUDOESTABLE

Para la realización del cálculo de la productividad se diseño el software "OILIP". El cual fue realizado en el lenguaje de programación "visual Basic.Net" y contiene las diferentes correlaciones para dicho calculo; como algo adicional se le agrego la entrada de datos como son los calculados en el simulador, esto con el fin de comparar dichos resultados.

El software permite hallar los valores de la productividad de cada correlación, genera una tabla para cada cambio de variables y grafica el resultado de la productividad vs la variable cambiada según su rango.

La validación de los datos fue cotejada con datos de las correlaciones hechas en Excel y estos datos tomados de los diferentes documentos mencionados con cada correlación estudiada. El resultado de esta validación dio una aproximación cercana al 100%.

Las figuras 1, 2 y 3, permiten observar la interfaz del software "OILIP".

Constantes		Variables				Método	
Parámetro	Valor	k promedio		🔘 но		🔲 Babu y Odeh	
^p e (psi)	3500	Parámetro	Valor	Parámetro	Valor	Economides	
^o r (psi)	2500	kv (mD)	80	μο (cP)	1.7	Joshi	
o (b/cft)	52	kox (mD)	168			Joshi modificado	
lo (stb∕d))	500	ky (mD)	93			Kuchuk et al.	
;	0	O b				Mutalik et al.	
V.	0.738					Simulador	
7	1.386	Parámetro	Valor	Parámetro	Valor		_
Dq (1/BOPD)	0	h (tt)	/0	rw (tt)	0.328		
		⊚ re					
		Parámetro	Valor	<u>^</u>			
		re (fft)	2980	=			
		10 (17)					
		xe (ft)	2640				
		xe (ft) ye (ft)	2640 2640	•			
		xe (ft) ye (ft)	2640 2640				
		xe (ft) ye (ft) C L Parámetro	2640 2640 Valor	 φ βο Valor 		×	
		xe (ft) ye (ft) C L Parámetro L (ft)	2640 2640 Valor 2000		rb/stb		

Figura 1. Interfaz de datos de entrada en el software "OILIP"

Figura 2. Interfaz de resultados para cada correlación en el software "OILIP"

ANEXO 3

MODIFICACIÓN DE LA ECUACION DE JOSHI

Como se mostró antes, *Joshi* observó que un pozo horizontal de longitud *L* drena en forma elipsoidal, mientras que un pozo vertical drena un volumen cilíndrico circular. Ambos pozos drenan una altura *h*, pero sus volúmenes de drene son diferentes. Para calcular matemáticamente la producción de crudo de un pozo horizontal, primero se necesita resolver una ecuación en tres dimensiones 3D. Si se asume presión constante en la frontera y en la cara del pozo, la solución daría a una presión de distribución dentro del yacimiento. Tan pronto la presión es conocida, las ratas de producción de crudo pueden ser calculadas por la ley de *Darcy*.

Para simplificar la solución matemática, el problema de 3D es subdividido en dos de dos dimensiones 2D. Se observa que la subdivisión del problema de drenaje elipsoidal es: (1) flujo de crudo en el pozo horizontal en el plano horizontal y (2) flujo de crudo en el pozo horizontal en el plano vertical

$$q_{1} = \frac{2\pi K \Delta p / \mu}{\ln\left(\frac{a + \sqrt{a^{2} - \Delta r^{2}}}{\Delta r}\right)}$$

Drenaje en el plano horizontal.

Donde $\Delta r = L/2$ y *a* es el eje mayor de la elipse.

$$q_2 = \frac{2\pi K \Delta p / \mu}{\ln(h / 2rw)}$$
 Drenaje en el plano vertical.

Para un yacimiento anisotrópico, el modelo de *Joshi* (1988), fue corregido y ajustado por *Economides et al* (1991), y tiene esta forma:

$$J_{o} = \frac{Kh * h}{141.2\beta_{o}\mu_{o} \left[\ln \left[\frac{a + \sqrt{a^{2} - (L/2)^{2}}}{L/2} \right] + \left[\frac{I_{ani}h}{L} \right] * \left[\ln \frac{I_{ani}h}{rw(I_{ani} + 1)} - 0.75 + S \right] \right]}$$

Donde J_o es el índice de productividad (stb/(dia.psi)), *Kh* es la permeabilidad horizontal (md), *h* el espesor de la capa (ft), μo es la viscosidad del crudo (cp), βo es el factor volumétrico del crudo (rb/stb).

La proporción de permeabilidad anisotrópica, *I_{ani}* es definida como:

$$I_{ani} = \sqrt{\frac{Kh}{Kv}}$$

Donde *Kh* y *Kv* son permeabilidades horizontal y vertical respectivamente (md).

Una dimensión clave del yacimiento es *a*, la mitad de la longitud de un drenaje elipsoidal en el plano vertical:

$$a = \frac{L}{2} \left[0.5 + \left[0.25 + \left(\frac{re}{L/2} \right)^4 \right]^{0.5} \right]^{0.5}$$

Donde *re* es el radio externo de frontera (ft) y *L* la longitud del pozo horizontal (ft).

Para el ajuste de la ecuación de *Joshi* se buscaron dos factores **Y** y **W** que multiplicaran ambos flujos "el horizontal y el vertical" que están representados en el denominador de la ecuación.

$$J_{o} = \frac{Kh * h}{141.2Y\beta_{o}\mu_{o} \left[\ln \left[\frac{a + \sqrt{a^{2} - (L/2)^{2}}}{L/2} \right] + W \left[\frac{I_{ani}h}{L} \right] * \left[\ln \frac{I_{ani}h}{rw(I_{ani} + 1)} - 0.75 + S \right] \right]}$$

Se realizaron diversos cálculos para hallar los valores apropiados para **Y** y **W** tales que el valor del índice de productividad sea igual resultado del simulador; estos valores fueron hallados utilizando métodos numéricos y el programa *Solver* que es una herramienta de aplicación de *Microsoft Excel*.

Reemplazando los valores la ecuación modificada de *Joshi* queda de la siguiente manera:

$$J_{o} = \frac{Kh * h}{182.329 \beta_{o} \mu_{o} \left[\ln \left[\frac{a + \sqrt{a^{2} - (L/2)^{2}}}{L/2} \right] + 1.3073 \left[\frac{I_{ani}h}{L} \right] * \left[\ln \frac{I_{ani}h}{rw(I_{ani} + 1)} - 0.75 + S \right] \right]}$$

Los cálculos de los factores Y y W se muestran a continuación:

Parámetro	IP [bbl/(psi*dia)]	Y	w	
$\beta_o = 1 \text{ rb/stb}$	14.368	1.22315703	1.2452625	
$\beta_o = 1,4 \text{ rb/stb}$	9.580	1.30466874	1.26613307	
$\beta_o = 1,8 \text{ rb/stb}$	7.980	1.22373809	1.24432371	
h = 50 ft	9.64	1.22007675	1.24335688	
h = 150 ft	24.60	1.22990029	1.24557687	
h = 350 ft	42.50	1.24480147	1.24811813	
$r_e = 2257 \text{ ft}; \text{ L} = 600 \text{ ft}$	7.600	1.27600417	1.25315755	
r _e = 2257 ft; L = 2000 ft	11.840	1.52919158	1.32940296	
r _e = 2257 ft; L = 2700 ft	13.740	1.61314849	1.3637344	
$r_e = 2980 \text{ ft}; L = 600 \text{ ft}$	7.473	1.19479182	1.2906482	
$r_e = 2980 \text{ ft}; \text{ L} = 2000 \text{ ft}$	13.062	1.21078363	1.294534	
$r_e = 2980 \text{ ft}; \text{ L} = 2700 \text{ ft}$	15.425	1.22792793	1.29947845	
$r_e = 3950 \text{ ft}; \text{ L} = 600 \text{ ft}$	6.420	1.29010526	1.30777409	
r _e = 3950 ft; L = 2000 ft	9.860	1.40306037	1.33388933	
$r_e = 3950 \text{ ft}; \text{ L} = 2700 \text{ ft}$	10.74	1.49828289	1.36113873	
$r_e = 5079 \text{ ft}; \text{ L} = 600 \text{ ft}$	6.270	1.24078723	1.32437622	
r _e = 5079 ft; L = 2000 ft	9.840	1.27265951	1.33075865	
$r_e = 5079 \text{ ft}; \text{ L} = 2700 \text{ ft}$	11.17	1.28928706	1.33464712	
μ _o = 1 cp	20.372	1.29311149	1.39829684	
μ _o = 5 cp	4.251	1.2423546	1.38580118	
μ _o = 10 cp	2.233	1.18562826	1.37228324	
Valores de Y y W p	1.29128053	1.30728191		