UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA DE PETRÓLEOS GRUPO DE INVESTIGACIÓN EN PRUEBAS DE POZOS

APLICACIÓN DE LA TECNICA TIAB'S DIRECT SYNTHESIS TECHNIQUE (TDS) A YACIMIENTOS NATURALMENE FRACTURADOS ALARGADOS CON TRANSICION DURANTE EL FLUJO DUAL LINEAL.

DIANA PAOLA HERNANDEZ CRUZ

JULY ANDREA SAAVEDRA TORREJANO

Neiva, Huila Diciembre de 2008

UNIVERSIDAD SURCOLOMBIANA

FACULTAD DE INGENIERÍA

PROGRAMA DE INGENIERÍA DE PETRÓLEOS

GRUPO DE INVESTIGACIÓN EN PRUEBAS DE POZOS

APLICACIÓN DE LA TECNICA TIAB'S DIRECT SYNTHESIS TECHNIQUE (TDS) A YACIMIENTOS NATURALMENE FRACTURADOS ALARGADOS CON TRANSICION DURANTE EL FLUJO DUAL LINEAL.

DIANA PAOLA HERNANDEZ CRUZ

JULY ANDREA SAAVEDRA TORREJANO

Trabajo parcial presentado como requisito para optar

al título de Ingeniero de Petróleos

Director

FREDDY HUMBERTO ESCOBAR MACUALO

Doctor en Ingeniería de Petróleos

Neiva, Huila Diciembre de 2008

Nota de aceptación

Firma del presidente del jurado

Firma del jurado

Firma del jurado

Neiva, Diciembre de 2008

AGRADECIMIENTOS

Las autoras expresan sus agradecimientos:

A Freddy Humberto Escobar Macualo, PhD, profesor titular de la Universidad Surcolombiana, director de nuestro proyecto de tesis, por su apoyo incondicional, tiempo y dedicación en todo el desarrollo del proyecto, y en especialmente por su paciencia y esmero.

A Jairo Antonio Sepulveda, Master en Ingeniería de Petróleos, profesor titular de la Universidad Surcolombiana, por su tiempo en las asesorías, su entrega hacia el proyecto y dedicación.

A nuestros compañeros Juan Manuel Yunda, Ingris Astrid Mendoza, por su apoyo incondicional.

A nuestros padres y familiares que han estado como guías en la consecución de nuestras metas y proyectos.

CONTENIDO GENERAL

	Pág.
INTRODUCCION	10
CAPITULO 1.	
1. Conceptos Generales	11
CAPITULO 2.	
2. Método de Síntesis Directa TDST para un pozo vertical de petróleo en un	
yacimiento alargado naturalmente fracturado con transición durante el	
flujo dual lineal.	15
2.1. Modelo del yacimiento e identificación de los diferentes regimenes	1.5
de flujo encontrados durante la prueba.	15
2.1.1. Generación de curvas tipo.	15
2.1.2. Regímenes de Flujo	18
2.2. Método de Síntesis Directa TDST para un pozo vertical de petróleo en un	
yacimiento alargado naturalmente fracturado.	20
2.2.1. Líneas Características	21
2.2.1.1. Flujo radial	21
2.2.1.2. Flujo dual lineal	21
2.2.1.3. Punto Máximo	23
2.2.1.4. Puntos Mínimos	26
2.3. Puntos de Intersección	30
2.3.1. Intersección entre la línea del estado pseudoestable con la línea de fluio	
dual lineal.	30
2.3.2. Intersección entre la línea de flujo radial con la línea de flujo dual lineal.	31

CAPITULO 3	
3. Procedimientos	33
3.1. Ejemplos Simulados	35
3.2. Ejemplo Real	46
4. CONCLUSIONES	51
5. RECOMENDACIONES	52
NOMENCLATURA	53
REFERENCIAS	55
ANEXOS	57

LISTA DE FIGURAS

Figura 1. Puntos y líneas característicos de un yacimiento fracturado	
naturalmente con flujo interporoso en estado pseudoestable. ω =0.01	
y λ=1*10-6.	14
Figura 2. Posición del pozo vertical.	16
Figura 3. Ubicación del pozo.	17
Figura 4. Esquema del yacimiento.	17
Figura 5. Limites del yacimiento.	17
Figura 6. Comportamiento de la derivada y presión adimensional para un	
yacimiento alargado naturalmente fracturado con un pozo situado en	
el centro.	19
Figura 7. Efecto del ω y λ sobre la presión y su derivada durante el flujo dual	~ 4
lineal.	24
Figura 8. Efecto del λ sobre la presión y su derivada durante el flujo dual	
lineal.	25
Figura 9. Efecto del ω sobre la presión y su derivada durante el flujo dual	
lineal.	29
Figura 10. Puntos de intersección entre los regímenes de flujo.	32
Figura 11a. Gráfico log-log de presión y derivada de presión para una prueba	
simulada de un yacimiento alargado fracturado naturalmente para el	
ejemplo 1.	39
Figura 11b. Gráfico log-log de presión y derivada de presión para una prueba	
simulada de un yacimiento alargado fracturado naturalmente para e	1

ejemplo 1.

Figura 12a	. Gráfico log-log de presión y derivada de presión para una prueba	
	simulada de un yacimiento alargado fracturado naturalmente para el	
	ejemplo 2.	44

- Figura 12b. Gráfico log-log de presión y derivada de presión para una prueba

 simulada de un yacimiento alargado fracturado naturalmente para el

 ejemplo 2.
 45
- Figura 13. Gráfico log-log de presión y derivada de presión para una prueba simulada de un yacimiento naturalmente fracturado y alargado para el ejemplo real.

LISTA DE TABLAS.

Tabla 1 . Datos de entrada del simulador Ecrin V4.02.04.	16
Tabla 2. Límites del yacimiento.	18
Tabla 3 . Datos de presión y derivada de presión para el ejemplo 1,	
de un yacimiento alargado naturalmente fracturado.	57
Tabla 4. Comparación de los resultados del ejemplo 1.	38
Tabla 5. Datos de presión y derivada de presión para el ejemplo 2,	
de un yacimiento alargado naturalmente fracturado.	58
Tabla 6. Comparación de resultados del ejemplo 2.	43
Tabla 7. Datos de presión y derivada de presión para el ejemplo real	
de un yacimiento alargado naturalmente fracturado.	60

RESUMEN

Un número importante de pruebas de presión se llevaron a cabo aplicando la metodología moderna conocida como la técnica de Síntesis Directa de Tiab, para la interpretación de yacimientos naturalmente fracturados alargados con transición durante el flujo dual lineal.

La simulación de las pruebas se hicieron con el programa de computador especializado para la interpretación de trasciende de presión denominado Ecrin V 4.02.04(Kappa Saphir) de la compañía Kappa Engineering que cuenta con un menú de líneas especializadas para la aplicación de la metodología TDST.

En este trabajo de grado se presenta un análisis del comportamiento de la presión y derivada de presión para un pozo vertical de petróleo en yacimientos alargado fracturados naturalmente, estudiando los regímenes de flujo en forma independiente, en especial la transición durante el flujo dual lineal.

El pozo se encuentra ubicado en el centro del yacimiento alargado, observando que una vez termine el flujo radial se genera el inicio del flujo dual lineal. La identificación de puntos de intersección, líneas y pendientes característicos permiten desarrollar una técnica de interpretación sin emplear curvas tipo, generando ecuaciones analíticas y correlaciones que se usan para encontrar los parámetros que caracterizan este tipo de yacimientos tales como: permeabilidad, daño, área y ancho del yacimiento: en especial los parámetros adimensionales: coeficiente de almacenamiento ω y el parámetro de flujo interporoso λ . La metodología propuesta se verifico mediante pruebas reales (análisis de campo) y pruebas simuladas.

ABSTRACT

A significant number of well pressure test are conduced, using the modern methodology knows as TIAB'S DIRECT SYNTHESIS TECHNIQUE, for the interpretation of long naturally fractured reservoirs with transition period during the dual-linear flow regime.

The simulation of the test are conduced with the computer program for the interpretation of pressure transient denominate Ecrin V 4.02.04(Kappa Saphir) of the Kappa Engineering company, that have a menu of specialized lines for the application the TDST methodology.

In this paper, a analysis of pressure and pressure derivative behavior for a vertical well in a long naturally fractured reservoirs is presented, studying independently each flow regime, especially the transition during the dual-linear flow regime.

The well is located in the center of long reservoir, dual-linear flow regime develops once radial flow have ended. The identification of intersection points, lines and characteristic slopes allows us to develop an interpretation technique without employing type-curve matching, generating analytical equations and correlations to determined such reservoir as: dimensionless storativity coefficient ω and interporosity flow parameter λ . The proposed technique was verified by real test and synthetics test.

INTRODUCCION

La técnica TDST permite realizar procedimientos para generar técnicas en la interpretación de pruebas de presión y derivada de presión sin emplear el ajuste de curvas tipo, permite además realizar análisis independientemente de los regímenes de flujo que se presentan. El principal objetivo de esta técnica es presentar una interpretación práctica del comportamiento de la presión en pozos verticales localizados en un yacimiento alargado fracturado naturalmente.

La interpretación es basada en ecuaciones analíticas y correlaciones para la determinación de permeabilidad, daño, ancho del yacimiento y área del mismo, a partir de la grafica de la derivada de presión. Estos parámetros han sido obtenidos a través del uso de líneas y puntos característicos encontrados en un gráfico log-log de presión y derivada de presión; estos corresponden a los diferentes regímenes de flujo usados en la verificación de los parámetros obtenidos por las pendientes.

Durante la realización de este trabajo se formula un nuevo sistema de modelamiento de transición durante el flujo dual lineal a partir de nuevas ecuaciones basadas en ecuaciones existentes, evaluando la función de derivada de presión e identificando la relación existente entre los parámetros ω y λ .

Este trabajo se planteo de la siguiente manera: en el primer capitulo, se presenta brevemente los conceptos generales de TDST para yacimientos fracturados naturalmente. El segundo capitulo comprende la descripción y análisis de las curvas tipo generadas por el programa Ecrin V4.02.04, así mismo se presenta la TDST para desarrollar las ecuaciones analíticas y correlaciones requeridas para la interpretación de pruebas de presión aplicadas a ejemplos reales y simulados.

CAPITULO 1.

CONCEPTOS GENERALES

Los yacimientos naturalmente fracturados se representan como yacimientos con doble porosidad, porosidad dual o yacimientos fisurados. En general, un yacimiento de porosidad dual se compone de dos sistemas:

- 1. Sistema matriz: presenta una baja permeabilidad pero alta capacidad de almacenamiento. Sin embargo, el sistema matriz es considerado permeable tal que el fluido pueda ser transferido desde el sistema matriz al de fisuras.
- 2. Sistema de fractura o fisuras: presenta una alta permeabilidad y baja capacidad de almacenamiento.

Existen muchos modelos que se han presentado para describir el comportamiento de la presión de yacimientos con doble porosidad (fracturados naturalmente). Dos de este sin numero de modelos difieren en términos del tratamiento del flujo interporoso, la manera como el flujo es transferido desde el sistema matriz a las fisuras. En la primera aproximación se asume que la rata de flujo transferida desde el sistema matriz al sistema fractura es proporcional a la diferencia entre la presión de la matriz y la presión de la fractura. En esta primera aproximación, los la geometría matriz/fractura de los gradientes de presión en la matriz se determina a partir de un factor de forma (shape factor). Este modelo es referido al modelo Warren y Root o más conocido como modelo de flujo interporoso de estado pseudoestable PSS. La segunda aproximación asume que la transferencia de fluido desde la matriz a las fisuras ocurre bajo condiciones de estado trasciende TS; la geometría de la fractura/matriz es tratado explícitamente asumiendo una forma de matriz como bloque, por ejemplo, esférica, cilíndrica o cúbica. Esta última aproximación se refiere al modelo de flujo interporoso trasciende TS o Kazemi de Swaan. Este trabajo de investigación se basa principalmente en el PSS.

Basados en la aproximación de flujo interporoso PSS, los parámetros que caracterizan un yacimiento naturalmente fracturado (comportamiento de yacimientos de doble porosidad) son el coeficiente de almacenamiento adimensional ω y el parámetro de flujo interporoso λ .

Este trabajo de investigación se realiza teniendo en cuenta las siguientes consideraciones:

- Identificación de una única fase de flujo de fluido compresible de viscosidad constante en un yacimiento de acción infinita naturalmente fracturado de espesor uniforme.
- El yacimiento es drenado por un pozo vertical el cual produce a un caudal constante y el sistema de fracturas provee la capacidad de flujo total para esta rata de producción.
- Los efectos del almacenamiento de la formación son despreciables.

Con las consideraciones anteriormente nombradas, se aplico la Tiab's Direct Síntesis Technique como un método que combina los puntos característicos y las pendientes de un gráfico log-log de datos de presión y derivada de presión con las soluciones analíticas exactas para obtener propiedades del yacimiento tal como se ilustra en la Fig 1. Los periodos de flujo que se observan son: radial de acción infinita están representados por una línea recta horizontal de derivada de presión, El primer segmento corresponde al depletamiento de la fractura y el segundo a la reacción del yacimiento homogéneo equivalente, Thomas Engler, Djebbar Tiab (1995):

La solución de la presión de la cara del pozo en un yacimiento de acción infinita, está dada por Wong, D.W, Cinco-Ley, H (1986).

$$P_{D}' = \frac{1}{2} \left[\ln t_{D} + 0.80908 + E_{i} \left(-\frac{\lambda t_{D}}{\omega(1-\omega)} \right) - E_{i} \left(-\frac{\lambda t_{D}}{1-\omega} \right) \right] + s$$
(1)

Donde la función de la derivada es:

$$t_D P'_D = \frac{1}{2} \left[1 - \exp\left(\frac{\lambda t_D}{1 - \omega}\right) + \exp\left(-\frac{\lambda t_D}{\omega (1 - \omega)}\right) \right]$$
(2)

Donde las variables adimensionales se definen por:

$$P_D = \frac{kh}{141 \cdot 2 q \mu B_o} \Delta P \tag{3}$$

$$t_{D} = \frac{0.0002637 \quad kt}{\phi c_{t} \mu r_{w}^{2}}$$
(4)

Dos parámetros claves para la caracterización de yacimientos naturalmente fracturados (sistema de doble porosidad PSS) derivados por Warren y Root: el coeficiente de almacenamiento adimensional ω , y el parámetro de flujo interporoso, λ . ω proporciona un estimado de la magnitud y la distribución de la matriz y el almacenamiento de la fractura, y λ es una medida de la rata de transferencia de masa de la matriz a la red de fracturas y por lo tanto describe la capacidad de flujo de la matriz disponible en las fracturas. Estas variables son definidas como:

$$\omega = \frac{\phi_2 c_2}{\phi_1 c_1 * \phi_2 c_2}$$

$$\lambda = \alpha r^2 w \frac{k_1}{k_2}$$
⁽⁵⁾
⁽⁶⁾

Donde:

 α : refleja la geometría de los elementos de la matriz.

 $\lambda_{1} \phi_{1} \phi_{2}$: matriz bruta y las porosidades de fractura, respectivamente, o en otras palabras la relación de los volúmenes porosos de la matriz y la fractura en el volumen total bruto.

Fig 1. Puntos y líneas características de un yacimiento fracturado naturalmente con flujo interporoso en estado pseudoestable $\omega = 0.01$, $\lambda = 1 \times 10^{-6}$ -

Fuente: Escobar Freddy Humberto, Análisis Moderno de Pruebas de Presión. Capitulo 7.

CAPITULO 2.

METODO DE SINTESIS DIRECTA (TDST) PARA UN POZO VERTICAL DE PETROLEO EN UN YACIMIENTO ALARGADO FRACTURADO NATURALMENTE.

El análisis de pruebas de presión es una herramienta excelente para describir y definir el modelo en un yacimiento cuando se maneja un campo hidrocarbunífero; es el método primario para determinar: permeabilidad, daño, presión de yacimiento, entre otros. Además, es el único método más rápido y económico para estimar estos parámetros que son dependientes del tiempo.

Una vez los datos han sido obtenidos y revisados en pruebas de presión, el análisis comprende dos pasos:

- 1. Modelo de yacimiento e identificación de los diferentes regímenes de flujo encontrados durante la prueba.
- 2. Estimación de parámetros teniendo en cuenta la Síntesis Directa Desarrollada por Tiab; esta técnica de análisis de presión y derivada de presión sin el uso del ajuste de curvas tipo es un procedimiento paso a paso para calcular las propiedades de fluido y yacimiento usando ecuaciones apropiadas de las líneas y puntos característicos de las curvas.

2.1. MODELO DE YACIMIENTO E IDENTIFICACION DE LOS DIFERENTES REGIMENES DE FLUJO ENCONTRADOS DURANTE LA PRUEBA.

2.1.1. Generación de Curvas Tipo:

Para la generación de curvas tipo, las cuales son necesarias para desarrollar la técnica de interpretación e identificarlas líneas y puntos característicos, se uso el programa especializado Ecrin V4.02.04 (Kappa Saphir).

Caudal, q	300	Bbl/día
Tiempo, t	10000	Horas
Daño del yacimiento	0	
Almacenamiento del pozo, C	0	bbl/psi
Espesor de la formación, h	30	Ft
Compresibilidad de la formación, ct	3E -6	1/psi
Radio del pozo,rw	0.3	Ft
Porosidad	0.1	%
Presión inicial	5000	Psi
Factor volumétrico, Bo	1	Bbl/STB
YE	1000	Ft
Viscosidad	1	Ср
Modelo del pozo	Vertical	
Modelo del yacimiento	Doble porosidad PPS	
Rectangular		
ω	0.05	
λ	1.00E-08	
Xe	20000	Ft

Tabla 1.Datos de Entrada Simulador Ecrin V4.02.04.

El pozo se encuentra ubicado en el centro del yacimiento naturalmente fracturado alargado, como se muestra en la fígura 2.

Se generaron diferentes gráficas, de acuerdo al valor del coeficiente de almacenamiento ω y del parámetro de flujo interporoso λ .

Figura 2. Posición del pozo vertical.

•

Fuente: Proceso Investigativo el proyecto. Ecrin V4.02.04

Figura 3. Ubicación del pozo.

Fuente: Proceso Investigativo el proyecto. Ecrin V4.02.04

Figura 4. Esquema del yacimiento.

 \frown	

Fuente: Proceso Investigativo el proyecto. Ecrin V4.02.04.

Figura 5. Límites del yacimiento.

Fuente: Proceso Investigativo el proyecto. Ecrin V4.02.04

Tabla.2. Límites del yacimiento.

S	500	Ft
Е	10000	Ft
Ν	500	Ft
W	10000	Ft

2.1.2 Regímenes de Flujo.

La Fig 6. ilustra las características únicas de un gráfico de presión y derivada de presión versus tiempo adimensionales para un pozo vertical en yacimiento alargado fracturado naturalmente con los datos de la tabla 1.

Referente a la Fig. 6 se pude realizar el siguiente análisis: Los períodos de flujo radial de acción infinita están representados por una línea recta horizontal de derivada de presión. Los periodos de flujo dual lineal representados por una línea de pendiente 0.5. El período de transición después del flujo dual lineal, el primer segmento corresponde al depletamiento de la fractura y el segundo a la reacción del yacimiento homogéneo equivalente. Por ultimo el periodo de flujo pseudoestable representada por una línea de pendiente unitaria.

Fig. 6. Comportamiento de la derivada y presión adimensional para un yacimiento alargado naturalmente fracturado, con un pozo vertical situado en el centro del yacimiento.

t D

2.2. METODO DE SINTESIS DIRECTA TDST PARA UN POZO VERTICAL DE PETROLEO EN UN YACIMIENTO ALARGADO NATURALMENTE FRACTURADO.

Para el desarrollo de La Tiab's Direct Síntesis Technique aplicada al trabajo realizado se tiene en cuenta los siguientes parámetros adimensionales:

1. Tiempo adimensional:

$$t_D = \frac{0.0002637 \ kt}{\phi \mu c_t r_w^2}$$
(7)

2. Presión adimensional

$$P_D = \frac{kh}{141.2qB\mu} \Delta P \tag{8}$$

3. Tiempo adimensional para flujo lineal:

$$t_{DL} = \frac{t_D}{W_D} \tag{9}$$

4. Ancho adimensional

$$W_D = \frac{Y_E}{r_w} \tag{10}$$

5. Derivada de presión adimensional

$$\left(t_{D} * P_{D}^{'}\right) = \frac{kh}{141.2qB\mu} * \left(t_{D} * P_{D}^{'}\right)$$
(11)

2.2.1 LÍNEAS CARACTERÍSTICAS

2.2.1.1. FLUJO RADIAL.

Thomas Engler, Djebbar Tiab (1995), demostraron una ecuación para la derivada durante este tiempo está dada por:

$$\left(t_D * P_D'\right) = \frac{1}{2} \tag{12}$$

Sustituyendo por las variables adimensionales y reordenando resultados en una técnica simple y rápida para determinar la permeabilidad de la red de fracturas:

$$k = \frac{70.6 \, q \, \mu B_o}{h \left(t \ * P' \right)_r} \tag{13}$$

Donde $(t^*\Delta P')r$ es la derivada de la presión a algún tiempo conveniente, t.

El daño durante el flujo radial es:

$$s_r = 0.5 \left(\frac{\Delta P_r}{\left(t^* \Delta P'\right)_r} - \ln\left(\frac{k_f t_r}{\omega \phi \mu c_t {r_w}^2}\right) + 7.43 \right)$$
(14)

2.2.1.2. FLUJO DUAL LINEAL.

Este flujo normalmente se reconoce por que presenta una pendiente de 1/2, tal como se muestra en la Fig. 6. En nuestro caso el flujo dual lineal es el resultado de que el ancho del yacimiento se encuentre en una proporción pequeña en comparación con el largo del mismo (yacimiento alargado). A partir de la generación de este flujo en un yacimiento naturalmente fracturado surgen las ecuaciones que se presentan a continuación, partiendo principalmente de la ecuación gobernante:

La ecuación gobernante es:

$$P_{D} = \frac{2\sqrt{\pi t_{D}}}{\sqrt{\omega W_{D}}} + s_{DL}$$
(15)

Siendo s_{DL} el daño causado por la convergencia del flujo radial al dual lineal.

La derivada de la ecuación anterior es:

$$\left(t_{D} * P_{D}^{'}\right) = \frac{\sqrt{\pi t_{DL}}}{W_{D}\sqrt{\omega}}$$
(16)

Reemplazando en la ecuación anterior los valores de las ecuaciones 7, 8 y 10 el término de permeabilidad por el ancho del yacimiento Y_E es:

$$\sqrt{k}Y_{E} = \frac{4.06416 \ qB}{h(t * \Delta P')_{DL}} \sqrt{\frac{\Delta t_{DL} \mu}{\phi c_{t} \omega}}$$
(17)

Para $\Delta t = 1$ hr

$$\sqrt{k} Y_E = \frac{4.06416 \quad qB}{h(t * \Delta P')_{DL}} \sqrt{\frac{\mu}{\phi c_t \omega}}$$
(18)

El daño causado por la convergencia del flujo radial al dual lineal puede hallarse dividiendo la presión adimensional por su derivada, sustituyendo las variables adimensionales por las cantidades en unidades de campo y despejando s_{DL}, tenemos:

$$s_{DL} = \left(\frac{\Delta P_{DL}}{\left(t * \Delta P'\right)_{DL}} - 2\right) \frac{1}{34.743} \frac{kt_{DL}}{Y_E} \sqrt{\frac{kt_{DL}}{\phi \mu c_t \omega}}$$
(19)

Donde:

t_{DL} : cualquier tiempo conveniente durante el flujo dual lineal.

 ΔP_{DL} , (t* $\Delta P'$)_{DL}': presión y derivada de presión correspondiente a t_{DL}.

2.2.1.3 PUNTO MÁXIMO:

Para determinar el valor de λ se tomaron los valores máximos de la derivada de presión durante el periodo de transición. La Fig. 7 ilustra diferentes valores de λ en un rango entre 1E-8 hasta 9E-8 y para cada valor de λ se grafican valores de ω en un rango entre 0.01 hasta 0.1. Sin embargo la Fig. 8 de $(t \times P'_{wD})\lambda_f^{1/2}$ vs t_D alcanza un valor único del máximo para diferentes familias de curvas con variación de los parámetros λ y ω como se ilustra en la figura 8.

Donde el punto máximo para la familia de curvas corresponde al valor de:

$$\lambda^{\frac{1}{2}} (t_D * P_D')_{\text{max}} = 0.000227$$
⁽²⁰⁾

Reemplazando en la ecuación el valor de t_D con la ecuación (7) en la anterior y despejando el valor del parámetro de flujo interporoso λ , se tiene:

$$\lambda = \left[\frac{0.0320524 \quad q \,\mu B_o}{kh \,(t * P') \max}\right]^2 \tag{21}$$

Fig.7. Efecto del ω y λ sobre la presión y su derivada adimensional durante el flujo dual lineal.

t D

Fig. 8. Efecto del λ sobre la presión y su derivada adimensional durante el flujo dual lineal.

2.2.14. PUNTOS MINIMOS:

En la Fig.6 se observa que en la parte recta de la curva de derivada se indica el período de transición para yacimientos alargados fracturados naturalmente. La parte más baja de esta parte recta es dependiente del coeficiente de almacenamiento adimensional, pero independiente del flujo interporoso.

En la Fig. 9. Se grafica t_D versus $P_D y (t_D * P_D)$ para un rango de valores de ω para un determinado λ . Tomando como base esta gráfica se generaron diferentes correlaciones donde se relacionan las variables nombradas anteriormente con el valor de ω . Por lo que el valor del coeficiente de almacenamiento esta relacionado con la derivada de presión $(t_D * P_D)_{min}$, tiempo $(t_D)_{min}$ y el valor de λ . Las siguientes correlaciones se generaron con el programa especializado Table Curve 2D v 5.01.

Correlación 1:

En esta correlación el valor de ω depende del la derivada de $(t_D * P_D)_{min}$ y del valor de λ :

$$\omega = \frac{a + c * (t_D * P'_D)_{\min} + e\lambda + g * (t_D * P'_D)_{\min}^2 + i\lambda^2 + k * (t_D * P'_D)_{\min} \lambda}{1 + b * (t_D * P'_D)_{\min} + d\lambda + f * (t_D * P'_D)_{\min}^2 + h\lambda^2 + j * (t_D * P'_D)_{\min} \lambda}$$

Las constantes son definidas:

a = -0.001453744345531936

- b = -0.4034531139231534
- c = 0.004969243560711644
- d = 9384837.434697306
- e = -25245.96831604798

f = 0.03947187690326912

g = -0.00884465599095826

h = -6557972683918.12

i = -371412686858.0194

j = -10246537.3284442

k = 2190827.21495808

Esta correlación es la recomendablemente usada, ya que tiene un error del 0.12%.

Correlación 2:

En esta correlación el valor de omega depende del tiempo y la derivada de presión adimensionales del punto mínimo:

 $\omega = a + bt_D + c \ln(t_D * P_D') + dt^2_D + e \ln(t_D * P_D')^2 + ft_D \ln(t_D * P_D') + gt_D^3 + h \ln(t_D * P_D')^3 + it_D \ln(t_D * P_D')^2 + jt_D^3 i \ln(t_D * P_D')^3 + it_D \ln(t_D * P_D')^$

Las constantes se definen como:

a= 0.311245913434052

b= -2.370850857204912E-08

c= 0.2991375371411262

d=-1.21694647249764E-15

e= 0.09804801848276096

f= 1.74956959326334E-08

g= 9.994911652511862E-23

h= 0.01139557746643557

i= 1.299349660522994E-08

j= -2.525663039488802E-15

Esta correlación presenta un 0.396%.

El valor de ω se puede obtener a partir de la ecuación principal o gobernante de flujo dual lineal (ecu. 15), reemplazando los valores adimensionales de las ecuaciones (7), (8) y (11) en unidades de campo, tenemos:

$$\omega = \frac{16.5186 * \mu * t_{DL}}{\phi * C_t * k} \left[\frac{q * B}{Y_E * h * (t * \Delta P')_{DL}} \right]^2$$
(22)

Fig. 9. Efecto del ω sobre la presión y su derivada adimensional durante el flujo dual lineal.

2.3 PUNTOS DE INTERSECCIÓN

2.3.1. INTERSECCION ENTRE LA LINEA DEL ESTADO PSEUDOESTABLE CON LA LINEA DE FLUJO DUAL LINEAL.

Cuando el yacimiento es rectangular con sus fronteras laterales cerradas, para tiempos largos de producción se obtiene una línea recta de pendiente unitaria en la curva de derivada de presión la cual corresponde el flujo de estado pseudoestable, cuya ecuación esta dada por:

$$\left(t_D * P'_D\right)_{PSS} = 2\pi t_{DA} \tag{23}$$

Donde:

、

,

$$t_{DA} = \frac{0.0002637 \quad kt}{\phi \mu \, c_t Y_E^2} \tag{24}$$

Al interceptar esta línea de PSS con el flujo dual lineal como se muestra en la Fig. 10 y reemplazando los valores de la ecuación (25) en la ecuación (24) se obtienen la siguiente ecuación para determinar el área de drene:

$$A = 0.05828558 \sqrt{\frac{Y_E^2 \omega k t_{DLPSSi}}{\phi \mu c_i}}$$
(25)

El flujo radial que se presenta como una línea de pendiente horizontal, cuando intercepta con la línea de estado pseudoestable cuando Djebbar Tiab, (1993):

$$t_{DARi} = \frac{1}{4\pi} \tag{26}$$

Sustituyendo la ecuación (25) en la ecuación anterior se obtiene el área de drene:

$$A = \frac{kt_{RPSSi}}{301.77\phi\mu c_t}$$

(27)

2.3.2 INTERSECCION ENTRE LA LINEA DE FLUJO RADIAL CON LA LINEA DE FLUJO DUAL LINEAL:

De la intersección entre la línea de la derivada de presión de comportamiento radial infinito (línea recta horizontal) con el flujo dual lineal, como se muestra en la Fig. 10 e igualando las ecuaciones (12) y (15), tenemos:

$$\left(t_D * P_D'\right) = \frac{\sqrt{\pi t_D}}{W_D \sqrt{\omega}} = 0.5$$
(28)

Reemplazando el valor de W_D (Ecu. 10), y sustituyendo los valores adimensionales de las ecuaciones (7) y (11) se obtiene la ecuación que define el ancho del yacimiento:

$$Y_E = 0.0575652 \sqrt{\frac{kt_{RDLi}}{\phi\mu c_t \omega}}$$
(29)

Fig. 10. Puntos de intersección entre los regimenes de flujo.

CAPITULO 3.

PROCEDIMIENTOS

CASO 1.- CUANDO SE CONOCE EL ANCHO DEL YACIMIENTO, YE

Paso 1. Graficar ΔP y (t* ΔP ') contra tiempo en un gráfico logarítmico.

Paso 2. Dibujar la línea de flujo radial de comportamiento infinito, la línea de pendiente $\frac{1}{2}$ correspondiente al flujo dual lineal, y la línea de flujo Pseudoestable de pendiente unitaria.

Paso 3. Calcular la permeabilidad, k, usando la ecuación (13), leyendo el valor de la derivada de presión durante el flujo radial, $(t^* \Delta P')_r$.

Paso 4. Tomando un valor de la derivada de presión $(t^* \Delta P')_{DL}$, y tiempo $(t)_{DL}$ durante el flujo dual lineal, y el valor de la permeabilidad anteriormente calculado, hallamos el coeficiente de almacenamiento, ω , mediante la ecuación (22).

Paso 5. Leer el valor del punto de intersección entre el flujo radial y dual lineal $(t)_{RDLi}$, para verificar el ancho del yacimiento, Y_E, con la ecuación (29).

Paso 6. Leer el valor del punto de intersección entre el flujo dual lineal y Pseudoestable, $(t)_{DLPSSi}$ para calcular el área del yacimiento, A, con ecuación (25).

Paso 7. Tomando el valor de la derivada máxima de presión $(t^* \Delta P')_{max}$, calculamos el parámetro de flujo interporoso, λ , mediante la ecuación (21)

Paso 8. Se verifica el valor de la permeabilidad con la ecuación (17) y despejando k, tomando un valor de la derivada de presión (t* $\Delta P'$)_{DL}, tiempo (t)_{DL} durante el flujo dual lineal.

Paso 9. Calcular el daño debido al flujo radial de la ecuación (14), tomando un valor de la derivada de presión $(t^* \Delta P')_r$, tiempo $(t)_r$, y ΔP_r durante el flujo radial.

Paso 10. Calcular el daño debido al flujo dual lineal de la ecuación (19), tomando un valor de la derivada de presión (t* $\Delta P'$)_{DL}, tiempo (t) _{DL}, y ΔP _{DL} durante el flujo dual lineal.

Paso 11. Calcular el daño total, el cual es la suma de los daños en cada régimen de flujo.

CASO 2.- CUANDO SE CONOCE EL VALOR DE LA PERMEABILIDAD, k

Paso 1. Graficar ΔP y (t* ΔP ') contra tiempo en un grafico logarítmico.

Paso 2. Dibujar la línea de flujo radial de comportamiento infinito, la línea de pendiente $\frac{1}{2}$ correspondiente al flujo dual lineal, y la línea de flujo Pseudoestable de pendiente unitaria.

Paso 3. Tomando el valor de la derivada máxima de presión (t* $\Delta P'$)_{MAX,} calculamos el parámetro de flujo interporoso, λ ,mediante la ecuación (21).

Paso 4. Con el valor del parámetro de flujo interporoso, λ , hallado anteriormente, y tomando el valor de la derivada mínima de presión, (t* $\Delta P'$)_{MIN}, calculamos el coeficiente de almacenamiento, ω mediante la correlación (1).

Paso 5. Leer el valor del punto de intersección entre el flujo radial y dual lineal $(t)_{RDLi}$, para hallar el ancho del yacimiento con la ecuación (29).

Paso 6. Leer el valor del punto de intersección entre el flujo dual lineal y Pseudoestable, $(t)_{LPSSi}$, para calcular el área del yacimiento, A, con la ecuación (25).

Paso 7. Se verifica el valor de la permeabilidad con la ecuación (17) y despejando k, tomando un valor de la derivada de presión $(t^* \Delta P')_{DL}$, tiempo $(t)_{DL}$ durante el flujo dual lineal.

Paso 8. Verificamos el valor del coeficiente de almacenamiento ω , con la ecuación (22) y tomando un valor de la derivada de presión (t* $\Delta P'$)_{DL}, y tiempo (t)_{DL} durante el flujo dual lineal.

Paso 9. Calcular el daño debido al flujo radial de la ecuación (14), tomando un valor de la derivada de presión $(t^* \Delta P')_r$, tiempo $(t)_r$, y ΔP_r durante el flujo radial.

Paso 10. Calcular el daño debido al flujo dual lineal de la ecuación (19), tomando un valor de la derivada de presión (t* ΔP ')_{DL}, tiempo (t) _{DL}, y ΔP _{DL} durante el flujo dual lineal.

Paso 11. Calcular el daño total.

3.1 EJEMPLOS SIMULADOS

EJEMPLO 1

Los datos de la simulación de una prueba de restauración de presión para un yacimiento naturalmente fracturado alargado, se muestran en la tabla 3. Del yacimiento y del pozo se conocen los siguientes datos:

Caudal, q = 300 BPD

Espesor de la formación, h = 50 ft

Compresibilidad de la formación, $ct = 3 * 10^{-6} psi^{-1}$

Radio del pozo, $r_w = 0.35$ ft

Porosidad, $\varphi = 15 \%$

Factor Volumétrico, Bo = 1.2 Bbl

Viscosidad de aceite = 1.26 cp.

Determine:

- 1. La permeabilidad.
- 2. Parámetro de flujo interporoso.
- 3. Coeficiente de almacenamiento adimensional.
- 4. Factor de daño.
- 5. El área del yacimiento.

Para el análisis del método de la síntesis de Tiab se cuenta con los datos de la tabla 3 (anexos).

SO LUCION

De la Fig. 11a y 11b se leyeron los siguientes valores:

 $(t^* \Delta P')_r = 25.556 \, psi$ $(\Delta P')_r = 337.765 \, psi$ $(t)_r = 0.2hr$ $(t)_{RDLi} = 1.85hr$ $(t^* \Delta P')_{DL} = 33.386 psi$ $(\Delta P')_{DL} = 411.1960hr$ $(t)_{DL} = 3.177hr$ $(t)_{DLPSSi} = 20000hr$ $(t^* \Delta P')_{max} = 76.6619 psi$

La permeabilidad se calcula de la ecuación (13):

$$k = \frac{70.6q\mu B_o}{h(t * P')_r} = \frac{70.6*300*1.26*1.2}{50*25.556} = 25.061md$$

El coeficiente de almacenamiento se calcula con la ecuación (22), y tomando un punto conveniente del flujo dual lineal:

$$\omega = \frac{16.5186 * 1.26 * 3.177}{0.15 * 3x10^{-6} * 25.061} \left[\frac{300 * 1.2}{1800 * 50 * 33.386} \right]^2 = 0.08417$$

Verificamos el largo del yacimiento con la ecuación (29), y tomando el punto de intersección de la línea de flujo radial con la línea de flujo dual lineal:

$$Y_E = 0.0575652 \sqrt{\frac{25.061*1.85}{0.15*1.26*3x10^{-6}*0.08417}} = 1794.21 ft$$

El área del reservorio la podemos hallar mediante la ecuación (25):

$$A = 0.05828558 \sqrt{\frac{1800^2 * 0.08417 * 25.8061 * 20000}{0.15 * 1.26 * 3x10^{-6}}} = 28618578.01 ft^2$$

El parámetro de flujo interporoso λ se calcula con la ecuación (21), y tomando el valor de la derivada máxima:

$$\lambda = \left[\frac{0.0320524 * 300 * 1.26 * 1.2}{25.061 * 50 * 76.6619682}\right]^2 = 2.29508E - 08$$

Se verifica el valor de la permeabilidad con la ecuación (17) despejando k, y tomando un punto conveniente del flujo dual lineal:

$$k = \left[\frac{4.06416*300*1.2}{1800*50*33.386}\sqrt{\frac{3.177*1.26}{0.15*3x10^{-6}*0.08417}}\right]^2 = 25.059md$$

Se calcula el daño del flujo radial mediante la ecuación (14):

$$S_r = 0.5 \left(\frac{337.76547}{(25.556)} - \ln \left(\frac{25.061 \times 0.2}{0.084 \times 0.15 \times 1.26 \times 3x10^{-6} \times 0.35^2} \right) + 7.43 \right) = -6,53$$

Se calcula el daño del flujo dual lineal mediante la ecuación (19):

$$S_{DL} = \left(\frac{441.196}{33.386} - 2\right) \frac{1}{34.743*1800} \sqrt{\frac{25.061*3.177}{0.15*1.26*3x10^{-6}*0.08417}} = 6.73825$$

Por lo tanto, el daño es:

$$S = S_r + S_{DL}$$

$$S = -6,53 + 6.73825 = 0.205$$

PARAMETROS	VALOR	PARAMETROS	VALOR
SIMULADOS		CALCULADOS	
K	25 md	K	25.061 md
Y _E	1800 ft	Y_{E}	1794.21 ft
λ	1E-8	λ	2.29508E-8
ω	0.08	ω	0.08417
А	28'618.578,01 ft ²	А	28'800.000 ft ²

Tabla 4. Comparación de los resultados del ejemplo 1.

Fig. 11a. Gráfico log-log de presión y derivada de presión para una prueba simulada de un yacimiento alargado naturalmente fracturado del Ejemplo 1.

t, hr

Fig. 11b. Gráfico log-log de presión y derivada de presión para una prueba simulada de un yacimiento alargado naturalmente fracturado. Ejemplo 1

t, hr

EJEMPLO 2

Los datos de presión medidos en la simulación de una prueba de restauración de presión se muestran en la tabla 5. Otros datos conocidos del pozo y del yacimiento son:

Caudal, q = 200 BPD

Espesor de la formación, h = 40 ft

Compresibilidad de la formación, $ct = 3 * 10^{-6} psi^{-1}$

Radio del pozo, $r_w = 0.5$ ft

Porosidad, $\varphi = 20 \%$

Factor Volumétrico, Bo = 1.25 Bbl

Viscosidad de aceite = 1 cp

Determine:

- 1. La permeabilidad.
- 2. El parámetro de flujo interporoso.
- 3. El coeficiente de almacenamiento adimensional.
- 4. El factor de daño.
- 5. El área del yacimiento.

Para el análisis del método de la síntesis de Tiab se cuenta con los datos de la tabla 5 (anexos).

SOLUCION

De las figuras (12a) y (12b) se leyeron los siguientes valores:

$$(t * \Delta P')_r = 12.5605 \, psi$$

 $(\Delta P)_r = 155.659 \, psi$
 $(t)_r = 0.1hr$
 $(t)_{RDLi} = 0.43hr$
 $(t * \Delta P')_{DL} = 18.882 \, psi$
 $(\Delta P')_{DL} = 411.1960 \, psi$

 $(t)_{DL} = 1.0047hr$ $(t)_{DLPSSi} = 49000hr$ $(t*\Delta P')_{max} = 116.0141psi$

La permeabilidad se calcula de la ecuación (13):

$$k = \frac{70.6q\mu B_o}{h(t^*P')_r} = \frac{70.6^*200^{*}1^{*}1.25}{40^*12.5605} = 35.129md$$

El coeficiente de almacenamiento se calcula con la ecuación (22), y tomando un punto conveniente del flujo dual lineal:

$$\omega = \frac{16.5186*1*1.0047}{0.2*3E - 6*35.129} \left[\frac{200*1.25}{1200*40*18.882} \right]^2 = 0.06$$

Verificamos el largo del yacimiento con la ecuación (29), y tomando el punto de intersección de la línea de flujo radial con la línea de flujo dual lineal:

$$Y_E = 0.0575652 \sqrt{\frac{35.129 \times 0.43}{0.2 \times 1 \times 3E - 6 \times 0.06}} = 1213.915 ft$$

El área del reservorio la podemos hallar mediante la ecuación (25):

$$A = 0.05828558 \sqrt{\frac{1200^2 * 0.06 * 35.129 * 49000}{0.2 * 1 * 3E - 6}} = 28997127.13 ft^2$$

El parámetro de flujo interporoso se calcula con la ecuación (21), y tomando el valor de la derivada máxima:

$$\lambda = \left[\frac{0.0320524 * 200 * 1 * 1.25}{35.129 * 40 * 116.014}\right]^2 = 2.416 \times 10^{-9}$$

Verificaremos el valor de la permeabilidad con la ecuación (17) y despejando k, y tomando un punto conveniente del flujo dual lineal:

$$k = \left[\frac{4.06416*200*1.25}{1200*40*18.882}\sqrt{\frac{1.0047*1}{0.2*3E-6*0.06}}\right]^2 = 35.127md$$

Se calcula el daño del flujo radial y dual lineal mediante las ecuaciones (14) y (19) respectivamente:

$$S_r = 0.5 \left[\frac{155.65975}{12.56055} - \ln \left(\frac{35.129 * 0.1}{0.06 * 0.2 * 1 * 3x 10^{-6} * 0.5^2} \right) + 7.43 \right] = -6.156$$

$$S_{DL} = \left\lfloor \frac{187.649}{18.882} - 2 \right\rfloor \frac{1}{34.743*1200} \sqrt{\frac{35.129*1.0047}{0.2*1*3E - 9*0.06}} = 5.9507$$

$$S = -6.156 + 5.9507 = -0.205$$

Tabla 6. Comparación de resultados del ejemplo 2.

PARAMETROS	VALOR	PARAMETROS	VALOR
SIMULADOS		CALCULADOS	
Κ	35 md	Κ	35.129 md
Y _E	1200 ft	Y _E	1213.915 ft
λ	5E-9	λ	2.416E-9
ω	0.06	ω	0.06
Α	28'997.127,13 ft ²	Α	28'800.000 ft ²

t, hr

Fig. 12b. Gráfico log-log de presión y derivada de presión para una prueba simulada de un yacimiento naturalmente fracturado y alargado. Ejemplo 2.

t, hr

3.2 EJEMPLO REAL

El presente ejemplo se tomo de una prueba de presión real generada en un pozo de petróleo ubicado en Sur América, los datos de presión y derivada de presión se presentan en la tabla 7. Los datos de roca y fluido se presentan a continuación.

Caudal, q = 457 Bbl/dia

Espesor de la formación, h = 84 ft

Compresibilidad de la formación, $ct = 9.899 * 10^{-6} psi^{-1}$

Radio del pozo, $r_w = 0.5$ ft

Porosidad, $\varphi = 7.34$ %

Factor Volumétrico, Bo = 1.49 Bbl

Viscosidad de aceite = 9.4 cp.

Pruebas anteriores demuestran que la permeabilidad, k es de 2700 mD.

Estimar:

- 1. El ancho del yacimiento Y_{E} .
- 2. El área del yacimiento en ft.
- 3. El valor de lambda y omega.

Para el análisis del método de la síntesis de Tiab se cuenta con los datos de la tabla 7(anexos).

SOLUCION POR EL METODO DE LA SINTESIS DIRECTA DE TIAB

De las figuras (13a) y (13b) se leyeron los siguientes valores:

 $(t * \Delta P')_r = 1.99 psi$ $(\Delta P')_r = 11.98 psi$ $(t)_{r} = 1E - 2hr$ $(t)_{RDLi} = 0.01hr$ $(t^{*} \Delta P')_{DL} = 3.2 psi$ $(\Delta P')_{DL} = 16.06hr$ $(t)_{DL} = 0.03hr$ $(t)_{DLPSSi} = 165hr$ $(t^{*} \Delta P')_{max} = 1.95 psi$

El parámetro de flujo interporoso λ se calcula con la ecuación (21), y tomando el valor de la derivada máxima:

$$\lambda = \left[\frac{0.0320524 * 457 * 9.4 * 1.49}{2700 * 84 * 1.95}\right]^2 = 2.1519 \times 10^{-7}$$

El coeficiente de almacenamiento ω se calcula con la correlación (1), se toma el punto mínimo de la derivada el cual es 2.764147622 psi y lambda calculada anteriormente, se reemplazan:

$$\omega = \frac{a + c * (t_D * P'_D)_{\min} + e\lambda + g * (t_D * P'_D)_{\min}^2 + i\lambda^2 + k * (t_D * P'_D)_{\min} \lambda}{1 + b * (t_D * P'_D)_{\min} + d\lambda + f * (t_D * P'_D)_{\min}^2 + h\lambda^2 + j * (t_D * P'_D)_{\min} \lambda}$$

 $\omega = 0.0521$

Donde:

a = -0.001453744345531936

- b = -0.4034531139231534
- c = 0.004969243560711644
- d = 9384837.434697306
- e = -25245.96831604798
- f = 0.03947187690326912
- g = -0.00884465599095826

h = -6557972683918.12

i = -371412686858.0194

j = -10246537.3284442

k = 2190827.21495808

El ancho del yacimiento con la ecuación (29), y tomando el punto de intersección de la línea de flujo radial con la línea de flujo de dual lineal:

$$Y_E = 0.0575652 \sqrt{\frac{2700 * 0.01}{0.0734 * 9.4 * 9.899 x 10^{-6} * 0.0521}} = 537.7107 ft$$

El área del reservorio la podemos hallar mediante la ecuación (25):

$$A = 0.05828558 \sqrt{\frac{537.7107^2 * 0.0521 * 2700 * 165}{0.0734 * 9.4 * 9.899x10^{-6}}} = 1826990.36 ft^2$$

Se verifica el valor de la permeabilidad con la ecuación (17) despejando k, y tomando un punto conveniente del flujo dual lineal:

$$k = \left[\frac{4.06416*457*1.49}{537.7107*84*3.840}\sqrt{\frac{4.35x10^{-2}*9.4}{0.0734*9.899x10^{-6}*0.05534}}\right]^2 = 2710.311md$$

Se verifica el valor del coeficiente de almacenamiento con la ecuación (22):

$$\omega = \frac{16.5186*9.4*0.03}{0.0734*9.899x10^{-6}*2700} \left[\frac{457*1.49}{537.710*84*3.2}\right]^2 = 0.0527$$

Se calcula el daño del flujo radial mediante la ecuación (14):

$$S_r = 0.5 \left(\frac{11.98}{(1.99)} - \ln \left(\frac{2700 * 0.01}{0.05345 * 0.0734 * 9.4 * 9.899 \times 10^{-6} * 0.5^2} \right) + 7.43 \right) = -11.058$$

Se calcula el daño del flujo dual lineal mediante la ecuación (19):

$$S_{DL} = \left(\frac{16.06}{3.840358} - 2\right) \frac{1}{34.743*537.7107} \sqrt{\frac{2700*4.35x10^{-2}}{0.0734*9.4*9.899x10^{-6}*0.0536}} = 2.0907$$

Por lo tanto, el daño es:

$$S = S_r + S_{DL}$$

$$S = -11.058 + 2.0907 = -8.967$$

CONCLUSIONES

- Se extendió la técnica de la Síntesis Directa de Tiab para caracterizar yacimientos naturalmente fracturados alargados para pozos verticales de petróleo con transición matriz-fisuras tomando lugar durante el flujo dual lineal. La técnica propuesta se verifico satisfactoriamente mediante la aplicación tanto de problemas sintéticos como a un problema de campo.
- 2. Se desarrollaron nuevas expresiones matemáticas para caracterizar formaciones heterogéneas siguiendo la filosofía de la técnica TDS. Se tomo como base para el análisis el flujo dual lineal de pendiente ½, puntos máximos y correlaciones generadas a partir del punto mínimo.
- 3. Se desarrollaron y verificaron diferentes ecuaciones usando puntos y líneas características hallados en el grafico log-log de la presión y derivada de presión para determinar parámetros como el ancho del yacimiento $Y_{E_{,}}$ el área del yacimiento, el daño causado por la convergencia del flujo radial al flujo dual lineal.
- 4. La ecuación que se genera a partir de los puntos máximos identificados en las curvas de la derivada, se determina el parámetro de flujo interporoso λ. Las correlaciones que se generan a partir de los puntos mínimos que se identifican en las mismas curvas, permiten determinar el coeficiente de almacenamiento ω.
- Se determino que las ecuaciones generadas para determinar permeabilidad, ancho del yacimiento, área, factor de daño geométrico son funciones del valor de la relación de almacenaje adimencional ω.

RECOMENDACIONES

1. Cuando la línea de flujo radial (línea recta horizontal) no se visualiza, la permeabilidad k se determina a partir de la ecuación del producto de $\sqrt{k}Y_E$

2. Extender esta técnica para caracterizar yacimientos fracturados naturalmente alargados con transición durante el flujo dual lineal, especialmente cuando el flujo radial y/o dual lineal es enmascarado por el almacenamiento.

3. Evaluar el valor del coeficiente de almacenamiento ω con la correlación 1, ya que esta genera un error del 0.12%, por lo que los resultados son mas confiables que los obtenidos por la correlación 2.

NOMENCLATURA

A	Área del yacimiento, ft ²
В	Factor de volumen de formación del aceite, rb/ST
С	Coeficiente de almacenamiento, bbl/psi
c _t	Compresibilidad total, 1/psi
Н	Espesor de la formación, ft
Κ	Permeabilidad de la formación, md
Р	Presión, psi
P_D	Presión adimensional
P_D '	Derivada de presión adimensional
P_i	Presión inicial del yacimiento, psia
Q	Caudal de petróleo, Bbl/dia
R	Radio, ft
<i>r</i> _D	Radio adimensional
r _w	Radio del pozo, ft
S _r	Daño radial
S_{DL}	Daño dual lineal
Т	Tiempo, hr
t_D	Tiempo adimensional
$t_D * P_D'$	Derivada de presión semilog adimensional
$t^*\Delta P'$	Derivada de presión semilog, psi
Y_E	Ancho del pozo, ft
W_D	Ancho adimensional

Griego

ω	Coeficiente adimensional de almacenaje de un yacimiento naturalmente fracturado
Δ	Cambio, caída
ΔP	Diferencial de Presión, Psi
ΔP_D	Diferencial adimensional de Presión
Δt	Tiempo de flujo, hr o días.
μ_o	Viscosidad del aceite, cp
Φ	Porosidad, fracción.
Λ	Parámetro de flujo interporoso de un yacimiento naturalmente fracturado.

Sufijos

D	Adimensional
Ι	Intersección
DL	Flujo dual lineal
DLPSSi	Intersección entre la línea de flujo dual lineal y la línea de flujo pseudo estable
Max	Máximo
Min	Mínimo
L1	Lineal temprano a 1 hr
PSS	Pseudoestable
RDLi	Intersección entre la línea de flujo radial y la línea de flujo dual lineal
R	Radial

REFERENCIAS

Engler, T.W. and Tiab, D., 1995. "Analysis of Pressure and Pressure Derivatives without Type-Curve Matching.4-Naturally Fractured Reservoirs". Journal of Petroleum Science and Engineering, 15 (1996), p.127-138.

Engler, T.W. and Tiab, D., 1996. "Analysis of Pressure and Pressure Derivatives without Type-Curve Matching.5-Horizontal Well Tests in Naturally Fractured Reservoirs". Journal of Engineering and Applied Sciencies, 15 (1996), p.139-151.

Escobar, F.H., 2005. "Análisis Moderno de Pruebas de Presión". Editorial Universidad Surcolombiana. ISBN 958-8154-81-2. Abr. 2005.

Escobar,F.H, Garcia, H., Suaza,I.M, and Cantillo,J.H. "Well Pressure Behavior for a Vertical Well in Gas Condensate Naturally Fractured Reservoir".Paper SPE 107721 was prepared for presentation at the 2007 SPE Latin American and Caribbean Petroleum EngineeringConference held in Buenos aires, Argentina, 15-18 April,2007.

Escobar, F.H, Hernanadez, Y.A and Hernandez, C.M. "Pressure transient analysis for long homogeneous reservoirs using TDS technique". Journal of Petroleum Science and Engineering 58 (2007) 68–82.

Escobar, F.H and Montealegre, M. "Effect of Well Stimulation on The Skin Factor in Elongated Reservoirs".

Escobar,F.H., TIAB,D. and TOVAR,L.V,2007: "Determination of Areal Anisotropy from a Single Vertical Pressure Test and Geological Data in Elongated Reservoirs". Journal of Engineering and Applied Sciencies 2 (11): pages 1627-1639(2008) (August 2008).

Hernández, C.M. y Hernández, Y.A. "Análisis de Presiones y Derivadas de Presiones en Yacimientos Homogéneos Fluviales Drenados por un Pozo Vertical de Petróleo". Tesis de Pregrado. Universidad Surcolombiana. 2004.

Onur,M. and Satman, A. "New Type Curves for Analyzing the Transition Time Data From Naturally Fractured Reservoirs". Paper SPE 25873 prepared for presentation at the SPE Rocky Mountain Ragional/Low Permeability Reservoirs Symposium held in Denver, CO, U.S.A., April 12-14, 1993.

Slimani,K., Sonatrach, Tiab,D. "Pressure Trasient Analysis of Partially Penetrating Wells in a Naturally Fractured Reservoir". Paper SPE 104059 was prepared for presentation at the first International Oil Conference and Exhibition in Mexico held and Cancun.Mexico, 31 August-2 September, 2006.

Tiab, D. and Bettman, Y.,2007. "Practical Interpretation of Pressure Test of Hydraulically Fractured Wells in a Naturally Fractured Reservoir". Paper SPE 107013 prepared for presentation at the SPE Latin American and Caribbean Petroleum Engineering Conference held Buenos Aires Argentina, 15-18 April.

ANEXOS

Tabla 3. Datos de presión y derivada de presión para ejemplo 1, de un yacimiento alargado naturalmente fracturado.

t,(hr)	ΔP(psi)	t*∆P'(hr)	t,(hr)	ΔP(psi)	t*∆P'(hr)
0.1	320.037867	25.5948458	2800.47489	1053.53776	380.642148
0.2	337.76547	25.5562056	2900.47489	1067.08122	393.317749
0.3	348.123038	25.5264166	3000.47489	1080.59367	405.75198
0.4	355.462757	25.5115234	3100.47489	1094.07732	418.228934
0.50357016	361.336675	25.4796971	3200.47489	1107.53374	430.92616
0.63395728	367.196591	25.419152	3300.47489	1120.96397	443.383813
0.79810493	373.042627	25.3950601	3400.47489	1134.34862	455.870802
1.00475457	378.891448	25.5090583	3500.47489	1147.70146	468.375385
1.26491106	384.789982	25.9204172	3600.47489	1161.03448	480.888119
1.59242868	390.828241	26.8118313	3700.47489	1174.34962	493.409989
2.00474893	397.137287	28.3273436	3800.47489	1187.64839	506.019486
2.52382938	403.873465	30.5281294	3900.47489	1200.93186	518.679096
3.17731294	411.19601	33.3860213	4000.47489	1214.20084	531.345711
4	419.248296	36.8127425	4100.47489	1227.45584	543.696832
5.03570165	428.148904	40.7005702	4200.47489	1240.69552	556.394819
6.33957277	437.991601	44.9495235	4300.47489	1253.89516	569.343434
7.98104926	448.848925	49.4715868	4400.47489	1267.08376	582.089015
10.0475457	460.774109	54.1779065	4550.47489	1286.84885	600.800689
12.6491106	473.798773	58.9588735	4700.47489	1306.59555	619.920718
15.9242868	487.925674	63.6655674	4850.47489	1326.32615	639.045167
20.0474893	503.11785	68.0919398	5000.47489	1346.04208	658.163592
25.2382938	519.283171	71.9587414	5150.47489	1365.74407	677.172488
31.7731294	536.256075	74.914883	5300.47489	1385.42693	696.209431
40	553.782749	76.582643	5450.47489	1405.06139	715.303601
50.3570165	571.523686	76.6619682	5600.47489	1424.68638	734.416815
63.3957277	589.08689	75.0576394	5750.47489	1444.30399	753.905524
79.8104926	606.089006	71.9540895	5900.47489	1463.91567	773.044097
100.475457	622.222973	67.8017493	6050.47489	1483.52236	792.293846
126.491106	637.312865	63.2653793	6200.47489	1503.12462	811.591876
159.242868	651.357757	59.2035349	6350.47489	1522.72264	830.848153
200.474893	664.577101	56.646305	6500.47489	1542.31634	850.154014
250.474893	677.025878	56.579553	6650.47489	1561.90485	869.510487
300.474893	687.423733	58.9712694	6850.47489	1587.96405	895.303561
350.474893	696.740654	63.1012906	7050.47489	1614.01932	920.709567
400.474893	705.453185	68.3755808	7250.47489	1640.07298	946.566557
450.474893	713.813771	74.3866856	7450.47489	1666.12648	972.479885

550.474893	729.955685	87.9794931	7850.47489	1718.23524	1024.3969
600.474893	737.854336	94.8081728	8050.47489	1744.29031	1050.30128
650.474893	745.678522	101.731797	8250.47489	1770.34507	1076.24266
700.474893	753.439849	108.707445	8450.47489	1796.37743	1101.90372
750.474893	761.150113	115.685357	8650.47489	1822.3785	1127.91028
800.474893	768.816742	122.638206	8850.47489	1848.38126	1153.90761
850.474893	776.441139	129.573472	9100.47489	1880.88874	1186.3876
900.474893	784.022765	136.481734	9350.47489	1913.40178	1218.28883
950.474893	791.569776	143.360462	9600.47489	1945.92075	1251.24283
1000.47489	799.083763	150.261533	9850.47489	1978.44539	1283.83214
1050.47489	806.565496	157.048754	10100.4749	2010.9749	1316.32104
1100.47489	814.006675	163.914166	10350.4749	2043.50808	1348.12281
1150.47489	821.417548	170.617628	10600.4749	2076.02674	1381.0394
1200.47489	828.800082	177.257433	10850.4749	2108.49937	1413.60519
1250.47489	836.155109	183.866371	11150.4749	2147.4729	1452.63643
1300.47489	843.4831	190.444446	11450.4749	2186.45518	1491.55485
1350.47489	850.778886	196.996938	11750.4749	2225.44709	1530.64362
1400.47489	858.043176	203.525895	12050.4749	2264.44871	1569.77344
1450.47489	865.28331	210.127191	12350.4749	2303.45946	1608.77626
1500.47489	872.500306	216.589102	12650.4749	2342.47825	1648.5402
1550.47489	879.694896	223.040222	12950.4749	2381.50358	1687.55878
1600.47489	886.867595	229.568666	13250.4749	2420.53363	1725.55543
1650.47489	894.018755	235.96309	13600.4749	2465.98545	1772.10819
1700.47489	901.140838	242.34711	13950.4749	2511.44227	1817.7801
1750.47489	908.237805	248.71866	14300.4749	2556.90985	1863.46911
1800.47489	915.315818	255.073642	14650.4749	2602.38911	1907.94708
1850.47489	922.375767	261.413374	15000.4749	2647.88022	1954.60369
1900.47489	929.418354	267.772523	15350.4749	2693.38268	2000.05744
1950.47489	936.44413	274.128502	15750.4749	2745.39806	2052.17288
2000.47489	943.453521	280.521858	16150.4749	2797.42479	2104.30429
2050.47489	950.446854	286.71654	16550.4749	2849.46017	2156.45041
2100.47489	957.424374	293.115687	16950.4749	2901.43527	2208.61042
2150.47489	964.372934	299.35343	17350.4749	2953.37942	2260.78595
2200.47489	971.30658	305.752569	17800.4749	3011.8297	2318.08637
2300.47489	985.133792	318.249729	18250.4749	3070.2955	2375.50401
2400.47489	998.911484	330.723244	18700.4749	3128.77737	2433.07703
2500.47489	1012.64304	343.298595	19150.4749	3187.27492	2490.93546
2600.47489	1026.33071	355.737044	19600.4749	3245.78697	0
2700.47489	1039.96022	368.184862			

Tabla 5. Datos de presión y derivada de presión para ejemplo 2, de un yacimiento alargado naturalmente fracturado.

t,(hr)	ΔP(psi)	t*∆P'(hr)	t,(hr)	ΔP(psi)	t*∆P'(hr)
0.1	155.65975	12.560558	2800.4748	874.21569	251.42299
0.2	164.39339	12.639412	2900.4748	883.17133	260.15149
0.3	169.52758	12.885501	3000.4748	892.11813	268.74627
0.4	173.28003	13.424191	3100.4748	901.05591	277.32526
0.5035701	176.44118	14.227539	3200.4748	909.98431	286.02200
0.6339572	179.83206	15.415519	3300.4748	918.89382	294.56198
0.7981049	183.54029	16.975285	3400.4748	927.78741	303.09396
1.0047545	187.64946	18.882068	3500.4748	936.67255	311.61096
1.2649110	192.23581	21.107611	3600.4748	945.54968	320.11341
1.5924286	197.36988	23.636300	3700.4748	954.41899	328.62409
2.0047489	203.12072	26.470490	3800.4748	963.28053	337.07705
2.5238293	209.55999	29.627579	3900.4748	972.13422	345.63969
3.1773129	216.76473	33.133955	4000.4748	980.97984	354.16577
4	224.81874	37.019413	4100.4748	989.81416	362.44373
5.0357016	233.81280	41.313042	4200.4748	998.62653	370.93605
6.3395727	243.84410	46.039957	4300.4748	1007.4315	379.60497
7.9810492	255.01498	51.217948	4400.4748	1016.2295	388.09522
10.047545	267.43084	56.853144	4550.4748	1029.4143	400.55842
12.649110	281.19682	62.934769	4700.4748	1042.5850	413.23326
15.924286	296.41337	69.428070	4850.4748	1055.7418	425.87289
20.047489	313.16963	76.266425	5000.4748	1068.8845	438.48093
25.238293	331.53536	83.336064	5150.4748	1082.0109	451.00425
31.773129	351.54731	90.448596	5300.4748	1095.0988	463.54107
40	373.18847	97.311348	5450.4748	1108.1742	476.06687
50.357016	396.36084	103.53008	5600.4748	1121.2383	488.58260
63.395727	420.86584	108.69043	5750.4748	1134.2919	501.28083
79.810492	446.41463	112.50534	5900.4748	1147.3354	513.78091
100.47545	472.67646	114.9163	6050.4748	1160.3690	526.32937
126.49110	499.33555	116.01418	6200.4748	1173.3928	538.89261
159.24286	526.10297	115.78728	6350.4748	1186.4068	551.33879
200.47489	552.65756	113.94127	6500.4748	1199.4051	563.89016
250.47489	577.73084	110.23500	6650.4748	1212.3722	576.46301
300.47489	597.44194	105.66907	6850.4748	1229.6485	593.18294
350.47489	613.36462	100.95530	7050.4748	1246.9117	609.59576
400.47489	626.54060	96.496296	7250.4748	1264.1630	626.35107
450.47489	637.65456	92.781181	7450.4748	1281.4031	643.10893
500.47489	647.26167	90.044131	7650.4748	1298.6325	659.91178
600.47489	663.20089	88.205969	8050.4748	1333.0588	696.24149

650.47489	670.19634	86.761745	8250.4748	1350.2364	709.94045
700.47489	676.58877	87.151260	8450.4748	1367.3867	726.50592
750.47489	682.59542	88.105125	8650.4748	1384.5288	743.25186
800.47489	688.30310	89.649311	8850.4748	1401.6637	759.98493
850.47489	693.76960	91.648817	9100.4748	1423.0735	780.90443
900.47489	699.05017	94.031763	9350.4748	1444.4742	801.5097
950.47489	704.18699	96.766183	9600.4748	1465.8663	822.61239
1000.4748	709.2102	99.907939	9850.4748	1487.2498	843.59167
1050.4748	714.14224	103.15122	10100.474	1508.6245	864.51291
1100.4748	719.00138	106.76234	10350.474	1529.9727	884.90561
1150.4748	723.80274	110.35452	10600.474	1551.2849	906.17492
1200.4748	728.55760	114.08742	10850.474	1572.5909	927.14112
1250.4748	733.27484	117.94100	11150.474	1598.1518	952.28955
1300.4748	737.96135	121.89338	11450.474	1623.7071	977.32779
1350.4748	742.62232	125.92851	11750.474	1649.2578	1002.4970
1400.4748	747.26277	130.03189	12050.474	1674.8042	1027.7145
1450.4748	751.88625	134.27597	12350.474	1700.3461	1052.8729
1500.4748	756.49557	138.46881	12650.474	1725.8830	1078.5000
1550.4748	761.09296	142.70050	12950.474	1751.4073	1103.6848
1600.4748	765.68018	147.06849	13250.474	1776.8804	1128.2091
1650.4748	770.25713	151.35213	13600.474	1806.5953	1158.2601
1700.4748	774.82511	155.65912	13950.474	1836.3082	1187.7595
1750.4748	779.38665	159.98345	14300.474	1866.0204	1217.2773
1800.4748	783.94259	164.32127	14650.474	1895.7327	1246.0689
1850.4748	788.49355	168.67294	15000.474	1925.4452	1276.1107
1900.4748	793.04001	173.01214	15350.474	1955.1578	1305.5316
1950.4748	797.58229	177.42631	15750.474	1989.1146	1339.2564
2000.4748	802.12062	181.85718	16150.474	2023.0696	1373.0025
2050.4748	806.65470	186.13693	16550.474	2056.9702	1406.7674
2100.4748	811.18022	190.56362	16950.474	2090.8528	1440.5529
2150.4748	815.70251	194.93450	17350.474	2124.7372	1474.3568
2200.4748	820.22184	199.37575	17800.474	2162.8610	1511.5329
2300.4748	829.25226	208.06582	18250.474	2200.9897	1548.8076
2400.4748	838.27222	216.75137	18700.474	2239.1236	1586.3166
2500.4748	847.28175	225.49558	19150.474	2277.2623	1623.8843
2600.4748	856.27701	234.14657	19600.474	2315.4049	0
2700.4748	865.25109	242.79307			

t,(hr)	P,(psi)	ΔP(psi)	t*∆P'(hr)	t,(hr)	P,(psi)	ΔP(psi)	t*∆P'(hr)
0	2376.08	0	1	0.5810406	2403.71	27.63	7.00498304
2.07E-04	2378.74	2.66	1.467743	0.5885406	2403.74	27.66	7.05918951
1.04E-03	2381.35	5.27	3.858389	0.5960406	2403.97	27.89	7.08213022
1.87E-03	2384.53	8.45	5.458054	0.6035406	2404.13	28.05	7.12963715
2.71E-03	2386.11	10.03	4.859283	0.6110406	2404.17	28.09	7.18535081
3.54E-03	2388.43	12.35	3.709243	0.6185406	2404.19	28.11	7.22703919
4.37E-03	2388.37	12.29	6.088914	0.6260406	2404.28	28.2	7.16791113
5.21E-03	2389.62	13.54	2.870679	0.6335406	2404.42	28.34	7.22121229
6.04E-03	2388.48	12.4	-0.37518	0.6410406	2404.45	28.37	7.23495278
6.87E-03	2393.25	17.17	-0.13398	0.6485406	2404.6	28.52	7.36674091
7.71E-03	2390.4	14.32	-0.55112	0.6560406	2404.61	28.53	7.49727966
8.54E-03	2390.36	14.28	-1.22985	0.6643739	2404.71	28.63	7.4765063
9.37E-03	2388.06	11.98	-0.52864	0.6727073	2404.76	28.68	7.45186164
1.00E-02	2388.05	11.98	1.99	0.6810406	2404.91	28.83	7.53562142
1.02E-02	2388.04	11.96	-0.75965	0.6893739	2404.95	28.87	7.4856972
0.0110406	2388.17	12.09	-2.69319	0.6977072	2405.08	29	7.5173843
1.19E-02	2388.4	12.32	-2.67095	0.7060406	2405.23	29.15	7.49059436
1.27E-02	2388.27	12.19	-0.64	0.7143739	2405.35	29.27	7.52103403
1.35E-02	2388.33	12.25	-0.56869	0.7227073	2405.37	29.29	7.52570537
1.44E-02	2388.36	12.28	0.169228	0.7310406	2405.41	29.33	7.59402567
1.45E-02	2388.36	12.31	1.99	0.7402073	2405.58	29.5	7.58474853
1.52E-02	2388.44	12.36	1.670438	0.7493739	2405.59	29.51	7.62136627
0.0160406	2388.43	12.35	2.3321	0.7585406	2405.75	29.67	7.73964271
1.69E-02	2388.59	12.51	2.486108	0.7677073	2405.77	29.69	7.86300605
1.77E-02	2388.75	12.67	2.662412	0.7768739	2405.89	29.81	7.78603797
1.85E-02	2390.08	14	2.644799	0.7860406	2406	29.92	7.85347051
1.94E-02	2389.36	13.28	2.606419	0.7952073	2406.07	29.99	7.87521786
2.02E-02	2389.76	13.68	2.725413	0.8043739	2406.21	30.13	7.89068679
2.10E-02	2389.76	13.68	2.896426	0.8143739	2406.22	30.14	7.91977101
2.19E-02	2389.78	13.7	2.980808	0.8243739	2406.3	30.22	7.90696881
2.27E-02	2389.83	13.75	3.113474	0.834374	2406.37	30.29	7.9057453
0.0235406	2390.02	13.94	3.196472	0.8443739	2406.62	30.54	7.94721472
2.44E-02	2390.12	14.04	3.200163	0.8543739	2406.68	30.6	7.93878984
2.52E-02	2390.15	14.07	3.443279	0.8643739	2406.76	30.68	7.87669727
0.0260406	2390.33	14.25	3.626933	0.8743739	2406.88	30.8	7.92056184
2.69E-02	2390.44	14.36	3.724651	0.8852072	2406.98	30.9	8.01919911

Tabla 7. Datos de presión y derivada de presión para ejemplo real del yacimiento alargado naturalmente fracturado.

2 775 02	2200 51	14 42	2 757165	0 0060406	2407.05	20.07	0 00762207
2.77E-02	2390.31	14.43	2 999911	0.0900400	2407.03	21.12	8.09702287 8.10015124
2.03E-02 2.04E-02	2390.00	14.38	3.000011	0.9008/39	2407.21	31.13	8.0600000
2.94E-02 3.02E.02	2390.82	14.74	2 8082/2	0.9177075	2407.20	31.10	8.0090909
0.0210406	2390.88	14.0	2.898243	0.9283400	2407.4	21.32	8.08077992
2 10E 02	2390.80	14.70	2.655004	0.9393739	2407.43	21.55	8.13133103
3.19E-02	2390.97	14.09	2 222422	0.9302072	2407.39	21.7	8.21908424
0.0335406	2391	14.92	2 08//08	0.9018/39	2407.33	31.47	8 20336020
3 1/E 02	2391.09	15.01	2.304400	0.9753400	2407.74	31.00	8.29330029
3.44E-02	2391.14	15.00	3.110039	0.9652075	2407.79	31.71	8 11/1653
0.0360406	2391.22	15.14	3.109470	1.0085/1	2407.94	31.00	8 15296908
2.60E.02	2391.29	15.21	1 225052	1.000341	2408.07	22.00	8.13290908
3.09E-02	2391.33	15.23	4.223932	1.020207	2408.17	32.09	8.27802424
3.77E-02	2391.31	15.45	3.0203	1.052707	2408.17	32.09	8.32217008
3.63E-02	2391.34	15.40	3.440798	1.043207	2408.3	22.22	8.20830138
3.94E-02	2391.30	15.5	4.210243	1.03//0/	2408.38	32.5	8.2/1409/
4.0212-02	2391.0	15.32	4.081337	1.070207	2408.39	32.31	8.20993311
1 10E 02	2391.02	15.74	2 06/0/2	1.062707	2408.7	32.02	8 411555
4.19E-02	2391.92	15.04	2 970500	1.093207	2406.73	32.07	8.411333 8.46501622
4.27E-02	2392.03	15.95	2.8/9309	1.108341	2408.8	32.72	8.40301022
4.55E-02	2392.14	16.00	2 010261	1.1210/4	2408.99	22.91	8.44660114 8.51020284
4.44E-02	2392.21	16.13	2.026664	1.133207	2409.04	32.90	8.31930384
4.52E-02	2392.20	10.18	3.920004	1.148541	2409.10	22.11	8.44806658
4.00E-02	2392.39	10.31	3.9/040/	1.1018/4	2409.19	22.24	8.43/249/3
4.69E-02	2392.53	16.45	3.986655	1.1/6041	2409.32	33.24	8.43262727
4.//E-02	2392.68	16.6	3.998098	1.190207	2409.45	33.37	8.45481351
0.0485406	2392.67	16.59	4.00844	1.2043/4	2409.58	33.5	8.55555297
4.94E-02	2392.67	16.59	4.014/79	1.218541	2409.62	33.54	8.5148438
5.02E-02	2392.59	16.51	3.941266	1.232707	2409.7	33.62	8.5747826
5.10E-02	2392.63	16.55	4.448013	1.247/07	2409.83	33.75	8.54074517
5.19E-02	2392.85	16.77	5.400209	1.262707	2410.06	33.98	8.59977083
5.27E-02	2392.86	16.78	6.096752	1.277707	2410.09	34.01	8.63463685
5.35E-02	2392.82	16.74	5.797032	1.292707	2410.22	34.14	8.64189088
5.44E-02	2392.79	16.71	4.618503	1.307707	2410.3	34.22	8.70762567
5.52E-02	2392.74	16.66	4.704056	1.323541	2410.38	34.3	8.64685838
0.0560406	2392.78	16.7	4.762427	1.339374	2410.48	34.4	8.7898869
5.69E-02	2392.91	16.83	4.538027	1.355207	2410.55	34.47	8.77919339
5.77E-02	2393.01	16.93	4.660561	1.371041	2410.65	34.57	8.81934773
5.85E-02	2392.88	16.8	5.040625	1.386874	2410.77	34.69	8.75218501
5.94E-02	2393.03	16.95	5.222318	1.403541	2410.94	34.86	8.84255841
6.02E-02	2394.67	18.59	5.271224	1.420207	2410.98	34.9	8.76546582

0.0610406	2393.77	17.69	5.212622	1.436874	2411.05	34.97	8.80534044
6.19E-02	2393.53	17.45	5.145295	1.453541	2411.13	35.05	8.8154994
6.27E-02	2393.41	17.33	5.124165	1.471041	2411.25	35.17	8.88710565
6.35E-02	2393.42	17.34	5.097725	1.488541	2411.35	35.27	8.84874452
6.44E-02	2394.72	18.64	5.080475	1.506041	2411.48	35.4	8.86472354
6.52E-02	2394.04	17.96	5.274778	1.523541	2411.57	35.49	8.93212935
0.0660406	2394.25	18.17	5.293639	1.541874	2411.7	35.62	8.97993361
6.69E-02	2394.09	18.01	5.249542	1.560207	2411.81	35.73	8.94987965
6.77E-02	2394.08	18	5.135038	1.578541	2411.95	35.87	8.9977514
0.0685406	2394.18	18.1	5.016235	1.596874	2412.05	35.97	8.96492059
6.94E-02	2394.14	18.06	4.953505	1.616041	2412.15	36.07	9.05470723
7.02E-02	2394.17	18.09	5.002197	1.635207	2412.25	36.17	9.06910607
7.10E-02	2394.21	18.13	4.6145	1.654374	2412.25	36.17	8.99360492
7.19E-02	2394.22	18.14	4.674733	1.673541	2412.42	36.34	8.98778676
7.27E-02	2394.21	18.13	5.006084	1.693541	2412.54	36.46	9.02664199
7.44E-02	2394.4	18.32	5.120196	1.713541	2412.69	36.61	9.09744764
0.0760406	2394.53	18.45	5.050525	1.733541	2412.69	36.61	9.1444561
7.77E-02	2394.66	18.58	4.91619	1.753541	2412.77	36.69	9.05899157
7.94E-02	2394.79	18.71	4.929465	1.774374	2413	36.92	9.05431236
0.0810406	2394.9	18.82	5.038056	1.795207	2413.06	36.98	9.11375253
8.27E-02	2394.79	18.71	5.220123	1.816041	2413.18	37.1	9.10619281
8.44E-02	2395.39	19.31	5.200117	1.837707	2413.26	37.18	9.13384943
8.60E-02	2396.73	20.65	5.06115	1.859374	2413.42	37.34	9.05434441
8.77E-02	2397.39	21.31	5.190441	1.881041	2413.5	37.42	9.16146
8.94E-02	2395.62	19.54	5.279276	1.903541	2413.52	37.44	9.17550462
0.0910406	2395.79	19.71	5.414319	1.926041	2413.75	37.67	9.23421278
9.27E-02	2395.9	19.82	5.397716	1.948541	2413.78	37.7	9.1530408
9.44E-02	2395.57	19.49	5.14087	1.971041	2413.85	37.77	9.20748458
9.60E-02	2396.2	20.12	5.283126	1.994374	2414.03	37.95	9.19796837
9.77E-02	2396.5	20.42	5.320478	2.017707	2414.1	38.02	9.26951846
9.94E-02	2396.59	20.51	3.756148	2.041041	2414.2	38.12	9.25453088
0.1010406	2396.57	20.49	4.709862	2.065207	2414.29	38.21	9.1268225
0.1027073	2396.65	20.57	5.001109	2.089374	2414.4	38.32	9.20316982
0.1043739	2396.64	20.56	5.016129	2.113541	2414.54	38.46	9.17645231
0.1060406	2396.63	20.55	3.856455	2.138541	2414.65	38.57	9.17723962
0.1077073	2396.89	20.81	4.545027	2.163541	2414.81	38.73	9.1795252
0.1093739	2396.89	20.81	4.42864	2.188541	2414.84	38.76	9.13833124
0.1110406	2396.99	20.91	4.51757	2.214374	2415.06	38.98	9.24095857
0.1127073	2396.9	20.82	4.569429	2.240207	2415.06	38.98	9.29253148
0.1143739	2396.9	20.82	4.619512	2.266041	2415.2	39.12	9.29789204

0.1160406	2397.04	20.96	4.548268	2.292707	2415.32	39.24	9.27113842
0.1177073	2396.51	20.43	4.496288	2.319374	2415.55	39.47	9.26077142
0.1193739	2397.16	21.08	4.55493	2.346874	2415.49	39.41	9.33467304
0.1210406	2397.27	21.19	4.519337	2.374374	2415.69	39.61	9.31288463
0.1227073	2397.38	21.3	4.421194	2.401874	2415.78	39.7	9.28832339
0.1243739	2397.46	21.38	4.357112	2.430207	2415.94	39.86	9.31823279
0.1260406	2397.45	21.37	4.313567	2.458541	2416.01	39.93	9.39628433
0.1277073	2397.5	21.42	4.281623	2.486874	2416.12	40.04	9.35851353
0.1293739	2397.47	21.39	4.228652	2.516041	2416.3	40.22	9.34154687
0.1310406	2397.62	21.54	4.143061	2.545207	2416.41	40.33	9.36126488
0.1327073	2397.67	21.59	4.103202	2.575207	2416.49	40.41	9.33652306
0.1343739	2397.74	21.66	4.17157	2.605207	2416.57	40.49	9.33133982
0.1360406	2397.82	21.74	4.247165	2.636041	2416.63	40.55	9.29805639
0.1377073	2397.79	21.71	3.944087	2.666874	2416.84	40.76	9.34138267
0.1393739	2397.88	21.8	3.475874	2.697707	2416.95	40.87	9.40042724
0.1410406	2397.91	21.83	2.626172	2.729374	2417.01	40.93	9.48617256
0.1427073	2397.92	21.84	1.976696	2.761041	2417.12	41.04	9.42156279
0.1443739	2398.02	21.94	1.60936	2.79354	2417.2	41.12	9.40543115
0.1460406	2398.07	21.99	2.545299	2.826041	2417.34	41.26	9.42932351
0.1485406	2398.08	22	3.4101	2.859374	2417.49	41.41	9.58342231
0.1510406	2398.2	22.12	3.29092	2.892707	2417.54	41.46	9.60465149
0.1535406	2398.21	22.13	3.300754	2.926041	2417.7	41.62	9.4654639
0.1560406	2398.07	21.99	3.526124	2.960207	2417.84	41.76	9.6021082
0.1585406	2398.22	22.14	3.069831	2.994374	2417.88	41.8	9.55604274
0.1610406	2398.33	22.25	2.761085	3.029374	2418.02	41.94	9.62345372
0.1635406	2398.35	22.27	2.74291	3.064374	2418.06	41.98	9.62619862
0.1660406	2398.39	22.31	2.798586	3.100207	2418.25	42.17	9.68529753
0.1685406	2398.48	22.4	2.8192	3.136041	2418.34	42.26	9.76272552
0.1710406	2398.45	22.37	2.897324	3.172707	2418.48	42.4	9.6520787
0.1735406	2398.41	22.33	2.951733	3.209374	2418.51	42.43	9.69342424
0.1760406	2398.56	22.48	2.916209	3.246874	2418.7	42.62	9.7536659
0.1785406	2398.65	22.57	2.764148	3.284374	2418.78	42.7	9.73802535
0.1810406	2398.61	22.53	2.731639	3.322707	2418.91	42.83	9.79860363
0.1835406	2398.6	22.52	2.74861	3.361041	2419	42.92	9.84550304
0.1860406	2398.74	22.66	2.937829	3.400207	2419	42.92	9.81127042
0.1885406	2398.76	22.68	3.034358	3.440207	2419.27	43.19	9.85796744
0.1910406	2398.73	22.65	2.938727	3.480207	2419.29	43.21	9.84733568
0.1935406	2398.7	22.62	3.36456	3.521041	2419.41	43.33	9.84518619
0.1960406	2398.75	22.67	3.075686	3.561874	2419.5	43.42	9.80487053
0.1985406	2398.81	22.73	2.88601	3.603541	2419.52	43.44	9.93053783

0.2010406	2398.81	22.73	2.830869	3.645207	2419.72	43.64	9.83833196
0.2035406	2398.84	22.76	2.857655	3.687707	2419.85	43.77	9.96128467
0.2060406	2398.84	22.76	2.898367	3.730207	2419.96	43.88	10.0047571
0.2085406	2398.89	22.81	2.929413	3.77354	2420.06	43.98	10.030825
0.2110406	2398.93	22.85	2.967346	3.817707	2420.19	44.11	9.93587877
0.2135406	2398.95	22.87	3.066099	3.861874	2420.32	44.24	10.040417
0.2160406	2398.94	22.86	3.003562	3.906874	2420.37	44.29	9.96387418
0.2185406	2398.96	22.88	3.008692	3.952707	2420.42	44.34	10.034537
0.2218739	2399.05	22.97	3.032448	3.998541	2420.55	44.47	9.92694731
0.2252073	2399.05	22.97	3.074723	4.045207	2420.75	44.67	9.98654347
0.2285406	2399.01	22.93	3.11999	4.091874	2420.84	44.76	10.0416011
0.2318739	2398.97	22.89	3.140647	4.139374	2420.9	44.82	10.0268374
0.2352073	2398.91	22.83	3.201792	4.187707	2421.06	44.98	10.0329979
0.2385406	2398.95	22.87	3.178434	4.236041	2421.13	45.05	10.1245084
0.2418739	2399.04	22.96	3.134553	4.285207	2421.28	45.2	10.1317524
0.2452073	2399.11	23.03	3.206253	4.335207	2421.33	45.25	10.1756756
0.2485406	2399.12	23.04	3.205407	4.385207	2421.46	45.38	10.091593
0.2518739	2399.11	23.03	3.299463	4.43604	2421.63	45.55	10.1813082
0.2552073	2399.13	23.05	3.468958	4.487707	2421.72	45.64	10.1874377
0.2585406	2399.24	23.16	3.573425	4.540207	2421.83	45.75	10.2472431
0.2618739	2399.3	23.22	3.549963	4.592707	2421.91	45.83	10.2492006
0.2652073	2399.25	23.17	3.596293	4.64604	2422.08	46	10.3068746
0.2685406	2399.31	23.23	3.637154	4.700207	2422.24	46.16	10.2230995
0.2718739	2399.35	23.27	3.666633	4.754374	2422.38	46.3	10.3559859
0.2752073	2399.39	23.31	3.673191	4.809374	2422.4	46.32	10.2632377
0.2785406	2399.46	23.38	3.655552	4.865207	2422.65	46.57	10.243688
0.2818739	2399.54	23.46	3.739714	4.921874	2422.7	46.62	10.2754479
0.2852073	2399.57	23.49	3.887371	4.979374	2422.84	46.76	10.2603983
0.2885406	2399.63	23.55	3.882252	5.036874	2423	46.92	10.2595659
0.2918739	2399.69	23.61	3.831093	5.097429	2423.16	47.08	10.199006
0.2960406	2399.63	23.55	3.87448	5.158541	2423.26	47.18	10.1683788
0.3002073	2399.66	23.58	3.981187	5.219652	2423.37	47.29	10.1260615
0.3043739	2399.77	23.69	4.039203	5.280763	2423.45	47.37	10.1300764
0.3085406	2399.89	23.81	4.076063	5.341874	2423.57	47.49	10.1066921
0.3127073	2399.97	23.89	4.195727	5.405763	2423.73	47.65	10.0491042
0.3168739	2399.96	23.88	4.388498	5.469652	2423.87	47.79	10.0995235
0.3210406	2399.99	23.91	4.431595	5.533541	2424.03	47.95	10.0844056
0.3252073	2400.11	24.03	4.369128	5.597429	2424.07	47.99	10.1430401
0.3293739	2400.12	24.04	4.375039	5.664096	2424.23	48.15	10.0314288
0.3335406	2400.2	24.12	4.461102	5.730763	2424.36	48.28	10.1133632

0.3377073	2400.35	24.27	4.608935	5.79743	2424.47	48.39	10.1369755
0.3418739	2400.36	24.28	4.676806	5.866874	2424.58	48.5	10.1780635
0.3460406	2400.43	24.35	4.698502	5.936318	2424.76	48.68	10.289317
0.3502073	2400.5	24.42	4.714337	6.005763	2424.86	48.78	10.2374136
0.3543739	2400.61	24.53	4.778485	6.075207	2425.01	48.93	10.2415672
0.3585406	2400.64	24.56	4.868114	6.147429	2425.18	49.1	10.2697103
0.3627073	2400.72	24.64	5.012651	6.219652	2425.33	49.25	10.3110614
0.3677073	2400.82	24.74	5.094433	6.291874	2425.45	49.37	10.3257342
0.3727072	2400.91	24.83	5.139413	6.366874	2425.54	49.46	10.3402246
0.3777073	2400.97	24.89	5.236926	6.441874	2425.62	49.54	10.4377609
0.3827073	2401.05	24.97	5.406653	6.516874	2425.8	49.72	10.5365206
0.3877073	2401.12	25.04	5.531806	6.594652	2425.84	49.76	10.5547277
0.3927073	2401.21	25.13	5.632704	6.67243	2425.99	49.91	10.5107352
0.3977073	2401.19	25.11	5.587169	6.750207	2426.15	50.07	10.5751891
0.4027072	2401.27	25.19	5.614949	6.827985	2426.3	50.22	10.6653693
0.4077073	2401.35	25.27	5.640691	6.908541	2426.43	50.35	10.6677235
0.4127073	2401.45	25.37	5.784513	6.989096	2426.61	50.53	10.7514333
0.4177073	2401.56	25.48	5.827813	7.069652	2426.69	50.61	10.7673935
0.4227073	2401.64	25.56	5.898957	7.152985	2426.8	50.72	10.8764455
0.4277073	2401.71	25.63	5.958545	7.236319	2426.89	50.81	10.9070434
0.4327073	2401.8	25.72	6.044817	7.32243	2427.13	51.05	10.9111357
0.4377073	2401.93	25.85	6.112519	7.408541	2427.19	51.11	10.9884749
0.4435406	2401.99	25.91	6.098579	7.494652	2427.36	51.28	11.0525698
0.4493739	2402.05	25.97	6.222526	7.58354	2427.44	51.36	11.1347287
0.4552073	2402.11	26.03	6.20114	7.67243	2427.64	51.56	11.1404997
0.4610406	2402.14	26.06	6.26719	7.761318	2427.68	51.6	11.1597946
0.4668739	2402.22	26.14	6.244981	7.852985	2427.92	51.84	11.2167803
0.4727073	2402.37	26.29	6.322788	7.944652	2427.92	51.84	11.3396583
0.4785406	2402.39	26.31	6.361686	8.036319	2428.07	51.99	11.3046639
0.4843739	2402.47	26.39	6.459337	8.130763	2428.16	52.08	11.4259425
0.4902073	2402.53	26.45	6.574588	8.225207	2428.26	52.18	11.4700322
0.4960406	2402.6	26.52	6.570337	8.32243	2428.32	52.24	11.4998327
0.5018739	2402.7	26.62	6.550728	8.419652	2428.42	52.34	11.5457795
0.5077072	2402.81	26.73	6.564642	8.516874	2428.5	52.42	11.6404579
0.5143739	2402.91	26.83	6.686007	8.616874	2428.59	52.51	11.7324408
0.5210406	2403.09	27.01	6.755382	8.716874	2428.64	52.56	11.8467709
0.5277073	2403.16	27.08	6.845003	8.819652	2428.79	52.71	11.9236407
0.5343739	2403.14	27.06	6.862955	8.922429	2428.82	52.74	11.9727343
0.5410406	2403.17	27.09	6.906973	9.027985	2429.01	52.93	12.0393702
0.5477073	2403.22	27.14	6.978746	9.13354	2429.08	53	12.0995782

0.5543739	2403.42	27.34	6.945576	9.239096	2429.15	53.07	12.2570404
0.5610406	2403.5	27.42	6.998044	9.347429	2429.28	53.2	12.3161091
0.5677072	2403.61	27.53	7.019339	9.455763	2429.41	53.33	12.4036474
0.5743739	2403.61	27.53	7.073148				